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Abstract: The effects of emissions of diesel engines on black carbon and particle number concentra-
tions, as well as climate-relevant aerosol properties, are explored for a summertime period in the
Eastern U.S. using the chemical transport model PMCAMx-UF. A 50% reduction in diesel particulate
emissions results in lower (23%) black carbon mass concentrations, as expected, and similar changes
both in magnitude (27–30%) and spatial pattern for the absorption coefficient. However, an average
2% increase in the total particle number concentrations is predicted due to a decrease in the coag-
ulation and condensation sinks and, at the same time, a 2% decrease in N100 (particles larger than
100 nm) concentrations. The diesel reduction results suggest that mitigation of large diesel particles
and/or particle mass emissions can reduce climate-relevant properties related to the absorption of
black carbon and provide health benefits; however, the changes could also have the unintended
effect of increased ultrafine particle number concentrations. Changes in cloud condensation nuclei
are predicted to be significantly less than expected, assuming a proportional reduction during this
photochemically active period. Doubling the diesel emissions results in a domain-averaged 3%
decrease in total particle number concentrations and a 3% increase in N100 concentrations. PM2.5

BC concentrations increase on average by 46%, and similar changes (52–60%) are predicted for the
absorption coefficient. Extinction coefficients for both perturbation simulations changed by only
a few percent due to the dominance of scattering aerosols in the Eastern U.S. during this period
characterized by high photochemical activity.

Keywords: diesel; emissions; mitigation; chemical transport modeling; PMCAMx-UF; cloud condensation
nuclei

1. Introduction

PM2.5 (particulate matter less than 2.5 µm in diameter) has been linked to both negative
health effects [1] and climate change [2]. Though black carbon (BC) represents only 5–10%
of the PM2.5 mass on average in urban areas [3], its potential effects on climate and health
are considerable. The direct absorption of sunlight by BC has a positive (warming) effect [4].
Black carbon’s short atmospheric lifetime (days), as compared to greenhouse gases such as
CO2 (years), can make BC mitigation efforts more immediately beneficial to the climate. In
addition, exposure to BC in the short and long term is associated with an increased risk
of cardiopulmonary disease [5]. BC may even have a stronger correlation to increased
blood pressure than exposure to total PM2.5 mass, most likely due to the toxicity of the
combustion chemicals coating its surface [5].

The overall absorption or reflectance of sunlight off aerosols and the secondary effects
of aerosol size and composition changes on clouds are significant factors in the global
radiative balance [2]. Mitigation efforts must take into account that BC sources also co-emit
considerable amounts of organic PM and other species, as well as aerosol precursors (e.g.,
sulfur dioxide) that have a cooling effect. This competition between the heating and the
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cooling components of BC source emissions determines the magnitude and sign of their
effects on the overall radiative balance of the earth. Mitigation of major BC sources that
have low emission rates of co-emitted species has the most potential for both health benefits
as well as significant cooling effects on climate forcing [4].

In North America, on-road and non-road diesel engines contribute about 70% of BC
emissions [4]. The use of low-sulfur diesel fuels and catalyzed diesel particulate filters
(DPFs) in the U.S. has reduced the emissions of sulfur-containing compounds and NOx
from diesel vehicles [6]. The ratio of (cooling) organic PM to (warming) BC emissions
from diesel sources is about 0.5 [7], which is smaller than the 4:1 ratio of biomass-burning
sources [8]. Since diesel sources have the smallest ratio of co-emitted aerosols and aerosol
precursors to black carbon, they are promising candidates for mitigation efforts [4].

Previous studies in the laboratory [6] and near-road [9,10] have investigated the effects
of stringent regulation of heavy-duty diesel (HDD) vehicle emissions. California’s 2010
HDD regulations require the oldest diesel vehicles to be replaced or to be retrofitted with
DPFs and provide incentives for HDD vehicles to be replaced by new, cleaner vehicles [11].
DPFs are designed to reduce nitrogen oxides (NOx) and PM emissions, including BC.
Dallmann et al. [9] measured the concentrations of BC and NOx in the diesel-dominated
Port of Oakland before and after the 2010 regulation of HDD vehicles in California. The
authors found that the fleet-averaged diesel BC emissions per mass of fuel burned decreased
by about 50% after regulation. Kozawa et al. [10] measured the concentrations of NOx, BC,
and ultrafine particles (less than 100 nm in diameter) number concentrations on a diesel-
dominated highway in California from 2009 to 2011. They reported that the fleet-averaged
BC emissions from diesel vehicles decreased by about 70% between 2009 and 2011.

The climate effects of BC source mitigation strategies on a global scale have been the
topic of several studies. Bauer et al. [12] reported that reducing diesel emissions generally
resulted in a decrease in the radiative fluxes, whereas reducing BC sources with a larger
percentage of organic matter (OM) did not always lead to a reduction in radiative flux.
Chen et al. [13] concluded that reducing fossil fuel BC, OM, and particle number emissions
generally decreased global cloud radiative forcing and the number of cloud condensation
nuclei (CCNs). The authors noted, however, that a reduction in particle mass emissions
could result in an increase in particle number emissions, which in turn could increase the
concentration of particles that grow to become CCNs. CCNs can grow further to become
cloud droplets, changing the reflectance of sunlight off clouds and therefore affecting the
global radiative balance [2]. Shindell et al. [14] investigated the radiative forcing, health,
and crop yield effects of reducing all BC source emissions through technical measures. The
authors found that the climate effects of BC mitigation were largely uncertain but that the
health and crop yield effects were beneficial. Unlike most greenhouse gases, black carbon
is not well-mixed in the atmosphere due to its short lifetime, so its effects vary regionally
based on factors such as the locations of BC emission sources [4]. Our work focuses on
regional-level effects due to changes in diesel source emissions.

A review of nanoparticle growth has been recently presented by Stolzenburg et al. [15].
Harrison [16] has synthesized information about the contributions of traffic to fine particle
mass and number, and Rivas et al. [17] have quantified the source contributions to particle
number in various European sites.

In this study, we use the regional chemical transport model (CTM) PMCAMx-UF [18]
to simulate the atmosphere over the Eastern U.S. during the summer for two simple diesel
perturbation scenarios: (a) a simplified mitigation effort that reduces diesel particulate
emissions by one half and (b) a diesel particulate emissions increase to double the base
values. We then quantify the effects of these two scenarios on BC concentrations, particle
number concentrations, and climate-relevant aerosol properties: absorption, extinction,
and aerosol optical depth (AOD). These are, by necessity, oversimplified in an effort to
quantify the role of the various atmospheric processes in determining the final changes in
concentrations and properties.
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2. PMCAMx-UF Description

PMCAMx-UF simulates the aerosol size distribution using a 41-size bin sectional
approach to track particles with diameters ranging from 0.0008 to 10 µm [18]. There are
two additional size bins with diameters of 20 µm and 40 µm to represent small and large
cloud droplets. A chemical transport model (CTM) is needed to simulate the aerosol
dynamics (nucleation, coagulation, condensation/evaporation, and removal) as well as
the gas-, aqueous-, and aerosol-phase chemistry that are all central in the simulation
of the aerosol number distribution. The model in this application calculates nucleation
rates based on the scaled (nucleation tuner 10−5) sulfuric acid–ammonia–water nucleation
rate parameterization of Napari et al. [19], and for small ammonia concentrations (below
0.01 ppt), the binary nucleation parameterization of Vehkamäki et al. [20].

In this study, we use the same inputs as in Posner and Pandis [21]. PMCAMx-UF is
used to simulate a 3492 × 3240 km area over the Eastern U.S. for 12–28 July 2001. The
domain is gridded into 97 (east–west) by 90 (north–south) cells that are 36 × 36 km each.
A total of 14 vertical layers above the surface up to 6 km are also simulated. BC and
number concentrations reported in this study are the average output for the ground layer
only; however, reported climate-relevant effects are calculated and reported based on
all simulated layers. The major reasons for the choice of the simulation period are the
availability of a source-resolved number emissions inventory and a model that has been
evaluated and performed well for this period. The grid resolution used is sufficient to
capture the various changes at the regional level, and this is sufficient for the purposes
of the paper. If one is interested in the changes in specific city neighborhoods, a higher
resolution is obviously needed.

3. Emission Scenarios

The base number emissions inventory developed by Posner and Pandis [21] is used as
the base inventory for this study. The inventory includes biomass burning (combined with
wood combustion), gasoline automobiles, industrial emissions, non-road diesel, on-road
diesel emissions, and dust. The absolute and fractional contribution of diesel sources (on-
and non-road diesel) to total PM2.5 BC and total number (NTOT, equivalent to N0.8 in our
study) emissions in the base case are shown in Figures 1 and 2, respectively. According to
this July base emissions inventory, non-road and on-road diesel sources are responsible for
58% of the total emitted PM2.5 BC and 27% of the total number emissions in the Eastern
U.S. domain. The large contribution of diesel sources to NTOT and PM2.5 BC emissions in
the Midwest is associated with non-road diesel emissions during farming activities. Diesel
sources are responsible for most of the PM2.5 BC emissions throughout the domain but do
not contribute as much to NTOT emissions outside of the Midwest due to the predominance
of other sources, such as gasoline.

The reduced diesel emissions inventory was derived to represent a simple case of
diesel mitigation in which the base non- and on-road diesel particulate emissions are
reduced by 50%. Dallmann et al. [9] found that the 2010 regulation in California of HDD
emissions reduced BC emissions from HDD by approximately 50%, so the half-diesel
case can be seen as a simplified change in emissions due to regulation. The reduction
was applied uniformly across the modeling domain and across all particle-size sections.
Gaseous emissions were assumed to remain constant for all simulations in this study. The
half-diesel scenario results in a 29% decrease in total BC emissions and a 14% decrease in
NTOT emissions as compared to the base emissions.

The double-diesel emissions scenario assumes a major future increase in the number
of vehicles and machinery being used. Only the particulate emissions from diesel sources
were doubled in this scenario. The increase in diesel emissions was applied uniformly
across the modeling domain and across all particle-size sections. The double-diesel scenario
results in a 58% increase in PM2.5 BC emissions and a 27% increase in NTOT emissions as
compared to the base emissions for the Eastern U.S. domain.
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4. Simulated Black Carbon Concentrations
4.1. Base Case

The base case for this study is the same as the base case in Posner and Pandis [21]
based on the recommendations of Lane et al. [22] for BC mass emissions. The mean bias of
predicted vs. observed concentrations at Speciation Trends Network (STN) (urban) sites [23]
was −0.17 µg m−3. The model slightly underpredicts PM2.5 BC concentrations in com-
parison to the Interagency Monitoring of Protected Visual Environments (IMPROVE) [23]
observations in mainly rural areas; the mean bias is −0.17 µg m−3. Predicted average
ground concentrations of PM2.5 BC are shown in Figure 3. These predictions have been
evaluated by Lane et al. [22].
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the base case.

4.2. Scenario I: Reduction in Diesel Emissions by 50%

Since diesel is a major source of PM2.5 BC emissions (58%) during this summer 2001
period in the Eastern U.S., the half-diesel particulate emissions scenario results in a con-
siderable decrease in PM2.5 BC concentrations over most of the domain (Figure 4). In
order to reduce the influence of the boundary conditions, we report domain averages for
the Eastern U.S. subdomain proposed by Murphy and Pandis [24] that excludes areas
of the domain that are most influenced by the boundary conditions. The Eastern U.S.
subdomain-averaged PM2.5 BC concentration reduction is 0.04 µg m−3 or 23% of the base
values, which is smaller than what one would expect (29%) for a 50% reduction in 58%
of the BC emissions. This small difference is due to the influence of long-range transport
simulated through the boundary conditions, which were kept constant for all simulations.
The largest absolute reductions are in the Northeast coast and the Chicago area, while the
largest fractional reductions are in the Midwest, where non-road diesel emissions are the
dominant BC source.

4.3. Scenario II: Double-Diesel Emissions Increase

The double-diesel particulate emissions perturbation results in a considerable in-
crease in PM2.5 BC concentrations over most of the domain (Figure 5). The Eastern U.S.
subdomain-averaged PM2.5 BC concentration increase due to the double-diesel perturbation
is 0.08 µg m−3 or 46% of the average base value. This is also lower than one would expect
(58%) for a proportional increase in BC emissions because of the long-range-transported BC
that is assumed to remain constant. The spatial pattern of these increases is similar to the
spatial distribution of reductions due to the half-diesel perturbation. The largest absolute
increases in PM2.5 BC concentrations are located where emissions from on-road diesel are
largest (the Northeast coast and the Chicago area). Most of the largest fractional reductions
are where the non-road diesel emissions are largest and the main contributor to particle
concentrations (the Midwest).
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5. Simulated Particle Number Concentrations
5.1. Base Case

In this study, we focus on total particle number concentrations (NTOT), particles greater
than 50 nm in diameter (N50), and particles greater than 100 nm in diameter (N100). Since
ultrafine particles (less than 100 nm in diameter) form the majority of NTOT, they can greatly
contribute to the number of particles that grow to become CCNs (generally N100) through
condensation [25].

Model predictions of particles greater than 3 nm in diameter (N3), which is the range of
measurable NTOT, agree with observed Pittsburgh Air Quality Study (PAQS) measurements
within 10% on average and in the N100 range within 5%. Maps of the simulation-average
ground NTOT, N50, and N100 concentration fields can be found in Figure 6. Using zero-out
number but not mass simulations [18], we calculated the contribution of diesel sources to
ultrafine particle number concentrations for the July 2001 base case. Figure 7 shows the
calculated absolute and fractional contributions of diesel sources to total particle number
concentrations for the base case. The peaks in the number concentration contributions
from diesel are seen where emissions from diesel sources are also large. Nucleation is
the dominant source of particle number concentrations in the domain for this period, so
the domain-averaged fractional contribution of diesel to particle number concentrations
is small. There are peaks in the Midwest due to the predominance of non-road diesel
emissions in those areas with, according to the inventory, few other major emissions nearby.
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On average, for July 2001 in the Eastern U.S., diesel particles were predicted to contribute
140 cm−3 or about 0.6% to total particle number concentrations.
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5.2. Scenario I: Half-Diesel Emissions Reduction

If the effects of the half-diesel emissions scenario on simulated particle number con-
centrations were linear, they would result in a 50% decrease in diesel particle number
concentrations compared to the base case. Figure 8 shows the estimated linear changes as
well as the actual simulated changes for this reduction scenario. A simple linear change
would, on average, for July 2001 in the Eastern U.S., result in a 70 cm−3 or 0.3% decrease in
total particle number concentrations as compared to the base case. Instead, PMCAMx-UF
predicts an average increase of 350 cm−3 or 1.6% in total particle number concentra-
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tions. Domain-averaged N50 and N100, however, decreased by 0.9% and 1.6%, respectively.
PMCAMx-UF also predicts a 1.4% decrease in PM2.5 surface area. The reduction in particle
emissions from diesel sources, in this case, changes not only the particle number emissions
but also the corresponding condensation and coagulation sinks. There is less particle
surface area for vapors to condense onto and fewer large particles with which smaller
particles can coagulate.
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Figure 8. Predicted fractional changes in total particle number concentrations (cm−3) at the ground
level due to a 50% reduction in the base diesel particulate emissions calculated (a) assuming a linear
change based on previous source apportionment results and (b) by the half-diesel simulation and
actual fractional changes in (c) N50 and (d) N100 determined by the half-diesel simulation.

The results of this half-diesel simulation suggest that reduction in the larger diesel
particles can result in increased ultrafine particle number concentrations due to their
increased survival probability but also the increased nucleation rates. However, these
effects do depend on the size range examined. The N100 concentration (used as a proxy for
the CCN concentration) is predicted to decrease in this simulation despite the increase in
total particle number, though not as much as one would estimate assuming a proportional
change. Chen et al. [13] predicted a 5.6% global-scale decrease in CCN concentrations for a
50% reduction in BC emissions from fossil fuels compared to our predicted 1.6% decrease.
The authors assumed a larger reduction in number emissions (22.5%) than in this study
(14%) and simulated different time periods. Our results refer to a photochemically active
summertime period.

5.3. Scenario II: Doubling of Diesel Emissions

Figure 9 shows the estimated (proportional) changes in the double-diesel emissions
scenario as well as the actual simulated changes. A simple linear change would result, on
average, in a 140 cm−3 or 0.65% increase in total particle number as compared to the base
case. Instead, PMCAMx-UF predicts the opposite: an average 660 cm−3 or 3% decrease
in total number concentrations. Domain-average N50 and N100, however, are predicted
to increase by 1.9% and 3.3%, respectively. A 2.9% increase in PM2.5 surface area is also
predicted. This suggests that the increase in surface area, caused by doubling the diesel
emissions, resulted in a reduction in the mass condensing onto ultrafine particles and a
corresponding increase in the mass condensing onto larger particles. There was also an
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increase in the coagulation rates of smaller particles with the larger ones and a reduction in
the nucleation rates.
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The half- and double-diesel emissions simulations predict counterintuitive changes in
the ultrafine particle number concentration results for the same reasons. The double-diesel
emissions scenario assumes a doubling of the diesel particle number and mass emissions
as compared to the base case, leading to an increase in the condensation and coagulation
sinks. With the number of larger particles increasing, there is more particle surface area
for vapors to condense onto and more large particles with which smaller particles can
coagulate, decreasing the number concentrations.

6. Changes in Aerosol Optical Properties

In this study, core–shell Mie theory is used, assuming spherical particles [26] to com-
pute climate-relevant properties of simulated aerosol concentrations at a wavelength of
550 nm. For the calculations, we used a refractive index of BC equal to 1.85+0.71i [27]. The
assumed mixing state, simulated size distribution, mass, and number concentrations of par-
ticles in the modeled atmosphere determine climate-relevant properties such as absorption
and optical depth. BC, in particular, is important due to its strong absorption properties.
PMCAMx-UF simulates aerosol concentrations assuming the internal mixing of particles,
i.e., that all particles in a given size section have the same chemical composition. The other
extreme representation of particle composition is external mixing, i.e., each particle in a
given size section is composed of a different chemical component, one chemical component
per particle. Since particle mixing states in the real atmosphere vary between these two
extremes, the optical properties of the aerosol have been calculated using model-predicted
size-composition distributions and both external and internal mixing assumptions. This
gives a range of possible values for calculated climate-relevant properties.

BC is a part of every particle in a given size section when internal mixing is assumed.
For external mixing, pure BC particles are assumed with no additional chemical compounds
that tend to scatter incoming solar radiation (such as sulfate). Since the internal mixing
assumption calculates a greater number of BC-containing particles, its corresponding
predictions for the absorption coefficient and absorption aerosol optical depth (AAOD) are
higher than for external mixing. Extinction is the sum of absorption and scattering, so its
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relative changes as compared to the base case depend on the relative magnitudes of both
the absorption and scattering coefficients. The predicted BC size distribution was quite
variable, with smaller particles in general present near the source areas. These particles
grew to larger sizes due to both condensation of secondary material and coagulation further
away from their sources. The three-dimensional concentration distribution of BC and the
other aerosol components, together with their size distributions, are used for the various
optical calculations.

6.1. Base Case

The absorption coefficient, extinction coefficient, and AAOD predictions for the base
July 2001 simulation in the Eastern U.S. are shown in Figure 10. The average absorption
coefficient during this July 2001 simulation period is, assuming external mixing, 0.91 Mm−1

and, assuming internal mixing, 2.01 Mm−1. Spatially, the high absorption areas are those
with considerable emissions from combustion sources (gasoline, diesel, and industrial
sources along the Northeast coast and Chicago). The domain-averaged extinction coef-
ficients are 18.95 Mm−1 and 19.35 Mm−1 for external and internal mixing, respectively.
High values of the extinction coefficient, as well as the aerosol optical depth (AOD), can be
found in areas with high sulfate concentrations. The calculated domain-averaged AOD
was determined to be 0.03 for both internal and external mixing. The calculated domain-
averaged AAOD for this simulation are 9 × 10−4 and 2 × 10−3 for external and internal
mixing, respectively. The spatial distribution of AAOD values is similar to that of the
absorption coefficient.
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6.2. Scenario I: Half-Diesel Emissions

The average fractional reduction in the absorption coefficient is, assuming external
mixing, 30% and, assuming internal mixing, 27%. These changes correspond to the changes
in PM2.5 BC concentrations. The largest changes in absorption coefficient are in the Mid-
west, where non-road diesel emissions are the dominant source (Figure 11). Since scattering
aerosol dominates the overall extinction during this period and there is little change in
scattering when a major absorbing source is reduced, the average fractional reduction in
the extinction coefficients for the half-diesel simulation is only 2% for the external mixing
assumption and 3% assuming internal mixing. The calculated change in AOD is only 1%
for both external and internal mixing assumptions. The average AAOD reduction due
to the half-diesel perturbation is 16% and 15% for external and internal mixing assump-
tions, respectively.
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6.3. Scenario II: Double-Diesel Emissions

The average fractional increases in the calculated absorption coefficient due to the
double-diesel perturbation for the Eastern U.S. subdomain during this July 2001 simulation
period are 60%, assuming external mixing, and 52%, assuming internal mixing. The largest
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changes in absorption coefficient are also in the Midwest (Figure 12). The average fractional
increases in the extinction coefficients are only 5% and 6% using external and internal
mixing assumptions, respectively, and 2% for AOD.
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The average AAOD increases due to the double-diesel perturbation are 32% and 28%
for the external and internal mixing assumptions, respectively. The magnitudes of these
domain-averaged fractional changes in the absorption coefficient, extinction coefficient,
and AAOD for this period due to the doubled emissions are approximately twice as large
(in absolute terms) as the changes due to the 50% reduction in diesel emissions.

7. Conclusions

The three-dimensional CTM PMCAMx-UF was used to simulate a summer period
base case as well as two simple diesel emission change scenarios: (a) half and (b) double
the diesel particulate emissions as compared to the base emissions.
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Reduction in the diesel PM emissions by 50% resulted in an increase in the total
particle number concentrations on average by 1.6% due to a decrease in the coagulation
and condensation sinks. At the same time, a 1.6% decrease in N100 particle concentrations
was predicted. Both changes are significantly different from those expected, assuming a
proportional change. The same scenario resulted in a 23% decrease in domain-averaged
PM2.5 BC concentrations and similar changes both in magnitude and spatial pattern for the
absorption coefficient (27–30%) and AAOD (28–32%). These results suggest that mitigation
of large diesel particles and/or particle mass emissions reduces climate-relevant properties
related to the absorption of black carbon and has health benefits; however, the changes can
also have the unintended effect of increased ultrafine particle number concentrations. The
changes in CCN will be significantly less than expected, assuming a proportional reduction
during this photochemically active period.

The double-diesel simulation resulted in a domain-averaged 3% decrease in total
particle number concentrations and a 3.3% increase in N100 concentrations. The domain-
averaged PM2.5 BC concentration increased by 46%, and similar changes (52–60%) were
predicted for the absorption coefficient. AAOD for the double-diesel perturbation increased
by 28–32%. Extinction coefficients for both perturbation simulations changed by only a
few percent due to the dominance of scattering aerosols in the Eastern U.S. These changes
suggest that increased particle mass emissions from diesel sources increase climate-relevant
effects related to black carbon and negatively affect health, but the changes may reduce
ultrafine particle number concentrations. This reduction in ultrafine particle concentrations
could, in return, reduce the negative health effects that ultrafine particles may have on
human health [28].
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