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Abstract: The amount of rainfall in different regions is influenced by various factors, including time,
place, climate, and geography. In the Lake Urmia basin, Mediterranean air masses significantly
impact precipitation. This study aimed to model precipitation in the Lake Urmia basin using monthly
rainfall data from 16 meteorological stations and five machine learning methods (RF, M5, SVR,
GPR, and KNN). Eight input scenarios were considered, including the monthly index, longitude,
latitude, altitude, distance from stations to Lake Urmia, and distance from the Mediterranean Sea.
The results revealed that the random forest model consistently outperformed the other models,
with a correlation rate of 0.968 and the lowest errors (RMSE = 5.66 mm and MAE = 4.03 mm).
This indicates its high accuracy in modeling precipitation in this basin. This study’s significant
contribution is its ability to accurately model monthly precipitation using spatial variables and
monthly indexes without measuring precipitation. Based on the findings, the random forest model
can model monthly rainfall and create rainfall maps by interpolating the GIS environment for areas
without rainfall measurements.

Keywords: precipitation modeling; machine learning; spatio-temporal change; M5 tree model;
random forest model; Lake Urmia basin

1. Introduction

Precipitation plays a crucial role in the water cycle and is a vital environmental phe-
nomenon that varies significantly over time and space [1]. Precipitation modeling and
forecasting can greatly assist in managing water resources and mitigating drought. Intelli-
gent systems and machine learning methods are currently being used to model hydrological
processes and water engineering, providing more accurate estimates of meteorological
parameters using data from meteorological stations [2]. Lake Urmia is a critical factor in the
climate and weather conditions of the West Azerbaijan province, Iran, and its surrounding
areas. This lake has made the climate of the region more moderate, but the occurrence of
drought is one of the important facts of the basin of Lake Urmia, which can be attributed to
the periodic fluctuations of the climate and lack of moist and rainy air masses, especially
Mediterranean humid air masses [3]. This lake, in recent years due to the climate change
(decrease in rainfall), the excessive exploitation of underground water resources, the con-
struction of numerous dams, the construction of a bridge through the lake, and a high
consumption of water in agriculture, is suffering from water shortage and is facing a serious
crisis. The investigation of the fluctuations of the lake water level has shown that the lake
water level has been declining so far and will continue to decline in the coming years, which
requires comprehensive management as soon as possible. If this important lake dries up,
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the weather of the region will turn into tropical weather with salt storms and the ecosystem
of the region will change. Therefore, in the situation where the drying crisis of Lake Urmia
is a serious matter, rainfall modeling and forecasting are very important and necessary
to implement the best optimal restoration policies and manage the water resources of the
basin as best as possible by applying new methods of water resources management. Lake
Urmia’s drying up will negatively affect Azerbaijan and neighboring regions, impacting
the economy, ecology, environment, and health of residents near the lake [4]. Therefore,
rainfall modeling and forecasting are necessary to implement optimal restoration policies
and manage water resources in the basin through new methods. This study is the first to
investigate the effect of distance from nearby seas on precipitation and its fluctuations in
Lake Urmia. Unlike most of the studies that model the precipitation using meteorological
variables only, this research wants to study the effect of the distance from the sea on the
precipitation and also use the spatial variables according to the precipitation fronts.

Bao Pham et al. [5] conducted a study in 2019 to model the prediction of daily rainfall
in the Vu Gia-Thu Bon River basin in Central Vietnam. In the study, the potential of five
different data-driven models including Multilayer Perceptron (MLP), Least Square Support
Vector Machine (LSSVM), Neuro-fuzzy, Hammerstein–Weiner (HW), and autoregressive
integrated moving average (ARIMA) was employed. Subsequently, hybrid ARIMA-MLP,
ARIMA-LSSVM, ARIMA-NF, and ARIMA-HW models were also utilized to predict the
daily rainfall at these stations. The quantitative analysis indicated that the HW model
increased the prediction accuracy by 5%, 3%, and 2% at Hien, Ai Nghia, and Cau Lau
stations, respectively, compared to the other models. Also, the results of hybrid ARIMA-NF
and ARIMA-HW models showed the best performance in terms of predictive skills and
were shown to increase the prediction accuracy in comparison to the single models.

Kumar Pau et al. [6] investigated the sub-divisional rainfall data of India during the
period of 1871 to 2016 using a wavelet analysis to decompose and de-noise the series into
time–frequency components in order to study the local as well as global variation over
different scales and time epochs. On the decomposed series, autoregressive integrated
moving average (ARIMA) and artificial neural network (ANN) models were applied and by
means of inverse wavelet transform, the prediction of rainfall for different sub-divisions was
obtained. It is reported that the Wavelet–ANN and Wavelet–ARIMA approach outperforms
the usual ARIMA model for forecasting of rainfall for the data under consideration.

Apaydin et al. [7] conducted a similar study of rainfall modeling based on spatio-
temporal changes for the coastal region of Turkey with a hybrid approach of geographic
information systems and machine learning using several artificial intelligence models. In
the study, spatial variables such as the latitude, longitude, altitude, distance to the sea,
and aspect were obtained with the aid of GIS in the coastal zone of Turkey. Considering
the monthly time index variable, monthly precipitation was estimated by artificial neural
networks, deep learning, machine learning, and tree models. Among the used models, the
LSTM model based on DL gave the best results. The most important deficit of this and
similar studies is based on the stochastic structure of the precipitation data set.

De Oliveira et al. [8] conducted spatio-temporal soil moisture modeling in Atlantic
forests through machine learning algorithms. The study aimed to model the spatial–
temporal dynamics of soil moisture in the Atlantic forest through four machine learning
algorithms. A random forest (RF), support vector machine, average neural network, and
weighted k-nearest neighbor were studied. The abilities of the models were evaluated by
means of the root mean square error, mean absolute error, coefficient of determination (R2),
and Nash–Sutcliffe efficiency (NS) for two calibration approaches: (a) chronological and
(b) randomized. RF was the best algorithm for modeling the spatio-temporal dynamics
of soil moisture. This finding highlights the ability of RF to generalize a data set with
contrasting weather conditions. Multilinear regression presented the lowest values of
RMSE, MAE, R2, and NS, and thus it was not able to properly model the spatio-temporal
dynamics of the soil moisture. The temporal and spatial behavior of soil moisture has
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a highly non-linear pattern, which hampers multilinear regression and favors machine
learning algorithms.

Di Nunno et al. [9] carried out a study in 2022 on precipitation forecasting in north-
ern Bangladesh using a hybrid machine learning model by using two machine learning
algorithms: M5P and support vector regression.

The hybrid model M5P-SVR led to the best predictions among the models used in the
study, with R2 values up to 0.87 and 0.92 for the stations of Rangpur and Sylhet, respectively.

Wahla et al. [10] evaluated spatial–temporal mapping and climate change monitoring
using standard precipitation evaporation and transpiration and an RF machine learning
model. In this research, they predicted droughts by examining the changes in an acceptable
index using appropriate climatic factors. This research demonstrates that the SPEI has
the potential for use as a predictive tool for drought prediction and the RF model can be
used to solve both regression and classification issues related to drought in short-term time
periods, and that it performs well in both cases.

Fabio Di Nuno et al. [11] conducted a study for a spatio-temporal analysis of drought
in southern Italy with a combined clustering–forecasting approach based on the SPEI index
and artificial intelligence algorithms. In the study, three clustering algorithms, K-mean,
Hierarchical, and Expectation–Maximization, were first used to divide southern Italy into
homogeneous drought regions, based on gridded data of the Standardized Precipitation
Evapotranspiration Index forecasting with a 6-month time scale (SPEI6). The Hierarchical
algorithm identified five well-distinct clusters characterized by drought events of different
durations and severity, considering the different morphoclimatic characteristics of the study
area. Then, the mean SPEI6 time series was evaluated for each cluster and used to assess
the evolutionary drought trends. In addition, two machine learning (ML) algorithms, M5P
and support vector regression (SVR), were also used to develop forecasting models for
the SPEI6.

However, thus far, no comprehensive study has been conducted to investigate the
spatio-temporal precipitation changes in the Lake Urmia basin in Iran. This study aims to
accurately model spatio-temporal precipitation variations by utilizing the statistical rainfall
period of 16 stations in the Lake Urmia basin. Multiple machine learning models were
employed to achieve this goal, including RF, M5, SVR, GPR, and KNN. The depletion in
Lake Urmia could result in a shift from temperate to tropical weather, which could have
significant ecological implications. Hence, accurate precipitation prediction is crucial for
effective restoration policies and optimal water resource management in the basin.

2. Materials and Methods
2.1. Study Area and the Data

Lake Urmia is 1300 m above sea level, and its area varies depending on the annual
rainfall and evaporation rate [12]. According to the country divisions of Iran, this lake is
located northwest of the Iran between the two provinces of East and West Azerbaijan, and
its water is supplied from 60 rivers, including the Zarinerood, Barandoz, Shahrchai, and
Nazlo. Lake Urmia’s catchment area is one of Iran’s closed basins, one of the main basins in
classifying Iran’s catchment areas. The area of this basin is 51,876 square kilometers, and the
geographical location of this lake is 37 to 30.38 degrees north latitude and 45 to 46 degrees
east longitude. The northern part of the Zagros Mountains, the southern slope of Sabalan
Mountain, and the northern, western, and southern slopes of Sahand Mountain surround it.
Figure 1 shows the geographical location of the Lake Urmia basin. Considering the latitude
and altitude of the basin area, its general climate is very similar to the middle latitude, semi-
high plains with cold winters and relatively temperate summers. The occurrence of drought
is an important fact regarding the watershed stations of Lake Urmia, which can be attributed
to the seasonal fluctuations of the climate and the lack of passage of humid and rain-bearing
air masses, especially humid Mediterranean air masses [3]. The humid Mediterranean air
masses significantly affect the precipitation in this basin, so the distance of the stations from
the Mediterranean Sea is considered an important and influential input parameter.
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Figure 1. Geographical location of Lake Urmia basin and selected meteorological stations.

The data from 16 meteorological stations in the Lake Urmia basin were considered
in the present study. For each station, available rainfall data have been prepared from
the beginning of its establishment until 2021, and then monthly averages of rainfall have
been calculated from the available data for each month of the year, the details of which are
presented in Table 1.

Table 1. Monthly precipitation characteristics for each station (General Directorate of Meteorology of
Tabriz and Urmia).

Stations Min Precip
(mm)

Max Precip
(mm)

Mean
Precip
(mm)

Standard
Deviation
of Precip

Data (mm)

Longitude
(Degree)

Latitude
(Degree)

Height
(m)

Distance
from the

Lake (km)

Distance
from the
Mediter-

ranean Sea

Data
Period
(Year)

Salmas 7.073 44.553 20.431 12.720 44◦51′0′′ 38◦13′0′′ 1339 13.821 787.542 2001–2021
Urmia 2.634 60.300 27.932 18.814 45◦2′59′′ 37◦32′57′′ 1328 18.936 791.510 1951–2021

Oshnavieh 2.825 62.246 33.057 22.711 45◦7′59′′ 37◦2′59′′ 1416 28.727 796.632 2006–2021
Naghdeh 1.257 54.865 26.777 19.512 45◦25′0′′ 36◦57′0′′ 1307 17.655 821.696 2001–2021
Mahabad 0.975 62.115 32.175 23.680 45◦43′0′′ 36◦45′0′′ 1352 31.101 849.505 1985–2021

Bukan 2.159 51.994 28.680 20.551 46◦13′59′′ 36◦31′59′′ 1386 70.345 897.398 2005–2021
Shahin Dej 2.583 52.415 25.494 17.070 46◦31′0′′ 36◦37′0′′ 1395 81.010 921.399 2006–2021
Miandoab 0.940 50.131 22.669 16.523 46◦9′1′′ 36◦58′0′′ 1270 33.767 886.704 2002–2021
Malekan 0.829 39.365 21.523 14.333 46◦5′41′′ 37◦10′9′′ 1299 21.836 880.945 2008–2021

Maragheh Airport 1.152 55.876 24.223 17.729 46◦8′46′′ 37◦20′51′′ 1342 13.349 885.618 1983–2021
Ajabshir 0.744 34.731 16.566 12.016 45◦51′54′′ 37◦30′32′′ 1310 5.205 861.638 2013–2021
Sahand 3.157 42.309 18.353 12.061 46◦9′24′′ 37◦55′25′′ 1695 42.879 891.668 1985–2021

Tabriz Airport 3.604 51.602 23.567 14.662 46◦14′1′′ 38◦7′20′′ 1345 53.547 900.387 1951–2021
Marand 8.386 62.576 31.873 17.949 45◦46′13′′ 38◦22′53′′ 1548 34.519 864.101 2000–2021

Shabestar 2.272 35.981 18.682 11.396 45◦41′0′′ 38◦10′18′′ 1385 9.632 853.635 2012–2021
Bonab 1.507 51.769 21.295 15.523 46◦3′7′′ 37◦22′11′′ 1281 5.061 879.406 1999–2021

The graph of the average monthly precipitation of all stations for the available years
was drawn for each station compared to the basin average, which can be seen in Figure 2.
The watershed average was obtained using Arc GIS software (https://www.esri.com/en-
us/arcgis/about-arcgis/overview accessed on 4 March 2024) and the Thiessen method,
with a value of 24.47 mm. The three stations of Marand, Oshnavieh, and Mahabad have

https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://www.esri.com/en-us/arcgis/about-arcgis/overview
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the highest rainfalls, which are more than the 25 mm average of the basin, but the stations
of Ajabshir, Sahand, Shabestar, Salmas, and Bonab have a significant difference in terms of
the average rainfall.
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Figure 2. Total monthly precipitation graph of each station compared to basin average.

After receiving the coordinates and precipitation data from meteorological stations,
the average precipitation during the existing statistical period was calculated for each
month for each station. After randomizing the data of 16 stations and 12 months for each
station (192 data rows) in Excel, 70% of the data were used for training (135 data values),
and 30% of the data (58 data values) were used as test data. All models were trained and
tested using Weka software (https://ml.cms.waikato.ac.nz//weka/, accessed on 4 March
2024). Table 2 introduces the input parameters for selecting scenarios and their short names.

Table 2. List of parameters and abbreviations used in the model.

Abbreviation Parameter

M Month Index
DM Distance to the Mediterranean Sea
DU Distance to Lake Urmia
X Longitude
Y Latitude
Z Altitude

The Correlation Matrix and Relief attribute Eval methods were used to select the input
parameters in each scenario. This was performed according to the parameters’ correlation
and characteristics with the average monthly rainfall. Table 3 shows the correlation of each
parameter with the average monthly rainfall with the Correlation Matrix method, where
their absolute values are considered, and how to select the most effective parameters with
the Relief attribute Eval method. This method ranks them according to the characteristics
of the parameters using a specific approach. Finally, after selecting the parameters with the
Correlation Matrix and Relief attribute Eval methods, eight scenarios mentioned in Table 3
with different inputs were introduced. As can be seen, the first five scenarios were selected
according to the Correlation Matrix method, and the next three scenarios were selected
according to the Relief method.

Eight scenarios defined in Table 3 were entered into software, and all five mentioned
models were implemented in each.

https://ml.cms.waikato.ac.nz//weka/
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Table 3. Different scenarios with input parameters and their selection method and Relief attribute
Eval and Correlation Matrix method with parameters.

Scenario Input Scenario Selection Method Parameter Rated Features Correlation

1 M, Y Correlation Matrix M 0.072 −0.262
2 M, Y, DU Correlation Matrix DU −0.013 0.092
3 M, Y, DU, DM Correlation Matrix Y −0.010 −0.103
4 M, Y, DU, DM, X Correlation Matrix Z −0.009 0.021
5 M, Y, DU, DM, X, Z Correlation Matrix X −0.008 −0.067
6 M, DU Relief DM −0.008 −0.074
7 M, DU, Y, Z Relief
8 M, DU, Y, Z, X Relief

2.2. WEKA Software

The WEKA workbench is a collection of machine learning algorithms and data pre-
processing tools and the name stands for ‘Waikato Environment for Knowledge Analysis’.
Outside the university, the WEKA is a flightless bird with an inquisitive nature found only
on the islands of New Zealand [13]. This software is among the modeling and data mining
software with an easy and user-friendly user interface. This software is a collection of
modern machine learning algorithms and data preprocessing tools and it is designed in
such a way that existing methods can be quickly and flexibly tested on new data sets. It
provides extensive support for the whole process of experimental data mining, including
preparing the input data, evaluating learning schemes statistically, and visualizing the
input data and the result of learning [13]. These days, WEKA enjoys widespread acceptance
in both academia and business and has an active community [14].

After running the Weka software, we selected the data file from the explorer section,
and then selected and ran different models from the classifier section.

2.3. Machine Learning-Based Models
2.3.1. Decision Tree Model (M5)

The M5 tree model was first introduced by Quinlan [15]. The tree model is based on
the method of decision and overcoming [2]. The decision tree method with a supervised
approach is a powerful model for data prediction and classification, a subset of machine
learning and data mining methods. This model can be used for qualitative and quantitative
data [16]. Because the decision tree method is a graphical method, the interpretation of
the results may be simpler than other methods [17]. The formula for calculating standard
deviation reduction (SDR) is as follows:

SDR = Sd(T)−
N

∑
i=1

|Ti|
|T| Sd(Ti) (1)

Sd(T) =

√√√√√ 1
N

 N

∑
i=1

y2
i −

1
N

(
N

∑
i=1

yi

)2
 (2)

In this relation, T is a set of samples (cases) that are entered into each node, Ti repre-
sents a subset of samples that have the i-th potential test result, Sd represents the standard
deviation, yi represents the numerical value of the target feature of sample i, and N repre-
sents the number of data values [18].

2.3.2. Random Forest Model (RF)

Random forests (RFs) are a modern base tree type with classification and regression
trees [19]. A random forest has great potential to become a popular method for future
classifications because its performance is comparable to other ensemble methods [20]. As an
ensemble (voting) algorithm, the random forest model generates several different decision
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trees as base classifications and applies majority voting to combine with the results of the
original trees. The most important feature of random forests is their high performance
in measuring the importance of variables to determine what role each variable plays in
predicting the response. The classification power of a single decision tree and the correlation
between original trees are important issues determining the general errors of random forest
classification [21]. To classify a new object, the input vector is placed at the end of each of
the trees of the random forest, each tree resulting in a classification that is said to vote for
that class. A random forest is selected from the classification with the most votes (among
all the trees in the forest) [19].

2.3.3. Support Vector Regression (SVR)

SVMs are machine learning algorithms designed by Vapnik et al. [22]. An SVM is the
pinnacle of neural network art based on statistical learning [22]. The SVR method is an
SVM regression model for non-linear regression problems. An SVM is a type of supervised
learning system used for grouping estimating and estimating the fitting function of the
data in regression problems so that the least error occurs in the grouping of the data or
the fitting function. This method is based on the statistical learning theory, which uses the
structural error minimization (SRM) principle and leads to a general optimal solution [22].
This method includes a framework with two layers. The unweighted non-linear kernel
is the first layer, which consists of a series of input variables on the support vectors. The
second layer is the weighted sum of the main results [7]. SVR is less prone to overfitting
than other non-linear regression techniques since it concentrates on discovering the best
hyperplane that generalizes well to new data [23]. The support vector regression formula
is as follows [24]:

M =

{
(xi.yi)|i = 1, 2, . . . .n

xi ∈ RN , yi ∈ R

}
(3)

The data set M in the above relation includes the input vectors xi and the corresponding
output yi. n represents the number of samples in the data set. A regression analysis aims
to determine the f(x) function so that its prediction output has minimum error compared
to the desired output. The regression function is represented by the relation yi = (xi) + δ
where δ is a random error with distribution (0, σ2).

2.3.4. Gaussian Regression (GPR)

Gaussian process regression is a probabilistic, non-parametric supervised learning
method to estimate non-linear and complex relationships between a set of input data and
output data [25,26]. GPR is very useful for controlling non-linear data due to kernel func-
tions. In addition, an important advantage of GPR is that it can provide a reliable response
to the input data [27]. Gaussian process regression models are based on the assumption
that observations should carry information about each other. Gaussian processes are a way
to specify the priority directly on the function space. This work is a natural generalization
of the Gaussian distribution, whose mean and variance are vectors and matrices [27]. The
formula of the Gaussian process is as follows:

y = f(x) + N (0, σf2) (4)

N (0, σf2) is the normal distribution function noise with a zero mean and σf2 variance.
Regression is a search for f(x) [28].

2.3.5. Nearest Neighbor Model (KNN)

The nearest neighbor model uses no predefined mathematical function to estimate the
different variables. This model is one of the data mining methods, the general purpose of
which is to classify and estimate the characteristics of a series of unknown data according
to the maximum similarity of these data with the known data located in their neighbor-
hood [29,30]. The first step in using this model is to find a method and a relationship to
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calculate the distance between the test data and the training data. The following Euclidean
distance is usually used to determine this distance [31]:

d(X.Y) =

√
n

∑
i=1

(xi − yi)
2 (5)

where X represents the training data with specified parameters (xi) to (xn) and Y represents
the training data with the same number of specified parameters (yi) to (yn).

2.4. Model Performance Evaluation
2.4.1. Correlation Coefficient Index

This index (R) has a dimensionless value whose best value equals one. The closer the
value of this index is to one, the more correlation and a stronger relationship between real
and modeled data. Equation (6) shows the index of the correlation coefficient:

R =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(6)

2.4.2. Nash–Sutcliffe Efficiency

The Nash–Sutcliffe model efficiency coefficient (NSE) is used to assess the predictive
skill of hydrological models. The Nash–Sutcliffe efficiency is calculated as one minus
the ratio of the error variance of the modeled time series divided by the variance of the
observed time series. In the situation of a perfect model with an estimation error variance
equal to zero, the resulting Nash–Sutcliffe efficiency equals 1 (NSE = 1). Equation (7) shows
the Nash–Sutcliffe efficiency [32]:

NS = 1 − ∑n
i=1(xi − yi)

2

∑n
i=1(xi − x)2 (7)

2.4.3. Mean Absolute Error

The mean absolute error (MAE) is a common measure of forecast error in a time
series analysis. In statistics, the mean absolute error measures the errors between pairs of
observations that describe a phenomenon. Equation (8) shows the average absolute error:

MAE =
∑n

i=1|yi − xi|
n

(8)

2.4.4. Root Mean Square Error

RMSE is the root mean square of the errors. The effect of each error on RMSE is pro-
portional to the squared size of the error. Therefore, larger errors have a disproportionately
larger effect on RMSE. Equation (9) shows the formula for calculating the RMSE error:

RMSE =

√
∑n

i=1(xi − yi)
2

n
(9)

where xi and yi are real and modeled values, respectively, n is the number of data values,
and x and y are the average of real and modeled values.

3. Results
3.1. Performance of Selected Models

In the first scenario, the monthly index and latitude; the second scenario, the monthly
index, latitude, and distance from Lake Urmia; the third scenario, the monthly index,
latitude, distance from Lake Urmia, and distance to the Mediterranean Sea; the fourth
scenario, the monthly index, latitude, longitude, distance from Lake Urmia, and distance
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to the Mediterranean Sea; and the fifth scenario, the monthly index, latitude, longitude,
distance from Lake Urmia, distance to the Mediterranean Sea, and station height were
entered as input data to five models. The inputs of the first five scenarios are designed
under the Correlation Matrix method, but from the sixth scenario onwards, the inputs are
selected under the Relief attribute Eval method. In the sixth scenario, the monthly index
and distance from Lake Urmia; in the seventh scenario, the monthly index, latitude, altitude,
and distance from Lake Urmia; and in the eighth scenario, the monthly index, longitude,
latitude, altitude, and distance from Lake Urmia in five models under the title input data
were entered. In all scenarios, the RF model was selected as the best model to predict the
data to the greatest extent. The GPR was selected as the worst, with the remaining models
sorted from the best to the worst for each scenario based on the correlation coefficient and
Nash–Sutcliffe efficiency, as shown in Table 4.

Table 4. Scenarios and models with their evaluation criteria of R, NS, MAE, and RMSE.

Scenario Model R NS MAE (mm) RMSE (mm)

1

RF 0.959 0.901 4.055 5.979
SVR 0.919 0.816 6.555 8.156
M5 0.918 0.768 7.408 9.156

KNN 0.907 0.796 6.712 8.600
GPR 0.882 0.693 9.205 10.540

2

RF 0.964 0.902 4.246 5.957
M5 0.919 0.772 7.312 9.093
SVR 0.917 0.789 7.133 8.748
KNN 0.912 0.798 6.827 8.558
GPR 0.845 0.601 10.684 12.012

3

RF 0.968 0.911 4.033 5.666
M5 0.929 0.783 7.162 8.867
SVR 0.866 0.711 8.581 10.227
KNN 0.757 0.505 11.436 13.382
GPR 0.738 0.455 12.495 14.044

4

RF 0.961 0.892 4.737 6.249
M5 0.929 0.783 7.162 8.867
SVR 0.829 0.651 9.309 11.249
KNN 0.747 0.557 9.838 12.659
GPR 0.693 0.406 13.032 14.666

5

RF 0.943 0.850 5.840 7.359
M5 0.929 0.786 7.137 8.809
SVR 0.816 0.625 9.717 11.658
KNN 0.747 0.557 9.838 12.659
GPR 0.661 0.372 13.430 15.080

6

RF 0.943 0.878 5.036 6.653
KNN 0.936 0.858 6.107 7.176
SVR 0.906 0.780 7.253 8.921
M5 0.903 0.738 8.012 9.743

GPR 0.853 0.650 9.554 11.258

7

RF 0.966 0.910 4.170 5.680
SVR 0.923 0.803 7.034 8.444
M5 0.889 0.722 8.067 10.033

KNN 0.855 0.696 8.674 10.493
GPR 0.824 0.570 11.116 12.474

8

RF 0.957 0.886 5.004 6.418
M5 0.924 0.776 7.289 8.998
SVR 0.859 0.693 8.954 10.550
KNN 0.747 0.557 9.838 12.659
GPR 0.716 0.430 12.805 14.362
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One method to assess the calibration and validation is through the use of scatter-
grams [33–35] where predicted quantities are plotted against observed ones. In a scatter-
gram, a regression straight line of the following form is also fitted through the data:

Pi = γ Oi (10)

where Pi and Oi are the predicted and observed values. The slope γ is compared to the
1:1 slope (perfect match). The value of the slope γ is a measure of the over- (γ > 1.0) or
under-prediction (γ < 1.0) of the model compared to the observed data. In addition, the
square of the correlation coefficient R2 of the regression line is computed. The lower the
value of R2 falls below 1.0, the worse the data correlation is, i.e., the greatest is the scatter of
the data around the line. Therefore, the best calibration requires that values for both slope
γ and R2 be as close to 1.0 as possible [36].

In the next step, a scatter diagram and a comparison were drawn for the best and
worst models in each scenario, which can be seen in Figures 3 and 4, respectively. The
letters A show the performance of the best models, and the letters B show the worst models
in each figure. A linear equation was drawn in scatter diagrams.
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According to the scatter diagrams, in the third scenario (A), the equation line has the
smallest distance with the points, indicating the best modeling. The γ value (i.e., slope
value) is a significant parameter as it is a measure of the over- (γ > 1.0) or under-prediction
(γ < 1.0) of the model compared to the observed data. In all scatter diagrams, the slope of
the line is less than one, which indicates the under-prediction of the model in relation to
the observational data.

In the third scatter diagram, the RF model has a slope equal to 0.889 and R2 equal
to 0.912.

In the scatter diagrams, the vertical axis is the predicted data, and the horizontal axis
is the actual precipitation data. In the profit diagrams, the vertical axis is the amount of
precipitation, and the horizontal axis is an example of the amount of precipitation modeled.

3.2. Comparison Results of the Best Models of Each Scenario

In this step, the best model of each scenario, i.e., RFs, were selected to be compared
with each other with the results presented in Table 5. The highest correlation coefficient
calculated in the comparison is 0.9676, which belongs to the RF model scenario number 3,
and the lowest belongs to the RF scenario number 5 with a value of 0.9425. All the models
have shown good performance and have been able to predict the rainfall data with high
accuracy. Each has obtained a high correlation coefficient of 0.94, which shows its strength
in rainfall modeling and the lowest amount of all errors. The RF model of scenario No. 3
has been obtained, whose inputs include the monthly index, latitude, and distance of the
stations from Lake Urmia and the Mediterranean Sea. This shows that these factors have
the greatest impact on precipitation in the Lake Urmia basin. Also, this result was obtained
in scenario three using four parameters under this scenario and the RF model. This is an
advantage because even with a few parameters, it created an accurate model with low
errors and high efficiency for predicting the rainfall pattern in the basin of Lake Urmia.
Rainfall modeling in this basin can be utilized in many ways in various issues, including
engineering and managing water resources in the Lake Urmia basin and more fundamental
planning and planning for the future.

Table 5. The best and worst models with respect to R, MAE, RMSE, and NS criteria.

Best Model RF RF RF RF RF RF RF RF
Max Min

Scenario 3 7 2 4 1 8 6 5

R 0.968 0.966 0.964 0.961 0.959 0.957 0.943 0.943 0.968 0.943
NS 0.911 0.910 0.902 0.892 0.901 0.886 0.878 0.850 0.911 0.850

MAE (mm) 4.033 4.170 4.246 4.737 4.055 5.004 5.036 5.840 5.840 4.033
RMSE (mm) 5.666 5.680 5.957 6.249 5.979 6.418 6.653 7.359 7.359 5.666

The best RF models of different scenarios are compared and sorted from the best to
the worst in this table according to the correlation coefficient. This table shows that the best
random forest is under scenario number 3. The other scenarios, from the best to the worst
in comparison, are scenario number 7, 2, 4, 1, 8, and 6, and finally scenario 5.

The Nash–Sutcliffe efficiency in scenario number 3 in the random forest model was
the highest and equal to 0.911. Considering the high value of the correlation coefficient in
scenario number 3 in the random forest model and the low amount of errors, the random
forest model of scenario number three is the best.

Another mode was investigated for all scenarios and models. In this method, the RF
model was assumed to be out of reach for these data. Then, by comparing the correlation
coefficient between all models in all scenarios, the next best model, after removing all RFs,
is the KNN model from scenario six and with neighborhood 3. Under this scenario, this
model has an acceptable and reasonable coefficient with only two monthly index inputs
and the distance from Lake Urmia.
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3.3. Zoning Map of Rainfall Changes

Zoning maps of rainfall changes for real data, data obtained from the best modeling,
and data from the best scenario and model (RF scenario number 3) were drawn with Arc
GIS software and compared with each other as shown in Figure 5a and b, respectively.
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The IDW interpolation method was used to draw these maps to show the actual and
predicted rainfall and ultimately shows that it has been able to model the precipitation
accurately, and the result is very similar to the real precipitation map. Around Lake Urmia,
especially east of the lake, there is very little precipitation in both real and modeled data.
Shabestar and Miandoab stations have the lowest amount of precipitation.

4. Discussion

Today, rainfall modeling and forecasting are inseparable from engineering and water
resources management. Therefore, both play an important role in managing water for
irrigation, drinking water supply, and needs in the industrial and agricultural sectors.
Precipitation in nature largely depends on spatial, temporal, and atmospheric variables,
so it can be modeled by considering these parameters. Although various studies have
been conducted to investigate precipitation in different parts of Iran, a comprehensive
and detailed study and investigation have not been conducted in the Lake Urmia basin.
In this study, the precipitation in the Lake Urmia basin was investigated completely and
comprehensively with various models and spatial variables such as latitude and longitude,
altitude, and station distance from the Mediterranean Sea and Lake Urmia. A relatively
similar study was conducted in 2020 by Apaydin et al. [7]. In the coastal region of Turkey,
they used deep learning methods to model precipitation. They used artificial intelligence
methods such as Gaussian process regression, support vector regression, the Broyden–
Fletcher–Goldfarb–Shanno artificial neural network, M5, random forest, and long short-
term memory. The study shows that the amount of precipitation can be estimated and a
distribution map can be drawn by using spatio-temporal data and the deep learning and
GIS hybrid method at points where the measurement is not performed.

In another study conducted by Garai et al. [37] in 2024, algorithms based on complete
ensemble empirical mode decomposition with adaptive noise combined with stochastic
models like autoregressive integrated moving average and generalized autoregressive
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conditional heteroscedasticity; and machine learning techniques like a random forest,
artificial neural network, support vector regression, and kernel ridge regression (KRR) have
been proposed for predicting rainfall series. The proposed algorithms have been applied
for predicting rainfall in three selected sub-divisions of India.

Another study was conducted by Parviz et al. [38] to improve hybrid models by
using an ensemble of linear and non-linear models. They used precipitation data of
two weather stations in Iran, namely Tabriz, East Azerbaijan, and Rasht, Gilan, over
1992–2019. Preprocessing configurations and each of the Gene Expression Programming
(GEP), support vector regression (SVR), and Group Method of Data Handling (GMDH)
models were used as in the traditional hybrid models. They were compared against the
proposed hybrid models with a combination of all these three models. The results showed
that Theil’s coefficient, which measures the inequality degree to which forecasts differ from
observations, improved by 9% and 15% for SVR and GMDH relative to GEP for the Tabriz
station. Generally, the representation of the non-linear models within the improved hybrid
models showed better performance than the traditional hybrid models.

The most important feature of this study was the relatively accurate prediction of
monthly rainfall without the need for measured rainfall amounts. In this research, for the
first time, precipitation modeling was performed using an artificial intelligence algorithm
and spatio-temporal variables in the Lake Urmia basin, especially the distance from the sea,
and machine learning algorithms, and for the first time, the effect of distance from nearby
seas on the basin’s precipitation is investigated. Considering the monthly time index for
different stations, monthly rainfall was modeled using five machine learning models under
eight scenarios. In general, by examining and analyzing the results, the following can be
pointed out:

The eight defined scenarios were entered into the Weka software, and the five men-
tioned models were implemented in each of these scenarios. In GPR and SVR models, three
sub-branches of kernel functions, namely PolyKernel, PUK, and RBFKernel, were investi-
gated in all scenarios. After examining and modeling these functions, the PUK function
had the best result in both models. Therefore, the results of this function were introduced
as the best results of these two models. For the nearest neighbor model, neighborhoods
from one to ten were examined for each model in each scenario, and the neighborhoods
with the best results in each scenario were selected. Among all the eight defined scenarios,
the RF model always had the best performance, had the highest correlation with the real
data, and had the lowest error under different scenarios. It was chosen as the most suitable
model, showing its high rainfall modeling ability.

In contrast, the GPR model always performed the worst. The RF model of scenario
number three had the highest correlation. This indicates the high accuracy of this model
under this particular scenario for the available data. In this scenario, the input data included
the monthly index, latitude, and distance from Lake Urmia and the Mediterranean Sea.
Accurate precipitation modeling using its four parameters can be a suitable and acceptable
result in modeling science. Therefore, these four parameters can be considered the most
important influencing factors on the precipitation in the Lake Urmia basin or the climatic
conditions. It is notable that this model also has the least error. The zoning maps of the
changes showed this clearly as well. The monthly index, which indicates the number of the
month, is affected by different rainfall in different seasons in different months. The latitude
indicates this basin’s general location, climate, and influence.

The distance of the stations from Lake Urmia can indicate the influence of the precipita-
tion air masses formed from Lake Urmia itself. Finally, the distance from the Mediterranean
Sea, which indicates the effect of the rain-producing air fronts caused by it in the basin of
Lake Urmia, is an important and influential factor in the precipitation of this basin.

Future studies may consider using this method for other points as well or using other
deep learning algorithms. On the other hand, in the future, the effect of the open seas on
the rainfall of coastal areas in other parts of the world can be investigated.
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5. Conclusions

The most important feature of this research is the demonstration of accurate pre-
cipitation modeling based on monthly precipitation data without the need to measure
precipitation. That is, rainfall modeling and rainfall maps can be drawn by interpolation
in the GIS environment using the RF model under scenario three, which has relatively
high accuracy for the points where rainfall measurements are absent. Although studies
have been conducted in different parts of Iran, a comprehensive and detailed study has
not been carried out in the Lake Urmia basin. Therefore, in this study, precipitation in the
Lake Urmia basin was investigated in a complete and comprehensive manner with various
models, and spatial variables such as the latitude and longitude, altitude, and station dis-
tance from the Mediterranean Sea and Lake Urmia were used to model precipitation. This
study also examined the effect of proximity of nearby seas on precipitation and subsequent
fluctuations in the Lake Urmia basin.

Lastly, considering the monthly time index for different stations, monthly rainfall
was modeled using five machine learning models (M5 decision tree model, RF (random
forest) model, SVR model, GPR (Gaussian regression) model, and KNN model) under eight
different scenarios. Among all the eight defined scenarios, the RF model always had the best
performance and was able to have the highest correlation with the real data and the lowest
error under different scenarios, and was thus chosen as the most suitable model. The RF
model of scenario number three was the best among the eight scenarios and had the highest
correlation with a rate of 0.968. In this scenario, the input data included four parameters:
the monthly index, latitude, and distance from Lake Urmia and the Mediterranean Sea. The
monthly index, which indicates the number of the month, is affected by different rainfall
in different seasons in different months. The latitude indicates the general location and
climate of this basin and its influence. The distance of the stations from Lake Urmia can
indicate the influence of the precipitation air masses formed from Lake Urmia itself. Finally,
the distance from the Mediterranean Sea, which indicates the impact of the rain-producing
air fronts caused by it in the Lake Urmia basin, is an important and influential factor in the
precipitation of this basin. Accurate modeling of precipitation using its four parameters
can be a very suitable and acceptable result in modeling science. Therefore, these four
parameters can be considered as the most important influencing factors on precipitation in
the Lake Urmia basin or climatic conditions.

This new approach can now be used in the engineering, planning, and management
of water resources in the Lake Urmia basin, and important steps can be taken to revive the
lake. One major limitation of this study is that the results cannot be generalized to other
basins due to the unique climatic conditions of each region. However, the same approach
could be followed in other basins. Additionally, the complexity of the machine learning
models and tools used in this study may make it difficult for non-experts to apply them,
which is a disadvantage from an applicable standpoint.
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Appendix A

The Diebold–Mariano test is a statistical test used to compare the forecast accuracy of
two competing forecasting models. Diebold–Mariano test results were obtained for each
of the eight scenarios. If these values are lower than the critical value (here, 0.05), the null
hypothesis will be rejected and it means that the two models have equal forecast accuracy,
indicating that one model significantly outperforms the other. Tables A1–A8 show these
values. All models and scenarios have the same forecast accuracy except the bold models,
which are shown in each table.

Table A1. First scenario p-value results for Diebold–Mariano test.

GPR KNN.IBK M5 Random.Forest SVR.SMOREg

GPR_GPR 9.89078 × 10−5 0.008744 1.53123 × 10−7 5.86551 × 10−7

KNN-IBK 9.89078 × 10−5 0.425019 0.000343249 0.242947779

M5 0.008743668 0.425019123 3.8851 × 10−5 0.128466214

Random forest 1.53123 × 10−7 0.000343249 3.89 × 10−5 0.000255017

SVR-SMOREg 5.86551 × 10−7 0.242947779 0.128466 0.000255017

Table A2. Second scenario p-value results for Diebold–Mariano test.

GPR KNN.IBK M5 Random.Forest SVR.SMOREg

GPR_GPR 1.36 × 10−6 2.6 × 10−5 1.96 × 10−10 5.05592 × 10−9

KNN-IBK 1.36 × 10−6 0.502032 4.29 × 10−5 0.649852621

M5 2.6 × 10−5 0.502032 2.75 × 10−5 0.694082881

Random forest 1.96 × 10−10 4.29 × 10−5 2.75 × 10−5 2.4385 × 10−5

SVR-SMOREg 5.06 × 10−9 0.649853 0.694083 2.44 × 10−5

Table A3. Third scenario p-value results for Diebold–Mariano test.

GPR KNN.IBK M5 Random.Forest SVR.SMOREg

GPR_GPR 0.239647 3.41 × 10−8 8.16 × 10−11 6.37 × 10−7

KNN-IBK 0.239647 9.36 × 10−5 1.2 × 10−7 0.002914

M5 3.41 × 10−8 9.36 × 10−5 1.45 × 10−6 0.113727

Random forest 8.16 × 10−11 1.2 × 10−7 1.45 × 10−6 4.8 × 10−6

SVR-SMOREg 6.37 × 10−7 0.002914 0.113727 4.8 × 10−6

Table A4. Fourth scenario p-value results for Diebold–Mariano test.

GPR KNN.IBK M5 Random.Forest SVR.SMOREg

GPR_GPR 0.029746 1.71 × 10−8 5.68 × 10−11 4.14 × 10−6

KNN-IBK 0.029746 0.005356 1.54 × 10−5 0.126692

M5 1.71 × 10−8 0.005356 2.65 × 10−5 0.018715

Random forest 5.68 × 10−11 1.54 × 10−5 2.65 × 10−5 9.59 × 10−6

SVR-SMOREg 4.14 × 10−6 0.126692 0.018715 9.59 × 10−5
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Table A5. Fifth scenario p-value results for Diebold–Mariano test.

GPR KNN.IBK M5 Random.Forest SVR.SMOREg

GPR_GPR 0.008865 8.35 × 10−9 4.02 × 10−11 5.83 × 10−7

KNN-IBK 0.008865 0.004905 7 × 10−5 0.24729

M5 8.35 × 10−9 0.004905 0.00328 0.00416

Random forest 4.02 × 10−11 7 × 10−5 0.00328 3.74 × 10−6

SVR-SMOREg 5.83 × 10−7 0.24729 0.00416 3.74 × 10−6

Table A6. Sixth scenario p-value results for Diebold–Mariano test.

GPR KNN.IBK M5 Random.Forest SVR.SMOREg

GPR_GPR 7.7 × 10−6 0.012552 1.35 × 10−6 5.7 × 10−6

KNN-IBK 7.7 × 10−6 0.010868 0.49152 0.015912

M5 0.012552 0.010868 0.003817 0.171806

Random forest 1.35 × 10−6 0.49152 0.003817 0.003317

SVR-SMOREg 5.7 × 10−6 0.015912 0.171806 0.003317

Table A7. Seventh scenario p-value results for Diebold–Mariano test.

GPR KNN.IBK M5 Random.Forest SVR.SMOREg

GPR_GPR 0.001948 0.005009 1.41 × 10−10 1.12 × 10−10

KNN-IBK 0.001948 0.647415 3.27 × 10−5 0.01261

M5 0.005009 0.647415 3.03 × 10−5 0.138436

Random forest 1.41 × 10−10 3.27 × 10−5 3.03 × 10−5 0.000128

SVR-SMOREg 1.12 × 10−10 0.01261 0.138436 0.000128

Table A8. Eighth scenario p-value results for Diebold–Mariano test.

GPR KNN.IBK M5 Random.Forest SVR.SMOREg

GPR_GPR 0.048849 3.29 × 10−8 4.33 × 10−11 1.07 × 10−7

KNN-IBK 0.048849 0.006959 2.03 × 10−5 0.026509

M5 3.29 × 10−8 0.006959 6.34 × 10−5 0.052325

Random forest 4.33 × 10−11 2.03 × 10−5 6.34 × 10−5 4.3 × 10−6

SVR-SMOREg 1.07 × 10−7 0.026509 0.052325 4.3 × 10−6

References
1. Hasanalizadeh, N.; Mosaedi, A.; Zahiri, A.; Hosseinalizadeh, M. Modeling Spatio-Temporal Variation of Monthly Precipitation

(Case Study: Golestan Province). J. Water Soil Conserv. 2014, 22, 251–269.
2. Sattari, M.T.; RezazadehJoudi, A.; Nahrein, F. Monthly Rainfall Prediction using Artificial Neural Networks and M5 Model Tree

(Case study: Station of AHAR). Phys. Geogr. Res. Q. 2014, 46, 247–260. [CrossRef]
3. Zahedi Qara Aghaj, M.; Qavidel Rahimi, Y. Determining the Threshold of Drought and Calculating the Reliable Amount of

Precipitation in the Watershed Stations of Lake Urmia Basin. Geogr. Res. 2007, 21. Available online: https://jrg.ut.ac.ir/article_18
518.html?lang=en (accessed on 4 March 2024).

4. Mohmadzadeh, K.; Feizizadeh, B. Modeling the Impacts of Urmia Lake Drought on Soil Salinity of Agricultural Lands in the
Eastern Area of Fuzzy Object Based Image Analysis Approach. J. RS GIS Nat. Resour. 2017, 11, 56–72.

5. Pham, Q.B.; Abba, S.I.; Usman, A.G.; Linh, N.T.T.; Gupta, V.; Malik, A.; Costache, R.; Vo, N.D.; Tri, D.Q. Potential of Hybrid
Data-Intelligence Algorithms for Multi-Station Modelling of Rainfall. Water Resour. Manag. 2019, 33, 5067–5087. [CrossRef]

https://doi.org/10.22059/jphgr.2014.51428
https://jrg.ut.ac.ir/article_18518.html?lang=en
https://jrg.ut.ac.ir/article_18518.html?lang=en
https://doi.org/10.1007/s11269-019-02408-3


Water 2024, 16, 1246 21 of 22

6. Paul, R.K.; Paul, A.K.; Bhar, L.M. Wavelet-Based Combination Approach for Modeling Sub-Divisional Rainfall in India. Theor.
Appl. Climatol. 2020, 139, 949–963. [CrossRef]

7. Apaydin, H.; Sattari, M.T. Deep-Learning GIS Hybrid Approach in Precipitation Modeling Based on Spatio-Temporal Variables in
the Coastal Zone of Turkey. Clim. Res. 2020, 81, 149–165. [CrossRef]

8. De Oliveira, V.A.; Rodrigues, A.F.; Morais, M.A.V.; de Castro Nunes Santos Terra, M.; Guo, L.; de Mello, C.R. Spatiotemporal
Modelling of Soil Moisture in an Atlantic Forest through Machine Learning Algorithms. Eur. J. Soil Sci. 2021, 72, 1969–1987.
[CrossRef]

9. Di Nunno, F.; Granata, F.; Pham, Q.B.; de Marinis, G. Precipitation Forecasting in Northern Bangladesh Using a Hybrid Machine
Learning Model. Sustainability 2022, 14, 2663. [CrossRef]

10. Wahla, S.; Kazmi, J.; Sharifi, A.; Shirazi, S.A.; Tariq, A.; Smith, H. Assessing Spatio-Temporal Mapping and Monitoring of Climatic
Variability Using SPEI and RF Machine Learning Models. Geocarto Int. 2022, 38, 21. [CrossRef]

11. Di Nunno, F.; Granata, F. Spatio-Temporal Analysis of Drought in Southern Italy: A Combined Clustering-Forecasting Approach
Based on SPEI Index and Artificial Intelligence Algorithms. Stoch. Environ. Res. Risk Assess. 2023, 37, 2349–2375. [CrossRef]

12. Ghebleh, M.; Jafarzadeh, A.; Ahmadi, M.P. Spatial-Temporal Changes of Precipitation in Urmia Lake Basin. In Proceedings of
the International Conference on Sustainable Development With a focus on Agriculture, Environment and Tourism, Tabriz, Iran,
16 September 2015.

13. Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. In Data Mining; Morgan Kaufmann: Burlington, VT, USA, 2017;
pp. 553–571. [CrossRef]

14. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA Data Mining Software. ACM SIGKDD
Explor. Newsl. 2009, 11, 10–18. [CrossRef]

15. Quinlan, J.R. Learning with Continuous Classes. Aust. Jt. Conf. Artif. Intell. 1992, 92, 343–348.
16. Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
17. Falahi, M.; Varvani, H.; Golian, S. Rainfall Forecasting Using Regression Tree Model for Flood Control. In Proceedings of the 5th

National Conference on Watershed Management and Soil and Water Resources Management, Kerman, Iran, 29 February 2012.
18. Alberg, D.; Last, M.; Kandel, A. Knowledge Discovery in Data Streams with Regression Tree Methods. Wiley Interdisc. Rew. Data

Min. Knowl. Discov. 2012, 2, 69–78. [CrossRef]
19. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
20. Kulkarni, V.Y.; Sinha, P.K. Effective Learning and Classification Using Random Forest Algorithm. Int. J. Eng. Innov. Technol. 2014,

3, 267–273.
21. Frankel, D.S. Model Driven Architecture: Applying MDA to Enterprise Computing; Wiley: Hoboken, NJ, USA, 2003; ISBN 9780471462279.
22. Vapnik, V.N. Statistical Learning Theory; Wiley: Hoboken, NJ, USA, 1998; ISBN 978-0-471-03003-4.
23. Chen, C.-C.; Wu, J.-K.; Lin, H.-W.; Pai, T.-P.; Fu, T.-F.; Wu, C.-L.; Tully, T.; Chiang, A.-S. Visualizing Long-Term Memory Formation

in Two Neurons of the Drosophila Brain. Science 2012, 335, 678–685. [CrossRef]
24. Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge

University Press: Cambridge, UK, 2000; ISBN 9780521780193.
25. Omran, B.A.; Chen, Q.; Jin, R. Comparison of Data Mining Techniques for Predicting Compressive Strength of Environmentally

Friendly Concrete. J. Comput. Civ. Eng. 2016, 30, 4016029. [CrossRef]
26. Cheng, M.-Y.; Huang, C.-C.; Roy, A.F. Van Predicting Project Success in Construction Using an Evolutionary Gaussian Process

Inference Model. J. Civ. Eng. Manag. 2013, 19, S202–S211. [CrossRef]
27. Pal, M.; Deswal, S. Modelling Pile Capacity Using Gaussian Process Regression. Comput. Geotech. 2010, 37, 942–947. [CrossRef]
28. Rezazadeh Joudi, A.; Sattari, M.T. Performance Evaluation of Data-Driven Methods in Mashhad Monthly Rainfall Modelling.

Iran. Water Res. J. 2017. Available online: https://iwrj.sku.ac.ir/article_10568.html?lang=en (accessed on 4 March 2024).
29. Wu, X.; Kumar, V.; Ross, Q.J.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10 Algorithms in

Data Mining. Knowl. Inf. Syst. 2008, 14, 1–37. [CrossRef]
30. Fadaei Kermani, E.; Khanjani, M.; Barani, G. Application of K-Nearest Neighbor Algorithm in Drought Monitoring

Based on Standard Precipitation Index (SPI) of Bam City. Int. Bull. Water Resour. Dev. 2014, 131. Available online:
https://www.magiran.com/paper/1399321/application-of-k-nearest-neighbor-algorithm-in-drought-monitoring-based-on-
the-standard-precipitation-index-a-case-study-of-city-of-bam-southeastern-iran?lang=en (accessed on 4 March 2024).

31. Jagtap, S.S.; Lall, U.; Jones, J.W.; Gijsman, A.J.; Ritchie, J.T. Dynamic Nearest-Neighbor Method for Estimating Soil Water
Parameters. Trans. Am. Soc. Agric. Eng. 2004, 47, 1437–1444. [CrossRef]

32. Nash, J.E.; Sutcliffe, J. V River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970,
10, 282–290. [CrossRef]

33. Gikas, G.; Yiannakopoulou, T.; Tsihrintzis, V. Modeling of Non-Point Source Pollution in a Mediterranean Drainage Basin. Environ.
Model. Assess. 2006, 11, 219–233. [CrossRef]

34. Tsihrintzis, V.; Hamid, R. Urban Stormwater Quantity/Quality Modeling Using the SCS Method and Empirical Equations.
JAWRA J. Am. Water Resour. Assoc. 2007, 33, 163–176. [CrossRef]

35. Tsihrintzis, V.A.; Hamid, R. Runoff Quality Prediction from Small Urban Catchments Using SWMM. Hydrol. Process. 1998,
12, 311–329. [CrossRef]

https://doi.org/10.1007/s00704-019-03026-0
https://doi.org/10.3354/CR01612
https://doi.org/10.1111/ejss.13123
https://doi.org/10.3390/su14052663
https://doi.org/10.1080/10106049.2022.2093411
https://doi.org/10.1007/s00477-023-02390-8
https://doi.org/10.1016/b978-0-12-804291-5.00024-6
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1007/BF00116251
https://doi.org/10.1002/widm.51
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1126/science.1212735
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000596
https://doi.org/10.3846/13923730.2013.801919
https://doi.org/10.1016/j.compgeo.2010.07.012
https://iwrj.sku.ac.ir/article_10568.html?lang=en
https://doi.org/10.1007/s10115-007-0114-2
https://www.magiran.com/paper/1399321/application-of-k-nearest-neighbor-algorithm-in-drought-monitoring-based-on-the-standard-precipitation-index-a-case-study-of-city-of-bam-southeastern-iran?lang=en
https://www.magiran.com/paper/1399321/application-of-k-nearest-neighbor-algorithm-in-drought-monitoring-based-on-the-standard-precipitation-index-a-case-study-of-city-of-bam-southeastern-iran?lang=en
https://doi.org/10.13031/2013.17623
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1007/s10666-005-9017-3
https://doi.org/10.1111/j.1752-1688.1997.tb04093.x
https://doi.org/10.1002/(SICI)1099-1085(199802)12:2%3C311::AID-HYP579%3E3.0.CO;2-R


Water 2024, 16, 1246 22 of 22

36. Boskidis, I.; Gikas, G.D.; Pisinaras, V.; Tsihrintzis, V.A. Spatial and Temporal Changes of Water Quality, and SWAT Modeling of
Vosvozis River Basin, North Greece. J. Environ. Sci. Health Part A 2010, 45, 1421–1440. [CrossRef] [PubMed]

37. Garai, S.; Paul, R.K.; Yeasin, M.; Roy, H.S.; Paul, A.K. Machine Learning Algorithms for Predicting Rainfall in India. Curr. Sci.
2024, 126, 360–367.

38. Parviz, L.; Rasouli, K.; Torabi Haghighi, A. Improving Hybrid Models for Precipitation Forecasting by Combining Nonlinear
Machine Learning Methods. Water Resour. Manag. 2023, 37, 3833–3855. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/10934529.2010.500936
https://www.ncbi.nlm.nih.gov/pubmed/20694881
https://doi.org/10.1007/s11269-023-03528-7

	Introduction 
	Materials and Methods 
	Study Area and the Data 
	WEKA Software 
	Machine Learning-Based Models 
	Decision Tree Model (M5) 
	Random Forest Model (RF) 
	Support Vector Regression (SVR) 
	Gaussian Regression (GPR) 
	Nearest Neighbor Model (KNN) 

	Model Performance Evaluation 
	Correlation Coefficient Index 
	Nash–Sutcliffe Efficiency 
	Mean Absolute Error 
	Root Mean Square Error 


	Results 
	Performance of Selected Models 
	Comparison Results of the Best Models of Each Scenario 
	Zoning Map of Rainfall Changes 

	Discussion 
	Conclusions 
	Appendix A
	References

