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Abstract: High-quality urban land-use maps are essential for grasping the dynamics and scale of
urban land use, predicting future environmental trends and changes, and allocating national land
resources. This paper proposes a multisample “voting mechanism” based on multisource data and
random forests to achieve fine mapping of urban land use. First, Zhengzhou City was selected as the
study area. Based on full integration of multisource features, random forests were used to perform
the preliminary classification of multiple samples. Finally, the preliminary classification results were
filtered according to the “voting mechanism” to achieve high-precision urban land-use classification
mapping. The results showed that the overall classification accuracy of Level I features increased by
5.66% and 14.32% and that the overall classification accuracy of Level II features increased by 9.02%
and 12.46%, respectively, compared with the classification results of other strategies. Therefore, this
method can significantly reduce the influence of mixed distribution of land types and improve the
accuracy of urban land-use classification at a fine scale.

Keywords: multisource data; random forests; urban land use; voting mechanisms

1. Introduction

Urban dwellers account for about 55% of the global population, and this proportion is
predicted to reach nearly 70% in 2059, with urban economic productivity accounting for
more than 80% of the global GDP [1]. Land use has been an important research component
for global ecological changes and sustainable social development [2–5]. As a major carrier
of basic human life and daily activities, land merits accurate and timely understanding
of urban land-use information, which is extremely important for tapping the inherent
development potential of cities, improving urban spatial governance, and ensuring high-
quality urban development [6–9].

Early urban land-use classification mapping started with field surveys and visual
interpretation of remote-sensing images, which had higher classification accuracy [10].
However, this approach required interpreters to have profound knowledge and was char-
acterized by poor timeliness and high cost [11]. Along with the development of remote
sensing and computer technology, image-element-based and object-oriented methods have
been gradually proposed, which have improved the ability to classify land-use features in
remote-sensing images to a certain extent [12,13]. However, the heterogeneity of land-use
features in remote-sensing images and the confusion of image elements usually lead to
a decrease in urban land-use classification accuracy. For example, the spectral characteris-
tics of commercial and residential areas in remote-sensing images are very similar, and it is
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difficult to further improve the accuracy of land-use classification while relying only on
remote-sensing images [14,15].

In recent years, due to the gradual availability of open-source data and the diversi-
fication of data sources, many other data sources in addition to remote-sensing images
have become important sources of data for urban land-use classification, including mobile
phone data, Sina Weibo social media data, Twitter check-in record data, OpenStreetMap
(OSM) road network data, point-of-interest (POI) data, etc. Mobile phone data can be used
to indicate the social function of land use [16]. Sina Weibo social media data can be used to
estimate temporal trend patterns in land-use types [17]. The spatio-temporal characteristics
of geo-tagged tweets in Twitter can reflect dynamic population distribution characteristics
and further facilitate land-use classification [18]. OSM can be used to create a subdivision
of urban land-use parcel units, and such parcel unit data can represent socio-economic
functions [19]. However, when subdividing feature units, roads of different widths and
administrative levels cannot be divided directly using road centerlines, resulting in a lack
of parcel unit segmentation and further reducing the characterization of land-use features
within the unit [20]. POI data can capture the spatial and temporal characteristics of hu-
man activities and provide new opportunities for classifying parcels of different uses in
cities [21]. However, users of POI data must consider its intrinsic spatial dependencies and
not only information on the frequency of POI occurrence [22].

Based on multisource Big Data, artificial intelligence algorithms can fully mine the
spatial and temporal characteristics of urban land-use features to obtain richer feature
information and achieve better urban land-use classification mapping [23]. For example,
Gong et al. realized basic urban land-use type mapping in China in 2018 based on the
random forest classification method, medium- and high-resolution remote-sensing imagery,
and spatially and temporally assisted Big Data [24]. Zong et al. performed urban land-use
classification in Lanzhou City by comparing urban classification accuracy under different
feature data combinations using remote-sensing images, network data, and other data
sources and selecting the optimal feature combination [25]. Tu et al. proposed an EULUC-
seg framework based on the random forest model, which used high-resolution remote-
sensing images and socioeconomic data to further refine the original urban classification
results [26]. These studies have improved the accuracy of urban land-use classification
to a certain extent. However, most of the sampling strategies are still single-sample and
multiple-sample methods. Single-sample means that a point with certain rules or a random
point in a parcel unit is selected as a model-training sample point [27]. These methods
have a higher probability of misclassification of land-use features because a single point is
hardly representative of parcel type. Multiple samples are expanded from a single sample
by selecting multiple points in a parcel unit as model-training sample points [28,29]. This
can most likely reduce the accuracy of land-use classification, as incorrect sample points
in a parcel may interfere with the classification results. Both approaches fail to take into
account the problem of land-use confusion in a parcel unit. Hence, the classification results
may not be sufficient to meet the needs of other functions, such as urban planning and
environmental monitoring, due to the insufficient processing of multisource data and the
continued confounding of urban land-use classification results.

To reduce the influence of feature confusion on land-use classification and, thus,
further improve land-use classification-mapping accuracy, this paper proposes an urban
land-use classification method that uses a multisample “voting mechanism” while fully
processing multiple sources of data. Using Zhengzhou City as the study area, road buffers
are generated according to reasonable thresholds and combined with impervious surface
data to generate high-quality basic land-mapping units. Multisource data, such as Sentinel-
2 and POI, are preprocessed to construct a multitemporal high-dimensional feature library.
To improve classification accuracy, multiple samples are collected for a single parcel as
a sample dataset. A random forest model is then used for training and testing to obtain
preliminary urban land-use classification results. Finally, the multisample classification
results are filtered according to the “voting mechanism” to determine the types of parcels,
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to achieve high-precision urban land-use classification mapping, and to provide decision
support for sustainable urban development governance.

2. Study Area and Data
2.1. Study Area

Zhengzhou City, the capital of Henan Province, is located in the lower reaches of
the Yellow River in China (Figure 1). Zhengzhou not only has a long history and a well-
established culture, but is also an important transportation hub and national central city in
China. It is 166 km wide from east to west and 75 km long from north to south. The total
area of the city is 7446 km2.
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2.2. Data and Sources
2.2.1. Sentinel-2

Sentinel-2 (https://eros.usgs.gov/sentinel-2, accessed on 1 September 2020) is a high-
resolution multispectral-imaging satellite, which can be divided into the two satellites of 2A
and 2B, with a revisit cycle of 10 days for one satellite and 5 days for two complementary
satellites. Sentinel-2 also carries a multispectral imager (MSI) that can cover 13 spectral
bands with ground resolutions of 10 m, 20 m, and 60 m, providing images of vegetation,

https://eros.usgs.gov/sentinel-2
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soil and water cover, inland waterways, and coastal areas for land monitoring, emergency
relief services, and other purposes. In this paper, Sentinel-2 remote-sensing images with
less than 5% cloudiness in 2018 were used, and remote-sensing images for February, June,
September, and November were selected. The specific data sources are shown in Table 1.

Table 1. Remote-sensing image data sources.

Name Time

S2A_MSIL1C_20180222T030731_N0206_R075_T49SFU_20180222T082850.SAFE 22 February 2018
S2A_MSIL1C_20180222T030731_N0206_R075_T49SGU_20180222T082850.SAFE 22 February 2018
S2A_MSIL1C_20180513T030541_N0206_R075_T49SFU_20180513T055623.SAFE 13 May 2018
S2B_MSIL1C_20180607T030539_N0206_R075_T49SGU_20180607T064334.SAFE 7 June 2018
S2A_MSIL1C_20180930T030541_N0206_R075_T49SGU_20180930T060706.SAFE 30 September 2018
S2B_MSIL1C_20181005T030549_N0206_R075_T49SFU_20181005T055242.SAFE 5 October 2018
S2B_MSIL1C_20181109T030931_N0207_R075_T49SFU_20181109T060447.SAFE 9 November 2018
S2A_MSIL1C_20181119T031011_N0207_R075_T49SGU_20181119T061056.SAFE 19 November 2018

2.2.2. Open-Source Data

Along with the rapid development of Internet technology, Big Data based on network
media are gradually being enriched, and more open-data-sharing platforms are appearing.
Data users can quickly access massive free geographic data on these platforms, such as
OpenStreetMap data, POI data, and others, which provide new data sources for performing
urban land-use classification.

OSM

OSM (http://www.openstreetmap.org, accessed on 1 September 2020) is a kind of
open-source geographic database collected, processed, and produced by many volunteers,
where all users can upload and edit data on its platform. OSM has become one of the more
successful spontaneous geographic information platforms with the continuous application
and popularity of electronic maps, and its data are widely used due to its fast updates, low
cost, free access, and other advantages. It is widely used to delineate urban parcels and
urban neighborhoods [30].

OSM vector data include point, line, and surface elements. Among them, point
elements are divided into six categories: transport, natural, pofw (place of worship), traffic,
places, and POIs (places of interest). Line elements are divided into three categories:
waterways, roads, and railways. Finally, surface elements are divided into natural, traffic,
water, land use, POIs, pofw, buildings, places, and transportation.

POI

POI, as one of the emerging Big Data sources, has a large volume of data, easy access,
and fast update speed and describes spatial entities and their attributes related to urban
spatial activity patterns, as well as visualizes current urban land-use situations. With the
rapid development of modern electronic maps and geolocation technologies, location-based
POI data form an important part of geospatial Big Data, which are divided into several
specific classifications from the perspective of elements: residential, educational, medical,
entertainment, financial, etc. [31]. In addition, POI data have the advantages of fast update
speed, large data volume, a fine classification system, and easy access and are widely used
for urban economic development research, urban boundary extraction, population studies,
and urban spatial structure identification [32,33].

2.2.3. Ground Truth Data

Gong et al. proposed the concept of essential urban land-use categories (EULUCs) to
describe the current urban development situation in China [24]. Based on the EULUC classi-
fication system and the current urban land-use situation in Zhengzhou, this paper divided
urban land use into four Level I land-use categories and ten Level II land-use categories.

http://www.openstreetmap.org
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To obtain objective and representative sample units, this study generated several
random points on a basic mapping unit and screened out parcel units where the random
points were located. The screened parcel units were visually interpreted and field-surveyed
to obtain land-use information. Some parcel units with larger areas and more complex
land-use types were eliminated to reduce the degree of land-use mixture in the units.
Finally, the sample parcel units were labeled with land-use types, and 413 real and valid
sample parcel units were obtained. The samples and the numbers in each category are
shown in Table 2 and Figure 2.

Table 2. Total sample size by feature type.

Level I Count Level II Count

Residential 81 Residential 81

Commercial 84
Business office 34

Commercial service 50

Industrial 64
Industrial 30

Warehouse 34

Public 184

Administrative 34

Educational 50

Medical 34

Sports and culture 33

Parks and green space 33
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3. Methodology

This paper proposed a high-precision urban land-use classification method based on
multisource data and a multisample “voting mechanism” (Figure 3). First, the OSM road
network and impervious surface data [34] were used to create basic mapping units, and the
final sample plots were verified by visual interpretation and field survey. Meanwhile, the
multisource data were processed to build a high-dimensional feature library. The training
sample data and high-dimensional feature data were input into random forests for training
and were tested using validation sample data to obtain preliminary classification results.
Finally, the preliminary classification results were filtered based on a multisample “voting
mechanism” to obtain the final urban land-use classification map.

Land 2022, 11, x FOR PEER REVIEW 6 of 20 
 

network and impervious surface data [34] were used to create basic mapping units, and 

the final sample plots were verified by visual interpretation and field survey. Meanwhile, 

the multisource data were processed to build a high-dimensional feature library. The 

training sample data and high-dimensional feature data were input into random forests 

for training and were tested using validation sample data to obtain preliminary classifica-

tion results. Finally, the preliminary classification results were filtered based on a mul-

tisample “voting mechanism” to obtain the final urban land-use classification map. 

 

Figure 3. Main flowchart: (a) urban sample plot production; (b) multisource data feature extraction; 

(c) urban land-use map generation using random forests and multisample voting. 

3.1. Road Network Data Processing 

In this study, the acquired OSM road network data were integrated into seven cate-

gories, including highways, urban expressways, primary trunk roads, secondary roads, 

tertiary roads, minor roads, and special types of road. The road network was generated 

by sampling different classes of roads to establish buffer zones according to the actual 

situation in the city. The specific road sampling distances are shown in Table 3. 

Table 3. Sampling distances of different levels of roads. 

Category Sampling Distance (m) Road Width (m) 

Expressway 20 40 

Urban expressway 17.5 35 

Primary main road 15 30 

Secondary roads 10 20 

Tertiary roads 6 12 

Minor roads 5 10 
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3.1. Road Network Data Processing

In this study, the acquired OSM road network data were integrated into seven cate-
gories, including highways, urban expressways, primary trunk roads, secondary roads,
tertiary roads, minor roads, and special types of road. The road network was generated
by sampling different classes of roads to establish buffer zones according to the actual
situation in the city. The specific road sampling distances are shown in Table 3.

Table 3. Sampling distances of different levels of roads.

Category Sampling Distance (m) Road Width (m)

Expressway 20 40
Urban expressway 17.5 35
Primary main road 15 30

Secondary roads 10 20
Tertiary roads 6 12
Minor roads 5 10

Special types of road 4 8
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3.2. Feature Extraction

Previous studies have shown that, when multitemporal remote-sensing image spectral
features are used, the classification effect is much better than with single-temporal remote-
sensing images [7]. Therefore, in this paper, remote-sensing images for four time periods
(months) in Zhengzhou City in 2018 were selected, thus extracting a set of high-dimensional
spatial and temporal features.

First, the average normalized vegetation index and the average normalized building
index over the four time periods were calculated based on the bands, and two remote-
sensing index features were obtained. Second, the mean, contrast, variance, synergy,
correlation, dissimilarity, entropy, and second-order moments of the eight bands were
calculated based on a gray-level co-occurrence matrix (GLCM) to obtain 4 × 8 × 8 texture
features. Finally, the POI data were combined into five classes, and kernel density analysis
and Euclidean distance analysis were performed to obtain five features. Therefore, 2 spectral
features, 256 texture features, and 5 POI features were selected in this study, for a total of
263 high-dimensional spatial and temporal features, which are detailed in Table 4.

Table 4. Features extracted from Sentinel-2 and POI data.

Type Name Variable Count

Index feature
NDVI Mean_NDVI 1
NDBI Mean_NDBI 1

Texture characteristic

Mean Mean_b2, b3, b4, b5, b6, b7, b8, b8A 4 ∗ 8
Variance Variance_b2, b3, b4, b5, b6, b7, b8, b8A 4 ∗ 8
Contrast Contrast_b2, b3, b4, b5, b6, b7, b8, b8A 4 ∗ 8

Homogeneity Homogeneity_b2, b3, b4, b5, b6, b7, b8, b8A 4 ∗ 8
Dissimilarity Dissimilarity_b2, b3, b4, b5, b6, b7, b8, b8A 4 ∗ 8
Correlation Correlation_b2, b3, b4, b5, b6, b7, b8, b8A 4 ∗ 8

Entropy Entropy_b2, b3, b4, b5, b6, b7, b8, b8A 4 ∗ 8
SecondMoment SecondMoment_b2, b3, b4, b5, b6, b7, b8, b8A 4 ∗ 8

POI feature

Administrative center Kernel_xzzx 1
Residential community Kernel_zzxq 1

Public service Kernel_ggfw 1
Commercial center Kernel_sfyl 1

Transportation EucDistance_jtd 1

3.2.1. Texture Features

The Sentinel-2 remote-sensing image bands of 1, 9, and 10 were removed, and bands 2,
3, 4, 5, 6, 7, 8, and 8A were resampled to unify the spatial resolution to 10 m, as shown in
Table 5.

Table 5. Sentinel-2 parameters.

Band Resolution (m) Wavelength (nm) Spectral Width (nm)

Band 2-Blue 10 490 65
Band 3-Green 10 560 35
Band 4-Red 10 665 30

Band 5-Vegetation Red Edge 1 20 705 15
Band 6-Vegetation Red Edge 2 20 740 15
Band 7-Vegetation Red Edge 3 20 783 20

Band 8-NIR 10 842 115
Band 8A-Vegetation Red Edge 4 20 865 20

The gray-level co-occurrence matrix method was introduced to extract attribute in-
formation, such as adjacent interval, intensity, and spatial arrangement of the gray-scale
distribution of remote-sensing images in geographic space, and to improve the spatial
distribution characteristics of the images.
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3.2.2. Index Features

The normalized difference vegetation index (NDVI) and the normalized difference
building index (NDBI) were introduced to enhance the characteristics of land-use classifica-
tion within cities.

NDVI

This index is normally used to monitor and reflect vegetation cover status and is the
most widely used vegetation index. It quantifies vegetation by measuring the difference
between the near-infrared band (strong reflection of vegetation) and the red band (absorp-
tion of vegetation) and effectively reflects the spatial distribution and temporal variation of
vegetation, weakens the influence of anomalous values brought about by atmospheric and
other factors, and has better spatial and temporal adaptability [35]. The NDVI is calculated
using Equation (1):

NDVI =
NIR − R
NIR + R

(1)

where R refers to the band reflectance in the red band, and NIR is the band reflectance in
the near-infrared band. The NDVI takes on values between −1 and 1 and is generally 0
when the surface cover is bare soil or rock; when the surface is covered with vegetation,
the value is positive and is positively correlated with the vegetation cover. The greater the
vegetation cover, the higher the value of the NDVI.

NDBI

The normalized building index is proposed to reflect information on building land
use and the intensity of urbanization [36], as shown in Equation (2):

NDBI =
SWIR − NIR
SWIR + NIR

(2)

where NIR is the band reflectance in the near-infrared band, and SWIR refers to the band
reflectance in the mid-infrared band. It takes on values between −1 and 1 and is positively
correlated with the likelihood of an image element being a building site.

3.2.3. POI Features

In this study, a total of 72,061 POI data points were obtained from the Baidu Map API
interface. According to the EULUC classification system adopted in this paper, relevant
POI data were reclassified by attribute according to the classification rules shown in Table 6.

Table 6. POI reclassification rules.

Classes Description

Administrative center Restaurants, hotels, retail stores, supermarkets, shopping malls, etc.
Residential community Residential communities, amenities, etc.

Public service Street offices, government agencies, police stations, etc.
Commercial center Research institutes, schools, educational institutions, etc.

Transportation Railroads, highways, main roads, secondary roads, minor roads, special roads, etc.

The processed residential communities, public services, administrative centers, and
commercial centers were analyzed separately for kernel density and normalized to unify the
POI data of each category to the same order of magnitude for easy analysis and comparison.
A Euclidean distance analysis was performed for transportation.

3.3. Multisample Voting

A limited number of selected sample units and mixed land use within the parcels
results in less room for improving land-use classification accuracy [37]. Therefore, a research
concept of multipoint-result-voting selection was designed (Figure 4). First, by deploying
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multiple random points inside a basic mapping unit, the sample size was effectively
increased, and the randomness of the model was reduced. After the multiple points were
trained by random forests, preliminary land-use classification results were obtained. The
predicted results for the multiple points were then filtered by “voting”, and the main
land-use type of the site was selected as the land-use type of the basic mapping unit to
further determine and refine the classification results. This approach could reduce the
influence of mixed features to a certain extent, screen out erroneous samples, and improve
land-use classification accuracy.
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3.4. Random Forest

Random forest is an integrated learning algorithm for data mining with decision-tree-
based classifiers [38] that is now widely used for land-use classification [39]. It is composed
of a number of weak decision tree classifiers, and multiple decision trees are combined to
form a forest. Each decision tree learns features and predictions independently with its
own rules so that different decision trees do not have the same results. The results of all the
decision-makers are aggregated, and the final classification result is decided by “voting”.
The model not only can effectively and quickly process large amounts of data with high
classification accuracy, but also has strong anti-noise and anti-interference ability when
facing a large amount of redundant data and can effectively avoid overfitting. Studies
using the random forest model for classification have proved the superiority of the model
over other classification methods [40].

From the algorithmic perspective of the model, the classification process of random
forest is simple. First, a training set is generated by random sampling of the original dataset;
second, individual subdecision trees are constructed. The training data are placed on the
subdecision trees, and each subdecision tree produces one result; finally, the results of the
subdecision trees are voted on, and the one with the highest number of votes is the final
classification result.

Regarding the parameters of random forest, the decision tree classifier includes both
mtry and ntree parameters, where mtry refers to the number of variables used in a single
decision tree node, and ntree refers to the number of decision trees in the random forest
model. Moreover, the random forest model evaluates model generalization performance by
the out-of-bag (OOB) score, where OOB is the ratio of the number of misclassified samples
to the total number of samples in the original data that were not sampled.

3.5. Evaluation Methodology

In this study, overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy
(UA) were used for accuracy evaluation.
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OA is the proportion of the number of correctly classified samples to the total number
of samples. The mathematical expression is as follows:

OA =
∑

p
i=1 Xii

N
(3)

where p is the number of categories, Xii represents the number of correct classifications of
a particular category, and N represents the total number of samples.

PA is the proportion of correctly classified samples to the predicted samples. Its
mathematical expression is as follows:

PAi =
Xii
X+i

(4)

where Xii represents the number of correctly classified samples in a category, and X+i
represents the total number of samples in a category.

UA is the proportion of correctly classified samples to the real samples. Its mathemati-
cal expression is as follows:

UAi =
Xii
X+i

(5)

where Xii represents the number of correctly classified samples in a category, and X+i
represents the total number of real features.

4. Results

In this study, the random forest model was selected to classify urban land use. The
model was built using R language, with the parameters of mtry set to 16 and ntree set to 600.

4.1. Urban Parcels

Currently, the grid-cell-based approach is commonly used in many studies to segment
urban sites. However, this segmentation ignores the geospatial correlation of features
and destroys the spatial connection of urban sites in terms of function and structure [41].
Therefore, it is necessary to start from urban spatial structure and functional units to better
combine remote-sensing image data and auxiliary data to obtain good classification results.
In this study, the OSM road network was used to segment the impervious surfaces of
Zhengzhou City based on a basic mapping unit. First, the road network was generated
based on the sampling distance and OSM road data, and the network topology was checked
and modified. The road network was then used to segment the urban impervious surfaces
of the study area to obtain preliminary basic mapping units. Then, parcels with small and
fragmented areas after segmentation were integrated, thus reducing the fragmentation of
the basic mapping units, and finally, 12,466 basic mapping units were obtained (Figure 5).

4.2. Sample Size

To investigate the relationship between the number of training samples and the
performance of the random forest and to filter out a more suitable number of datasets, the
sample set was divided, and different percentages of training and validation samples were
set. The samples were divided into five groups according to different percentages, where
the percentages of samples in the validation set in order were 10%, 20%, 30%, 40%, and
50%. Urban land-use classification was performed by a random forest model with multiple
points and validated by overall accuracy and OOB scores. The classification results for each
percentage are shown in Table 7.
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Table 7. Sample size and feature classification results for each experimental group. The bolded
content is the best performed.

Groups Level I Accuracy
(%) OOB Score Level II Accuracy

(%) OOB Score

1 72.57 78.14 61.98 73.22
2 72.21 79.16 62.21 74.72
3 73.72 80.80 64.73 75.90
4 71.72 79.28 60.90 71.94
5 70.66 78.73 59.19 70.13

Table 7 shows that the classification accuracy values of primary features, and the OOB
scores reached the highest values in the third group with increasing numbers of samples,
but the differences in accuracy from neighboring groups were not very large. Regarding the
classification accuracy of secondary features, it also showed an overall improvement trend
with increasing numbers of samples, and the accuracy of group 3 was significantly higher
than the accuracies of other groups. Therefore, in this paper, 70% of the samples were split
into training samples, and the remaining samples were used as validation samples.

Based on the above discussion, to investigate the influence of the number of sample
points on the final classification results in the process of multiple-sample-point voting,
six sets of control experiments were performed in which the sample size was increased
from 5 to 20. The experiments were validated with an overall accuracy assessment to select
the appropriate sample size for voting. The specific results are shown in Figure 6.

As the number of voting samples for a single parcel increased, the classification
accuracy increased accordingly at first. However, when the sample size was 17, the
classification accuracy started to decrease. The classification accuracy reached its highest
value when the sample size was 14, with 85.37% for primary features and 78.05% for
secondary features. Therefore, the number of samples randomly taken in the multiple-
sample-voting process was set to 14.
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4.3. Classification Results of Sample Selection Strategies

At present, the ways to select sample points in a basic mapping unit include both
single sample points and multiple sample points. These methods have improved land-use
classification accuracy to a certain extent, but the confusion of features present in plots has
not been resolved.

In this study, a multisample voting mechanism was used to solve the problem of
feature confusion in a single plot. Figure 7 shows the results for OA accuracy after training
different sample selection strategies with segmentation in random forests according to
nine segmentation ratios. Figure 7 clearly shows that the feature accuracy with multiple
samples was not as good as that with a single sample. This was the case because of
the purity of the parcels; the parcel itself had the problem of feature confusion, and the
single-sample procedure had a certain probability of obtaining the wrong sample after
uniform expansion, leading to lower accuracy. However, the distribution interval of the
classification results was smaller, and the classification process was more stable; therefore,
multiple samples could improve model robustness to a certain extent. In addition, the
results of screening by multisample voting were significantly better than those of other
strategies, regardless of Level I or Level II precision. This occurred because the screening
process cleaned up some of the erroneous samples, thus improving feature classification
accuracy. Therefore, the multisample voting mechanism proposed in this paper was
favorable for land-use classification.

4.4. Urban Land-Use Classification Results

The land-use classification was completed for Zhengzhou City according to the sample
split ratio; the classification results for each level of feature are shown in Table 8. The OA
values of Level I and Level II features were 85.37% and 78.05% respectively. In addition,
among the Level I features, the PA of the residential category was the highest at 0.91,
followed by those of the industrial and public categories. The public and residential
categories had the best UA performances. On the whole, the primary features were
not difficult to distinguish. Among the Level II features, the commercial services and
educational categories had lower PA accuracies that were lower than the OA values. The
category of business office had a relatively lower UA of 64.29%. However, the medical
category had the highest PA accuracy of 93.33%, and the residential category achieved the
highest UA of 93.05%.
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Table 8. Classification accuracy of Level I and Level II land-use features.

Level I PA UA OA Level II PA UA OA

Residential 91.13% 81.50%

85.37%

Residential 77.00% 93.05%

78.05%

Commercial 79.44% 77.67%
Business office 92.31% 64.29%

Commercial service 67.09% 84.57%

Industrial 84.94% 64.98%
Industrial 84.00% 72.81%

Warehouse 76.92% 76.19%

Public 85.10% 94.48%

Administrative 85.51% 72.84%
Educational 70.94% 89.44%

Medical 93.33% 72.00%
Sports and culture 82.50% 79.29%

Parks and green space 72.90% 92.86%

Figures 8 and 9 show the results of land-use classification for Level I and Level II
features in Zhengzhou City, with a total classified area of 1993.22 km2. Among the primary
features, the public category had the highest percentage among all the features at 67.11%,
followed by the residential category, with only 18.27%. Among the secondary features, the
category of residential accounted for 40.12%, which was 19.35% higher than that of parks
and green space, which accounted for the second-highest percentage.
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5. Discussion

In this paper, the “voting” mechanism of multiple point prediction for basic mapping
units was combined with a random forest model to extract land-use classification infor-
mation within the city. The overall classification accuracy of Level I features was 85.07%,
and the overall classification accuracy of Level II features was 74.62%, both of which were
higher than the results of other methods, thus realizing fine-scale urban land-use map-
ping. The research results show that the use of spatial and temporal feature information
from remote-sensing images and POI data, as well as the use of the multisample voting
classification method for land parcels, could reduce the influence of confusion of land-use
features in land parcels on the classification results to a certain extent and could achieve
the purpose of promoting the fine-scale mapping of urban land-use.

5.1. Contributions of Different Features

In previous studies, Tu et al. pointed out that the features influencing Sentinel-2 were
the main factors affecting classification when compared to other features [26]. Chang et al.
and Sun et al. each suggested that the spatial features of POI were beneficial for urban land-
use classification [1,12]. To explore the contributions of different features to urban land-use
classification, this paper discusses the contributions of all the features using random forests.
As can be seen in Figure 10, in the mean decrease Gini contribution regarding Level I
features, the most important ones were administrative centers and commercial centers, and
among the top eight most important features, POI features were clearly more important
than remote-sensing features. Regarding Level II features, the first four important features
were all based on POI data and had higher values, followed by remote-sensing features. In
mean decrease accuracy, regarding Level I features, both remote-sensing features and POI
features accounted for larger proportions, and the difference between them was smaller,
but POI features were still more important. Regarding Level II features, the top three most
important features were among the POI features, and the contribution of the POI features
was also greater than that of remote-sensing features.
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In general, POI features appeared to be more important in land-use classification. This
may be because the processed POI spatial features could distinguish different land-use
features well and could effectively improve land-use classification accuracy.

5.2. Shortcomings

Although the method proposed in this paper achieved a good classification effect
for Zhengzhou urban land use, it still had some shortcomings. First, under the EULUC
classification system, the mixing of land uses within cities imposed severe constraints on
classification accuracy. It is necessary to consider adjusting urban land-use classification
and cognitive rules and to consider adopting more multidimensional urban Big Data
features to realize fine-scale land-use mapping in cities. Second, the selection of feature
data needs to be improved. Although a high-dimensional feature library was constructed in
this study, it contained some features that could not contribute to distinguishing land-use
classes, leading to data redundancy and low computational efficiency. Future studies
should consider streamlining feature data, increasing the diversity and uniqueness of
features, and improving feature quality.

6. Conclusions

This paper took Zhengzhou City as the study area, proposed the construction of
a high-dimensional feature library using multisource data, adopted a multisample voting
mechanism for urban land-use information extraction on the basis of random forest clas-
sification, and achieved 85.37% accuracy for primary feature classification mapping and
78.05% accuracy for secondary feature classification mapping. Among these approaches,
the superiority of the multitemporal high-dimensional feature library in extracting urban
land-use information maximized the extraction of effective information and enhanced
the authenticity, reliability, and applicability of the classification results. In addition, the
research idea of multipoint result voting could effectively reduce the influence caused by
the mixing of multiple land uses within a parcel and improved urban land-use classification
accuracy. Ultimately, this paper further improved the accuracy of fine-scale urban land-use
mapping by combining multisource data and a multisample voting mechanism, as well as
providing a reference basis for urban managers to conduct sustainable planning.

The feature selection and methods still need to be further discussed and improved. On
the one hand, data such as population data and building height can be added. Moreover,
the method can be optimized and improved in future studies by combining cutting-edge
technologies, such as deep learning, to improve the generalization ability in different spatial
and temporal scenarios.
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