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Abstract: Technological and climatic factors significantly influence the expression of quality and
quantity properties of spring wheat. This study aims to quantify the effects of weather conditions
and fertilizer systems on spring wheat yield, quality (protein content), and physiological indicators
(leaf vapor pressure deficit, evapotranspiration, surface temperature of the flag leaf) and to identify
a suitable spring wheat genotype for the Transylvanian Plain. The experimental factors were: Y
represents the year (Y1, 2019; Y2, 2020); F represents the fertilizer variant (F1, a single rate of
fertilization: 36 kg ha−1 of nitrogen; F2, two rates of fertilization: 36 kg ha−1 of nitrogen + 72 kg ha−1

of nitrogen; F3, two rates of fertilization: 36 kg ha−1 of nitrogen + 105 kg ha−1 of nitrogen); and S
represents the genotype (S1, Pădureni; S2, Granny; S3, Triso; S4, Taisa; S5, Ciprian; and S6, Lennox).
This multifactorial experiment with three factors was conducted on Phaeozem soil. Regardless of
weather conditions, fertilization with N100–110 at the head swollen sheath (stage 10, Feeks Growth
Scale for Wheat) is deemed the most suitable variant because it yields an average grain yield of
5000 kg ha−1 of good quality (13.84% protein) with a considerable flag leaf area (29 cm2) where
physiological processes can optimally support the well-being of the spring wheat plants. Beyond this
level of fertilization, the average grain yield tends to plateau, but the protein content considerably
increases by 13–23%, depending on the genotype. High yields were achieved in the Lennox and
Triso genotypes.

Keywords: spring wheat; weather conditions; yield; quality; physiological indicators

1. Introduction

Wheat stands as a paramount crop [1], occupying vast tracts of farmland and reigning
as the most extensively cultivated plant globally [2], surpassing even rice and maize [3].
Its grains serve a multifaceted purpose [4,5]: as a crucial raw material in the food industry
(encompassing bread, pastries, and noodles), within the livestock sector (utilized either
whole or ground grains, including bran), and across various other industries for producing
starch, alcoholic beverages, and bio-ethanol [6]. Wheat straw finds utility as animal feed, in
the pulp and paper sector, and as organic fertilizer, with or without soil incorporation [7].
The crop’s cultivation is entirely mechanized, aligning well with conservative tillage meth-
ods [8–10]. Increasing consumption of wheat-based foods is documented [11–13], attributed
to the grains’ beneficial components [14]—namely proteins, B, PP, E, K vitamins, and min-
erals such as K, Mg, and Cu—which boast significant health impacts [15]. Furthermore,
incorporating wheat into crop rotations diminishes the prevalence of harmful agents like
diseases, weeds, and pests, thereby enhancing soil health [16,17].
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The winter wheat vegetation period extends approximately 280 days, rendering it
unsuitable for mountainous regions characterized by prolonged, frosty winters and sig-
nificantly low temperatures [18]. Under such conditions, spring wheat emerges as a more
viable option, sown between March and April, boasting a shorter vegetation period of
100–120 days [19]. Recent years have witnessed breeders achieving notable successes in
developing high-yielding spring wheat varieties, capable of producing about 6 tons per
hectare within a growing period of under 100 days [20]. Additionally, the trend of dry
autumns coupled with favorable spring rainfall has prompted farmers to expand their
cultivation areas for spring cereals [21].

The success of wheat cultivation largely hinges on timely sowing at the onset of
warmer temperatures that permit field access, utilizing certified seeds [22], and adhering
to essential technological practices, namely sowing, fertilization, crop maintenance, and
harvesting [23].

Test weight (TW) is a critical quality parameter influenced by various factors, including
fluctuations in grain moisture at harvest [24], the absence or presence of impurities [25],
and the grains’ size, shape, and density [26]. Additionally, the surface characteristics
of the grains, soil type, and weather conditions (such as rain or heat) during the grain
filling period [27], as well as diseases and pest infestations [28], play significant roles in
determining TW.

Spring wheat boasts a significant advantage over winter wheat: “higher grain qual-
ity” [29]. Proteins, vital for nutritional value and baking qualities, vary in concentration
within the wheat grain due to factors like species, variety, climatic conditions, soil fertility,
and nitrogen fertilizer application [30]. Among these, climatic conditions are particu-
larly crucial [31]. In dry and warm climates, protein accumulation in grains is enhanced.
Such conditions shorten the grain formation and filling periods, accelerate ripening, and,
consequently, increase the proportional content of proteins in the grain composition [32,33].

Chemical fertilizers, notably nitrogen-based ones, play a pivotal role in protein syn-
thesis, significantly affecting crop quality [34]. Wheat varieties characterized by low levels
of oils, starch, sugars, enzyme activity, and metabolizing energy tend to exhibit higher
concentrations of protein, fiber, and ash [35]. Generally, fertilization has a positive effect on
the levels of water, protein, fibers, and ash in wheat, while it inversely affects the content of
oils, starch, sugars, enzyme activity, and metabolizing energy [36,37].

The quality indices of spring wheat, including protein accumulation and overall grain
quality, are significantly influenced by variations in temperature and humidity [38,39].
Water loss can reduce leaf water potentials, leading to decreased turgor, stomatal conduc-
tance, and photosynthesis rates. Consequently, this can hinder growth and result in lower
yields [40]. The grain filling period is particularly critical, as is the harvest time, when
excessive rainfall can cause sprouting within the spike. This increases enzymatic activity,
degrades grain quality, and thereby affects the wheat’s suitability for baking [41].

The flag leaf plays a pivotal role in the wheat plant’s overall productivity, notable
for being the last part of the plant to dry [42]. It captures a significant amount of light
energy, converting it into carbohydrates that are then translocated to the grain [43]. Ex-
tensive research supports the flag leaf’s critical contribution to the wheat plant’s lifecycle
and productivity. It is responsible for approximately 75–80% of the total photosynthates
produced, contributing 75% during grain filling and influencing 41–43% of the grain’s dry
matter content at maturity [44–46].

This study aimed to quantify the yield, quality, and certain physiological indicators
of spring wheat as influenced by weather conditions and fertilizer systems. Additionally,
it sought to identify an optimal spring wheat genotype suited to the conditions of the
Transylvanian Plain.
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2. Materials and Methods
2.1. Biological Materials

Field experiments were conducted over two growing seasons, 2019 and 2020, utilizing
six spring wheat genotypes: Pădureni, Granny, Triso, Taisa, Ciprian, and Lennox, as
detailed in the Official Catalog of Varieties [47].

The Pădureni genotype (var. ferrugineum) boasts a vegetation period of 113–130 days,
with plant heights ranging from 105 to 120 cm, and has awn spikes that are reddish.
Thousand kernel weight (TKW) varies between 29 and 38 g, and test weight (TW) can
reach 75–80 kg hl−1. It exhibits a medium tillering capacity (2.1 tillers plant−1), moderate
tolerance to Erysiphe graminis, Puccinia striiformis, and Septoria tritici, sensitivity to Puccinia
recondite, resistance to Fusarium sp., and medium-low lodging resistance.

Granny genotype (var. erythrospermum) has a vegetation period of 107–129 days, with
plant heights reaching 80–95 cm, and features white spikes. TKW is between 40 and 41 g
with medium TW values. It has an average tillering capacity, good tolerance to Erysiphe
graminis, Puccinia recondita, Septoria tritici, and medium tolerance to Puccinia striiformis; high
resistance to sprouting; and average lodging resistance.

The Triso genotype (var. lutescens) has a vegetation period of 103–128 days. Plant
heights often exceed 100 cm, featuring white spikes. TKW is approximately 37 g, with TW
presenting medium values. This genotype is noted for its very good tillering capacity and
good tolerance to Erysiphe graminis, Puccinia recondita, Septoria tritici, and Fusarium sp. It
has a medium tolerance to Puccinia striiformis, is very resistant to sprouting, and exhibits
excellent lodging resistance.

Taisa genotype (var. erythrospermum), a facultative type, spans a vegetation period of
130–270 days. Plant heights range from 90 to 100 cm, with white spikes. TKW values lie
between 43 and 47 g, while TW reaches 74–79 kg hl−1. Taisa is characterized by a good
tillering capacity (1.7–2.5 tillers plant−1), medium tolerance to Erysiphe graminis, Puccinia
recondita, Puccinia striiformis, and Septoria tritici, and a medium-low tolerance to Fusarium
sp. It is resistant to sprouting and shows good lodging resistance.

The Ciprian genotype (var. erythrospermum), another facultative type, has a vegetation
period ranging from 109 to 265 days. Plants reach heights of 82–85 cm and feature white
spikes. TKW varies from 40 to 45 g and TW from 70 to 84 kg hl−1. Ciprian has a very good
tillering capacity, with a medium to low tolerance to Erysiphe graminis, medium tolerance
to Puccinia striiformis, good tolerance to Puccinia recondita and Fusarium sp., sensitivity to
Septoria tritici, and resistance to both sprouting and lodging.

The Lennox genotype (var. lutescens), a facultative type, exhibits a vegetation period
ranging from 107 to 271 days. The plants’ height varies between 90 and 100 cm, with spikes
that are white. TKW is expected to be between 45 and 50 g, while TW can achieve values
of 79–81 kg hl−1. Lennox is distinguished by its very good tillering capacity and exhibits
good tolerance to Erysiphe graminis, very good tolerance to Puccinia striiformis, and medium
tolerance to Puccinia recondita, Septoria tritici, and Fusarium sp. It also presents resistance to
both sprouting and lodging.

2.2. Research Methods

The experiments were conducted at the Agricultural Research and Development
Station Turda (ARDS Turda), located in the Transylvania Plain, Romania, at coordinates
46◦35′ N latitude and 23◦47′ E longitude, and an elevation ranging from 345 to 493 m
above Adriatic Sea level. The experimental field is representative of the research area [48],
the type of soil being a Phaeozem soil with a loamy-clay texture [49], a neutral pH of
6.8–7.2 (measured potentiometrically in distilled water), clay content between 51.8% and
55.5%, humus content of 2.20–3.12% (determined using the Walkley-Black method), total
nitrogen of 0.162–0.124% (measured using the Kjeldhal method), phosphorus levels of
0.9–5 ppm, and potassium levels well supplied at 126–140 ppm (analyzed using the Egner-
Riehm-Domingo extraction method) [50,51]. Agrochemical analyzes were conducted on
soil samples collected from the arable layer (0–20 cm).
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The experimental layout was a randomized block design with three replications.
Sowing was conducted on March 4th during both 2019 and 2020, within the optimal sowing
window of March 1st to 15th for this region. We utilized a Wintersteiger Plot Seed Drill
(Wintersteiger Seedmech GmbH Winter—Steigerstrasse 1, 4910 Ried im Innkreis, Austria)
for precise sowing at a seeding rate of 550 germinating grains m−2, with a sowing depth of
4 cm and a row spacing of 12.5 cm. Each harvestable plot covered an area of 7.5 m−2. The
previous crop was unfertilized peas.

Additional fertilization was conducted in two stages: in autumn (decade III of Septem-
ber in both experimental years) with N36P92K0 kg ha−1 active substance (F1) and in
spring, at head swollen sheath [52], with two different doses (N72 kg ha−1 a.s. and
N105 kg ha−1 a.s.).

Weed management was conducted using a foliar herbicide application of 0.12 L ha−1

(Sekator OD), which contains amidosulfuron 100 g L−1 + iodosulfuron—methyl—Na
25 g L−1 + mefenpyr diethyl 250 g L−1 (Safener) + 0.6 L ha−1 (Amino 600), a 2.4 D acid-
based product derived from dimethylamine salt. This application occurred when the wheat
was in the late tillering phase (BBCH 24–25, according to the Biologische Bundesanstalt,
Bundessortenamt und 97 Chemische Industrie) and dicotyledonous weeds were in the
2–4 leaves (BBCH-12–14).

For disease and pest management, two treatments were applied during the growing
season. The first treatment consisted of 0.6 L ha−1 (Falcon Pro) fungicide based on pro-
thioconazole 53 g L−1 + spiroxamine 224 g L−1 + tebuconazole 148 g L−1 + 0.2 L ha−1

(Apis 200 SE, Innvigo Sp. zo.o. A. Jerozolimskie 178 02-486, Vars, ovia, Poland); insecticide
based on 200 g L−1 acetamiprid. The second treatment involved 0.7 L ha−1 Nativo 300 SC
(trifloxystrobin 100 g L−1 + tebuconazole 200 g L−1) and 0.2 L ha−1 Mavrik 2F (insecticide
based on tau-fluvalinate 240 g L−1).

Harvesting was performed using a Wintersteiger Plot Combine (Wintersteiger AG,
Ried im Innkreis, Austria) equipped with a 1.4 m working width.

Physiological indicators, including the temperature of flag leaf (T leaf), vapor pressure
deficit (VPD), and evapotranspiration (Evap), were measured two weeks after heading
using a CIRAS-3, a portable high-precision instrument [53].

The flag leaf area was calculated with the formula A = b × leaf length × max leaf
width, where the coefficient b is 0.75 [54]. These measurements were conducted using the
classical method at the flowering stage on samples from 30 wheat plants/plot.

Protein content was determined with the Perten Inframatic 9500 analyzer (Perten
PerkinElmer Company, U.S. LLC).

The experimental design incorporated three main factors:
Factor Y—Year with 2 graduations: Y1—2019; Y2—2020;
Factor F—Fertilization System with 3 graduations:
F1 = N36P92K0 kg ha−1 active substance (a.s.) applied in autumn (third decade of

September in both experimental years);
F2 = F1 (N36P92K0 kg ha−1 in autumn) + N72 kg ha−1 a.s. applied at head swollen

sheath;
F3 = F1 (N36P92K0 kg ha−1 in autumn) + N105 kg ha−1 a.s. applied at head swollen

sheath;
Factor S—Genotype (variety) with 6 graduations (with different vegetation period):
S1—Pădureni; S2—Granny; S3—Triso; S4—Taisa, S5—Ciprian; S6—Lennox.
Weather conditions (rainfall, temperatures) at the experimental site (March to August

2019 and 2020) were recorded by the Turda Meteorological Station (Table 1; longitude:
23′47—latitude 46′35′—altitude 427 m) [55].

The six-month study period each year showed deviations from the 60-year multi-
annual average, both positive and negative. Notably, precipitation peaks were observed in
May 2019 (+83.7 mm) and June 2020 (+81.8 mm), while significant temperature deviations
occurred in May of both years (−1.5 ◦C in 2019 and −1.3 ◦C in 2020), indicating cooler con-
ditions. In 2019, March, June, and July were marked by drought and higher temperatures,
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compared to 2020. In June 2020, abundant rainfall and high temperatures in the last two
decades of the month promoted disease development, leading to premature leaf drying.

Table 1. Weather conditions of the experimental area, Turda Meteorological Station, 2019–2020.

Month

2019 2020 60 Years Average

Rainfall, [mm] Temperatures, [◦C] Rainfall, [mm] Temperatures, [◦C] Rainfall,
[mm]

Temperatures,
[◦C]m.a. dev. m.a. dev. m.a. dev. m.a. dev.

March 12.3 −11.3 7.3 2.6 34 10.4 6.1 1.4 23.6 4.7
April 62.6 16.7 11.3 1.4 17.8 −28.1 10.3 0.4 45.9 9.9
May 152.4 83.7 13.6 −1.4 44.4 −24.3 13.7 −1.3 68.7 15.0
June 68.8 −16.0 21.8 3.9 166.6 81.8 19.1 1.2 84.8 17.9
July 35.0 −42.1 20.4 0.7 86.8 9.7 20.2 0.5 77.1 19.7

August 63.8 7.2 22.1 2.8 58 1.5 21.5 2.2 56.5 19.3

Note: m.a. = monthly average; dev. = deviation.

2.3. Statistical Analysis

The collected data were analyzed statistically by the standard analysis of variance
(ANOVA), using the Poly Fact program Software 2020 [56] and Microsoft Excel Software
2012. The Poly Fact program allowed the execution of Least Significant Difference (LSD)
tests at significance levels of 5%, 1%, and 0.1%. The relationship between two variables was
determined by the Pearson correlation coefficient using the average of the two continuous
years. Biplot analysis in Past 4.03 was used to determine the optimal nitrogen dose at which
wheat genotypes achieve high yields under different environmental conditions.

3. Results and Discussions
3.1. Influence of Experimental Factors on Yield, Quality, and Some Physiological Indicators of
Spring Wheat
3.1.1. F-Test and Statistical Probability Levels from Analysis of Variance

The analysis of calculated F-values (Table 2) suggests that grain yield across the two
experimental years predominantly depended on the year, genotype, and their interaction,
with fertilization and the Y × F interaction exerting a lesser effect. No significant variance
was observed among F × S and Y × F × S interactions for the grain yield. The results
obtained by Kadar et al. [57] show that the experimental years were more important in
the interactions with the genotypes than was the N fertilization. Following the research
conducted by Szmigiel et al. [58], it was found that grain yield significantly depended on
the genotype, nitrogen doses, and weather conditions during the wheat vegetative phase,
as well as on the interactions among these factors.

The analysis of variance for protein content indicated variance across all experimental
factors and their interactions (Y × F, Y × S). In their studies, Kadar et al. [57] and Sasani
et al. [59], concluded that the protein content was significantly influenced by both the year
and the genotype. Furthermore, additional research has demonstrated that the protein
content in spring wheat varies considerably depending on the wheat genotype and nitrogen
dose [57,58,60–62].

TKW is chiefly determined by genotype characteristics and environmental conditions,
especially water and heat supply during grain formation and filling phases. Disease and
pest attacks (notably Fusarium and Septoria), cereal bugs, and trips also influence TKW,
a key grain quality indicator, which is notably affected by nitrogen fertilization [63,64].
According to the data obtained, the greatest influence on this quality parameter is attributed
to the genotype and to the F × S interaction. In a study carried out by Dobrova et al. [65]
conducted was revealed that mineral fertilization, environmental conditions and their
interaction significantly impacted TKW.
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Table 2. F-test and statistical probability levels from analysis of variance for yield, quality and some
physiological indicators of spring wheat.

Source of Variance Year
(Y)

Fertilization
(F)

Genotype
(S) Y × F Y × S F × S Y × F × S

GY, kg ha−1

Probability levels, [%]
19.843

5
10.133

1
79.996

1
5.881

5
11.766

1
1.758
NS

1.123
NS

P, %
Probability levels, [%]

1299.228
0.1

181.415
0.1

128.080
0.1

38.265
1

31.346
1

2.336
5

1.093
NS

TKW, g
Probability levels, [%]

66.058
5

5.675
5

7.549
1

4.272
NS

1.622
NS

4.215
1

3.189
1

TW, kg hl−1

Probability levels, [%]
120.499

0.1
11.870

1
72.181

0.1
22.119

1
102.219

0.1
4.818

1
4.571

1

FLA, cm2

Probability levels, [%]
163.463

1
19.402

1
53.671

0.1
2.724
NS

5.777
1

2.603
5

2.493
5

T leaf, ◦C
Probability levels, [%]

21.761
5

17.086
1

2.452
5

29.184
1

12.977
1

8.330
1

7.824
1

VPD, kPa
Probability levels, [%]

18,667.82
0.1

61.951
0.1

13.006
1

38.970
1

20.645
1

25.755
1

14.722
1

Evap, mmol m−2 s−1

Probability levels, [%]
5262.036

0.1
642.407

0.1
168.062

0.1
792.707

0.1
51.747

0.1
80.095

0.1
64.164

0.1

Note: GY = grain yield; P = protein content; TKW = thousand kernel weight; TW = test weight; FLA = flag leaf
area; T leaf = temperature of flag leaf; VPD = vapor pressure deficit; Evap = evapotranspiration; 5%, 1%, and 0.1%
probability levels; NS—non-significant.

Year, genotype, and the interaction between year and genotype (Y × S) were the
primary sources of variation for test weight, as shown in Table 2. Additionally, N fertiliza-
tion positively influenced test weight. Our findings are consistent with those of Dobreva
et al. [65], who concluded that N fertilization significantly impacts test weight. A higher
test weigh was observed in spring wheat fertilized at the flag leaf stage [66].

The F-test values for FLA indicate significant variance attributable to genotype, cli-
matic conditions during the vegetation period, the amount of fertilizer, and the interaction
between year and genotype (Y × S).

Data processing reveals that the studied physiological indicators (leaf temperature, va-
por pressure deficit, and evapotranspiration) significantly interacted with the experimental
factors, as demonstrated by variance analysis. Vapor pressure deficit (VPD), fundamentally
important in crop physiology, is a critical variable that drives evapotranspiration [67]. It
significantly influences plant growth and is primarily affected by temperature and hu-
midity [68]; specifically, VPD increases as external temperatures rise and air humidity
decreases. When exposed to high VPD levels, plants exhibit high transpiration demands,
leading to the development of leaves with smaller or less frequent stomata [69], or they
may partially close their stomata [70,71]. Furthermore, evapotranspiration regulates energy
flow distribution at the leaf surface, which, in turn, influences leaf temperature [72].

3.1.2. The Influence of the Year Factor

Over the two years of study, grain yield varied on average from 4780 to 5000 kg ha−1,
with the higher value recorded in 2020. Although, the increase of 200 kg ha−1 observed in
2020 is modest, significant differences between varieties were noted (Table 3).

2020 was a year in which the weather conditions favored significant assimilation of
protein substances, averaging to 14.64%. The rainfall in June and temperatures above the
multiannual average had a significant contribution to the absorption, metabolism, and
translocation of nitrogen into protein assimilates in the grain. These weather conditions
also favored good grain, as expressed by the test weight value (77.91 kg hl−1).
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Table 3. The influence of experimental factors on yield, quality, and some physiological indicators of
spring wheat.

Source of Variation GY,
[kg ha−1]

P,
[%]

TKW,
[g]

TW,
[kg hl−1]

FLA,
[cm2]

T leaf,
[◦C]

VPD,
[kPa]

Evap,
[mmol m−2 s−1]

Year
Y0–ct. 4897.39 13.65 33.83 77.29 26.17 26.81 2.29 1.33
2019 4795.96 12.67 ◦◦ 31.33 76.67 ◦ 31.26 * 26.65 1.64 ◦◦◦ 1.83 ***
2020 4998.82 14.64 ** 36.33 77.91 * 21.09 ◦ 26.98 2.95 *** 0.83 ◦◦◦

LSD
5% 195.82 0.24 2.65 0.48 3.42 0.30 0.04 0.06
1% 452.20 0.54 6.11 1.12 7.89 0.70 0.09 0.14

0.1% 1439.02 1.73 19.44 3.55 25.12 2.23 0.30 0.43

Fertilization
F1–ct. 4561.33 12.41 32.89 76.69 23.97 26.94 2.35 1.35

F2 4953.08 * 13.84 *** 33.98 77.47 ** 29.00 *** 26.55 ◦◦◦ 2.18 ◦◦◦ 1.44 ***
F3 5177.75 ** 14.72 *** 34.63 * 77.71 ** 25.56 26.94 2.35 1.21 ◦◦◦

LSD
5% 320.15 0.28 1.21 0.51 1.91 0.18 0.04 0.01
1% 465.67 0.41 1.75 0.74 2.77 0.26 0.06 0.02

0.1% 698.50 0.62 2.63 1.10 4.16 0.39 0.09 0.03

Genotype

S0–ct. 4897.39 13.65 33.83 77.29 26.17 26.81 2.29 1.33
S1 4287.11 ◦◦◦ 14.49 *** 32.19 78.50 *** 29.81 ** 26.66 2.31 1.28 ◦◦◦

S2 4970.17 12.43 ◦◦◦ 35.21 76.78 ◦ 26.66 26.77 2.24 ◦ 1.40 ***
S3 5575.56 *** 13.03 ◦◦◦ 32.31 78.16 *** 19.89 ◦◦◦ 26.85 2.33 1.32
S4 4089.89 ◦◦◦ 14.56 *** 34.00 74.53 ◦◦◦ 33.81 *** 26.96 2.35 ** 1.23 ◦◦◦

S5 5001.22 14.57 *** 36.93 ** 77.44 28.13 26.91 2.30 1.33
S6 5460.39 *** 12.84 ◦◦◦ 32.37 78.32 *** 18.75 ◦◦◦ 26.72 2.21 ◦◦◦ 1.44 ***

LSD
5% 190.66 0.25 1.99 0.50 2.25 0.21 0.04 0.02
1% 253.58 0.33 2.65 0.66 3.00 0.27 0.06 0.02

0.1% 329.84 0.43 3.44 0.86 3.90 0.36 0.07 0.03

Note: *,◦, **,◦◦, ***,◦◦◦—significant at the 5%, 1%, and 0.1% positive and negative probability levels respectively;
LSD—least significant difference. GY = grain yield; P = protein content; TKW = thousand kernel weight; TW = test
weight; FLA = flag leaf area; T leaf = temperature of flag leaf; VPD = vapor pressure deficit; Evap = evapotran-
spiration; Y0—average of the years (control); F1 (control) = N36P92; F2 = F1 + N72; F3 = F1 + N105; S1—Pădureni;
S2—Granny; S3—Triso; S4—Taisa; S5—Ciprian; S6—Lennox; S0—mean of genotypes (control).

FLA had values ranging from 21.09 to 31.26 cm2, as shown in Table 3. The high-
est value was recorded in 2019, which can be attributed to the amount of rainfall and
lower temperatures in May; these conditions led to an extension of the wheat growth and
vegetation period.

In all of the study years, TKW (thousand kernel weight) and T leaf (leaf temperature)
showed no significant differences compared to the control (Y0—average of the years).

The weather conditions of 2019 ensured lower VPD values than those of the follow-
ing year, with 1.64 and 2.95 kPa, respectively. The specialized literature indicates that a
too low VPD value is generally associated with lower growth rates due to mineral de-
ficiency caused by poor assimilation of soil nutrients [69]. In contrast, between the two
experimental years, a difference of 1 mmol m−2 s−1 was registered in Evap. In 2019, evapo-
transpiration rates significantly increased with flag leaf area [73], achieving mean values of
1.83 mmol m−2 s−1.

3.1.3. The Influence of Nitrogen Fertilization

Nitrogen is a crucial nutrient for the growth, development, and grain quality of wheat
plants [74]. Table 3 shows that increasing nitrogen doses resulted in average yield increases
of 392 kg ha−1 in F2 and 616 kg ha−1 in F3, respectively, when compared to the control
(F1). According to other researchers’ results, a norm of 120 kg N ha−1 was identified as the
most effective for enhancing grain yield, achieving a 76.2% increase over the control [65].
Similarly, Kadar et al. [57] reported production increases of over 600 kg ha−1 when using
N100 fertilize compared to N50.

The protein content of spring wheat can be improved by adjusting the N dose [75].
Data in Table 3 indicate that protein content increased with rising N doses from 12.41 to
14.72%, with the lower value attributed to the control (F1). Nitrogen has been proven to
be an effective tool for increasing protein content, as evidenced by the findings of Kadar



Agronomy 2024, 14, 921 8 of 22

et al. [57], who reported an increase from 11.5 to 13.2%, Szmigiel et al. [58], who observed
an increase from 13.06 to 15.18%, and Jahan et al. [63], who documented an increase from
10.06 to 11.38%.

Compared to the control, fertilization levels F2 and F3 showed significant increases
in test weight by 0.78 kg hl−1 and 1.02 kg hl−1, respectively. However, other studies have
reported that nitrogen fertilization did not have a significant impact on test weight [66].

Increasing the fertilizer amount resulted in a TKW increase of only 1.74 g at the F2
fertilization level, with these differences not being statistically significant when compared
to the control (F1).

Compared to the control (F1), the largest flag leaf area measuring 29 cm2 was observed at
the F2 fertilization level, significantly enhancing evapotranspiration to 1.44 mmol m−2 s−1 [73].
Furthermore, at this same fertilization level (F2), the average leaf temperature (T leaf) and
vapor pressure deficit (VPD) significantly decreased by 0.39 ◦C and 0.17 kPa, respectively,
in comparison to the control.

3.1.4. The Influence of the Genotype Factor

Upon analyzing the influence of the genotype factor (S), it’s observed that the Triso and
Lennox genotypes outperformed the control (S0—average of the genotypes) by 13.8% and
11.5%, respectively. In contrast, the Pădureni and Taisa genotypes showed yield decreases
of 12.5% and 16.5%, respectively, compared to the control’s average yield. The average
protein content was recorded at 13.65%. Against this average, Pădureni, Taisa, and Ciprian
exhibited the highest protein contents. Among them, Ciprian was the only genotype to
show a significant increase in TKW by 3.1 g (9.1%) compared to the control.

Triso and Lenox distinguished themselves with the highest TW values, exceeding
78 kg hl−1. In contrast, Taisa exhibited the lowest TW at 74.53 kg hl−1. Ciprian’s TW,
recorded at 77.44 kg hl−1, was close to the average across the varieties, with the differences
deemed insignificant.

Taisa and Pădureni exhibited the highest flag leaf area (FLA) values at 33.81 cm2

and 29.81 cm2, respectively, whereas Lennox and Triso showed the lowest FLA values at
18.75 cm2 and 19.89 cm2, respectively. In terms of vapor pressure deficit (VPD), Lennox and
Granny had the lowest values, 2.21 kPa and 2.24 kPa, respectively, compared to the control.
Taisa recorded the highest VPD value at 2.35 kPa. Leaf evapotranspiration intensity varied
by genotype, with Granny and Lennox statistically surpassing the control, while the results
for Pădureni and Taisa were lower compared to the control (S0—average of the genotypes).

3.2. Influence of Double Interactions on Yield, Quality, and Some Physiological Indicators of
Spring Wheat

The yield of the Triso and Lennox genotypes increased with N doses, reaching up to
6000 kg ha−1, as depicted in Figure 1a. In contrast, compared to the control (F1), the Taisa
and Ciprian genotypes did not exhibit significant increases in grain yield with increased
nitrogen application.

The average yields at fertilization levels F2 and F3 were closely matched, at 4953
and 5178 kg ha−1, respectively. This outcome suggests that the highest rate of N does
not necessarily justify its use. (Figure 1b). The data indicate an optimal N dose for in-
creasing spring wheat yield is around 110 kg N ka−1. These findings align with pre-
vious studies [57,58,65,76], which also observed a plateau in grain yield beyond this
N dose. For instance, Jahan et al. [62] found that grain yield increased with N ap-
plication up to 150 kg urea ha−1, beyond which it showed a declining trend up to a
200 kg ha−1 N application.

The biplot analysis depicted in Figure 2a explains 98.2% of the variance and illustrates
that the Triso, Lennox, and Taisa genotypes achieve high yields at the F2 fertilization level,
suggesting that applying a higher nitrogen dose is not beneficial. The Ciprian and Granny
genotypes are minimally affected by the highest nitrogen dose (F3). Pădureni was the sole
genotype that showed a significant yield increase in response to the highest nitrogen dose.



Agronomy 2024, 14, 921 9 of 22Agronomy 2024, 14, 921 9 of 23 
 

 

  
Figure 1. Yield (kg ha−1) of spring wheat as affected by F × S (a)/S × F (b) interactions. Note: *, **,°°, 
***,°°°—significant at the 5%, 1%, and 0.1% positive and negative probability levels respectively; 
LSD—least significant difference. F1 (control) = N36P92; F2 = F1 + N72; F3 = F1 + N105; S0—mean of geno-
types (control); S1—Pădureni; S2—Granny; S3—Triso; S4—Taisa; S5—Ciprian; S6—Lennox. 

The biplot analysis depicted in Figure 2a explains 98.2% of the variance and illus-
trates that the Triso, Lennox, and Taisa genotypes achieve high yields at the F2 fertilization 
level, suggesting that applying a higher nitrogen dose is not beneficial. The Ciprian and 
Granny genotypes are minimally affected by the highest nitrogen dose (F3). Pădureni was 
the sole genotype that showed a significant yield increase in response to the highest nitro-
gen dose. 

  
(a) (b) 

Figure 2. Graphics of Past4.03.exe biplot analysis of grain yield of spring wheat genotypes in terms 
of determining: (a) which is the best amount of nitrogen fertilizer for what wheat genotype; (b) 
genotype x weather conditions interaction; S1—Pădureni; S2—Granny; S3—Triso; S4—Taisa; S5—
Ciprian; S6—Lennox; F1 = N36P92; F2 = F1 + N72; F3 = F1 + N105. 

In the analysis of genotype × weather conditions interaction (Figure 2a), the principal 
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Figure 1. Yield (kg ha−1) of spring wheat as affected by F × S (a)/S × F (b) interactions. Note: *, **,◦◦,
***,◦◦◦—significant at the 5%, 1%, and 0.1% positive and negative probability levels respectively;
LSD—least significant difference. F1 (control) = N36P92; F2 = F1 + N72; F3 = F1 + N105; S0—mean of
genotypes (control); S1—Pădureni; S2—Granny; S3—Triso; S4—Taisa; S5—Ciprian; S6—Lennox.
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Figure 2. Graphics of Past4.03.exe biplot analysis of grain yield of spring wheat genotypes in
terms of determining: (a) which is the best amount of nitrogen fertilizer for what wheat genotype;
(b) genotype x weather conditions interaction; S1—Pădureni; S2—Granny; S3—Triso; S4—Taisa;
S5—Ciprian; S6—Lennox; F1 = N36P92; F2 = F1 + N72; F3 = F1 + N105.

In the analysis of genotype × weather conditions interaction (Figure 2a), the principal
component analysis reveals that 99.9% of the variance is accounted for, indicating that
genotypes positioned closer to the PC2 line of the biplot (Triso and Lennox) exhibit no
susceptibility to environmental interactions. Conversely, genotypes positioned further
from the origin of the biplot are more sensitive and demonstrate significant interaction
effects [77,78]. This genotype × weather conditions interaction results in differential
responses among genotypes: Ciprian and Taisa yielded higher in the 2019 conditions,
whereas Granny and Pădureni performed better in 2020. Notably, Pădureni and Taisa
produced the lowest yields in both years.

Compared to the control (F1), an increase in N doses led to higher protein content
across all studied genotypes, showing a rise of 8–13% in F2 and by 13–23% in F3. Specifically,
the Ciprian, Pădureni, and Taisa genotypes exhibited the highest protein increases, at 16%,
15.68%, and 15.43%, respectively (Figure 3a). Similarly, Subedi et al. [76] observed protein
content increases of 6–17% in the AC Brio spring wheat variety with higher N doses in
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Ottawa. Szmigiel et al. [58] found that the protein content in the Bombona and Tybalt
genotypes increased from 13.06 to 15.18% with the application of the highest dose of
150 N kg ha−1. Additionally, other research corroborates that wheat grain protein content
escalates with the amount of N applied, aligning with our findings [79–81].
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Figure 3. Protein content (%) of spring wheat as affected by F × S (a)/S × F (b) interaction. Note:
**,◦◦, ***,◦◦◦—significant at the 5%, 1%, and 0.1% positive and negative probability levels respectively;
LSD—least significant difference. F1 (control) = N36P92; F2 = F1 + N72; F3 = F1 + N105; S0—mean of
genotypes (control); S1—Pădureni; S2—Granny; S3—Triso; S4—Taisa; S5—Ciprian; S6—Lennox.

Although the mean value of the protein content increases with the increase in N
dose, at the same dose of N applied, wheat genotypes with higher yield potential, such as
Granny, Triso, and Lennox, tend to have lower protein contents than genotypes with lower
yield potential. Even at the highest N dose, these genotypes barely achieve 14% protein
content (Figure 3b). Our findings are consistent with those of those who reported similar
results [61,82].

Orloff [61] found that late-season N applications, specifically between the boot and
flowering stages, were crucial for increasing grain protein content but had a minimal
impact on yield. Our results align with this observation, notably because the additional N
was applied before the heading stage. In essence, with a suitable nitrogen level, the grain
protein content can be boosted without causing a decline in yield [75].

Typically, spring wheat genotypes exhibit a low TKW. However, the Pădureni, Granny
and Ciprian genotypes show a significant increase in their TKW when nitrogen levels are
supplemented, as demonstrated in Figure 4a. Conversely, although Taisa starts with the
highest TKW at the F1 fertilization level, its TKW significantly decreases with increased ni-
trogen doses (F3). This trend can be attributed to Taisa’s late-maturing nature, characterized
by a longer growth cycle. The application of nitrogen extends the vegetation period and
delays heading, making grain filling more susceptible to the impact of the summer drought.

Increasing the dose of N resulted in a higher mean value of TKW by 1.09 g in F2 and by
1.74 g in F3 compared to the control (F1). However, this does not imply that the additional
N was utilized equally by all studied genotypes. When compared to the control (S0—the
mean of genotypes), at increased N levels, only Ciprian (39.18 g in F2) and Grany (39.70 g
in F3) exhibited higher mean values for TKW, as shown in Figure 4b. Therefore, this quality
parameter is primarily dependent on the genotype and is not significantly influenced by
N fertilization.

Dobreva et al. [65] found that TKW was most affected by N160, showing a 13.3%
increase over the control (N0). Contrarily, a study by Noor et al. in 2023 observed a
decrease in TKW with higher nitrogen application rates, specifically from N150 to N210 [71].
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Szmigiel et al. [83], reported that N fertilization levels positively influenced TKW up to a
dose of 60 kg N ha−1.
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Figure 4. Thousand kernel weights (g) of spring wheat as affected by the F × S (a)/S × F (b) interac-
tion. Note: *,◦, **, ***—significant at the 5%, 1%, and 0.1% positive and negative probability levels
respectively; LSD—least significant difference. F1 (control) = N36P92; F2 = F1 + N72; F3 = F1 + N105;
S0—mean of genotypes (control); S1—Pădureni; S2—Granny; S3—Triso; S4—Taisa; S5—Ciprian;
S6—Lennox.

The impact of nitrogen on test weight varied among genotypes [84,85]. Besides
genotype, the timing of fertilizer application was critical for increasing test weight. In our
study, nitrogen supplementation at stage 10—boot, head swollen in steath [52]—had a
positive impact on the genotypes Pădureni, Triso, and Lennox (Figure 5a). This finding
aligns with other studies where nitrogen application at the anthesis stage [86] or later in the
growing season [85] yielded similar benefits. Conversely, Taisa, a late-maturing genotype,
exhibited a negative response to additional nitrogen application, recording values 1.8%
lower (equivalent to 1.35 kg hl−1) than the control (F1), a trend also observed in other
research [87].

Figure 5. Test weight (kg hl−1) of spring wheat as affected by the F × S (a)/S × F (b) interaction.
Note: *, **,◦◦, ***,◦◦◦—significant at the 5%, 1%, and 0.1% positive and negative probability levels
respectively; LSD—least significant difference. F1 (control) = N36P92; F2 = F1 + N72; F3 = F1 + N105;
S0—mean of genotypes (control); S1—Pădureni; S2—Granny; S3—Triso; S4—Taisa; S5—Ciprian;
S6—Lennox.
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Relative to the control (S0—mean of genotypes), the increased doses of nitrogen (F2 and
F3) significantly enhanced the test weight for the Pădureni, Triso, and Lennox genotypes, as
illustrated in Figure 5b. Accordingly, by the standards set by the Order of the Agriculture
and Rural Development Minister no. 228/2017 [88], these three genotypes are classified
under quality grade 1 (>77 kg hl−1). Meanwhile, Granny and Ciprian are categorized under
quality grade 2 (75–77 kg hl−1), and Taisa falls into quality grade 3 (72–75 kg hl−1).

Walsh and Walsh [66] reported higher test weights at both experimental locations
(Teton and Pondera) for plots fertilized with 140 kg N ha−1 at the flag leaf stage. Similarly,
Protic et al. [26] observed significant increases in test weight with N60 and N90 doses,
especially when the preceding crop was sunflower and the basic fertilization regimen
included N30P60K40.

The flag leaf area of the studied genotypes reached its highest mean values at the F2
fertilization level, ranging from 20.4 cm2 (Lennox) to 37.47 cm2 (Taisa). At the F1 (control)
and F3 fertilization levels, the Triso and Lennox genotypes exhibited the smallest flag leaf
areas, which did not exceed 19 cm2 (Figure 6a).
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Figure 6. Flag leaf area (cm2) of spring wheat as affected by F × S (a)/S × F (b) interaction. Note:
*, ◦◦, ***,◦◦◦—significant at the 5%, 1%, and 0.1% positive and negative probability levels, respectively;
LSD—least significant difference. F1 (control) = N36P92; F2 = F1 + N72; F3 = F1 + N105; S0—mean of
genotypes (control); S1—Pădureni; S2—Granny; S3—Triso; S4—Taisa; S5—Ciprian; S6—Lennox.

In Figure 6b, it is evident that the flag leaf area of the Triso and Lennox genotypes
experienced significant reductions compared to the control (S0—mean of genotypes). For
Triso, these differences ranged from 5.96 to 6.72 cm2, and for Lennox, from 5.52 to 8.6 cm2.
Notably, in the Lennox genotype, the highest N dose appeared to inhibit leaf growth, with
a decrease of 3 cm2 in F3 compared to F2, and 1 cm2 compared to F1.

Plants in different environments have different strategies for regulating leaf tempera-
ture, such as smaller leaves, spiny or succulent leaves to minimize transpiration, and hairs
that reflect radiation, while the contribution of transpiration to leaf cooling is often ignored.
Leaf temperature is influenced by air temperature and controlled by leaf traits [89]. Flag
leaf temperature responses to nitrogen doses varied among genotypes, with temperatures
ranging from 26.3 to 26.88 ◦C in Pădureni, 26.27 to 27.20 ◦C in Granny, 26.30 to 27.20 ◦C in
Triso, 26.70 to 27.45 ◦C in Taisa, 26.43 to 27.18 ◦C in Ciprian, and 26.45 to 26.90 ◦C in Lennox,
as illustrated in Figure 7a. Increasing the N dose to F2 resulted in a cooling effect on the
flag leaves of the Granny, Triso, Taisa, and Ciprian genotypes. This cooling effect remained
consistent in Taisa, even at the highest N dose. Conversely, in Pădureni, an increase in N
dose led to a significant rise in leaf temperature, by 0.50 ◦C at F2 and by 0.58 ◦C at F3.
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Figure 7. Leaf temperature (◦C) of spring wheat as affected by F × S (a)/S × F (b) interaction. Note:
*, **,◦◦, ◦◦◦—significant at the 5%, 1%, and 0.1% positive and negative probability levels, respectively;
LSD—least significant difference. F1 (control) = N36P92; F2 = F1 + N72; F3 = F1 + N105; S0—mean of
genotypes (control); S1—Pădureni; S2—Granny; S3—Triso; S4—Taisa; S5—Ciprian; S6—Lennox.

The average flag leaf temperature was consistent between the F1 and F3 fertilization
levels, whereas it was approximately 0.4 ◦C lower at the F2 level, as depicted in Figure 7b.
At the F1 level, compared to the control (S0—mean of genotypes), Pădureni and Lennox
exhibited the lowest leaf temperature, whereas Taisa recorded the highest. With increased
N doses, the leaf temperature values were close to those of the control (S0—mean of the
genotypes) [51].

According to Figure 8a, at the F2 fertilization level, compared to the control (F1), the
Granny, Triso, Taisa, and Ciprian genotypes recorded the lowest VPD values, with decreases
ranging from 0.32 to 0.35 kPa. These reductions are linked to the lower leaf temperatures
observed (refer to Figure 7a). Furthermore, at the highest N dose (F3), these values did
not surpass the control. Additional N fertilization resulted in a significant rise in flag leaf
temperature for the Pădureni and Lennox genotypes, leading to notable increases in VPD
values by 0.15 (F3) to 0.22 (F2) kPa for Pădureni and by 0.09 (F2) to 0.23 (F3) kPa for Lennox,
as shown in Figure 8a).
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Figure 8. Vapor pressure deficit (kPa) of spring wheat as affected by F × S (a)/S × F (b) interaction.
Note: *,◦, **,◦◦, ***,◦◦◦—significant at the 5%, 1%, and 0.1% positive and negative probability levels,
respectively; LSD—least significant difference. F1 (control) = N36P92; F2 = F1 + N72; F3 = F1 + N105;
S0—mean of genotypes (control); S1—Pădureni; S2—Granny; S3—Triso; S4—Taisa; S5—Ciprian;
S6—Lennox.
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The lowest mean value of VPD, at 2.18 kPa, was observed at the F2 fertilization level,
as shown in Figure 8b. At this level, Granny and Ciprian exhibited the lowest VPD values,
whereas Pădureni recorded the highest VPD at 2.41 kPa, surpassing the control by 0.23 kPa.
While the average VPD values at the F1 and F3 fertilization levels were consistent at 2.35 kPa,
F1 presented significant genotype-dependent differences.

Lennox stands out as the only spring wheat genotype exhibiting a linear increase in
leaf temperature and VPD with each increment in nitrogen dose.

The existing literature suggests that high VPD correlates with low Evap rates, and
conversely, low VPD is associated with high Evap rates [90]. This relationship is emphasized
in our findings, as illustrated in Figure 9. When comparing with the control (F1), significant
differences at the F2 level were statistically validated: positive changes for the Granny, Triso,
Taisa, and Ciprian genotypes, and negative for Pădureni and Lennox. At the highest doses
of nitrogen (F3), all the studied genotypes exhibited lower evapotranspiration rates than the
control variant (F1), with these differences being statistically very significant (Figure 9a).

Figure 9. Evapotranspiration (mmol m−2 s−1) of spring wheat as affected by F × S (a)/S × F (b)
interaction. Note: ◦, **, ***,◦◦◦—significant at the 5%, 1%, and 0.1% positive and negative proba-
bility levels, respectively; LSD—least significant difference. F1 (control) = N36P92; F2 = F1 + N72;
F3 = F1 + N105; S0—mean of genotypes (control); S1—Pădureni; S2—Granny; S3—Triso; S4—Taisa;
S5—Ciprian; S6—Lennox.

Evapotranspiration plays a crucial role in regulating energy flux partitioning at the
leaf surface, which, in turn, can reduce leaf temperature by consuming energy [72].

The most pronounced leaf evapotranspiration was observed at the F2 fertilization
level, whereas the lowest evapotranspiration rate was noted at the highest nitrogen dose,
as depicted in Figure 9b. At the lowest nitrogen dose, Pădureni and Lennox exhibited
increased evapotranspiration intensity, significantly surpassing the control (S0—mean of
genotypes). At the intermediate level of fertilization (F2), Granny, Triso, and Ciprian were
distinguished by the highest evapotranspiration rates, notably exceeding the genotype
average (S0). Conversely, the Pădureni and Taisa genotypes demonstrated the least intense
evapotranspiration, with these differences being statistically very significant. At the highest
level of fertilization (F3), leaf-level evapotranspiration was most intense in the Granny and
Lennox varieties, while Taisa showed the lowest rate, with the differences compared to the
control (S0) being very significant.

3.3. Influence of Triple Interactions on Yield, Quality, and Some Physiological Indicators of
Spring Wheat
3.3.1. The Influence of the Triple Interactions on Yield and Quality of Spring Wheat

Weather conditions and fertilizer systems had distinct impacts on the studied geno-
types [57,65,66,71,75], yet they did not significantly alter the average yields observed across
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the two experimental years (4796 kg ha−1 in 2019, 4999 kg ha−1 in 2020). In 2019, excessive
rainfall in May (83.4 mm) promoted the robust growth and vegetative development of
spring wheat. This, in conjunction with increased nitrogen doses, led to notable improve-
ments in yield and test weight, as shown in Figure 10. Similarly, in June 2020, precipitation
exceeded the multi-year average by 81.8 mm, facilitating uniform yields across enhanced
nitrogen levels without statistical discrepancies. This also positively influenced grain filling
and density, as indicated by the average values of TKW and TW. The genotypic response to
weather conditions varied, with the Triso and Lennox genotypes achieving higher yields
in both years. Contrasting with our findings, Warechowska et al. [84] reported significant
variations in grain yield among varieties across two growing seasons (2009 and 2011),
which markedly affected overall crop yield.
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Figure 10. Influence of triple interaction (F × Y × S) on yield, TKW, and TW of spring wheat. Note:
*,◦, **,◦◦, ***—significant at the 5%, 1%, and 0.1% positive and negative probability levels, respectively;
LSD—least significant difference. S1—Pădureni; S2—Granny; S3—Triso; S4—Taisa; S5—Ciprian;
S6—Lennox; F1-ct. (control variant) = N36P92; F2 = F1 + N72; F3 = F1 + N105; LSD 5% = 620.27; LSD
1% = 863.13; LSD 0.1% = 1211.53; LSD 5% = 4.76; LSD 1% = 6.40; LSD 0.1% = 8.47; LSD 5% = 1.32;
LSD 1% = 1.80; LSD 0.1% = 2.44.

TW was influenced by a combination of weather conditions, the fertilization system,
and the genotype itself, with the Lennox and Triso genotypes reporting higher TW values.
The addition of fertilization at the F3 level yielded the highest TW in both seasons (2019
and 2020). A similar pattern of increased TW in response to foliar urea application was
observed in the Radunia variety, as reported by another study [84].

The precipitation in June 2020, in combination with the increased doses of nitrogen,
led to an extended vegetation period for the Taisa genotype, a late-maturing variety. As
a result, while TKW saw an average increase of 6.61 g, the average yield experienced a
significant decrease of 418 kg ha−1. This reduction can be attributed to inadequate filling
of grains at the spike’s top, impacted by high temperatures in July, and a decline in grain
density/weight due to rainfall during the ripening period (from the end of July to the
beginning of August). These factors collectively contributed to an average decrease in test
weight (TW) by 6 kg hl−1.

The triple interaction of factors—fertilization, year, and genotype (F × Y × S)—
demonstrates that in 2019, additional fertilization (F2, F3) notably enhanced crop quality,
showing significant improvements over the control (F1). In 2020, particularly at the F3
fertilization level, there were very significant increases in protein content, as illustrated in
Figure 11.
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Figure 11. Influence of triple interaction (F × Y × S) on protein content (%) of spring wheat. Note:
*, **, ***—significant at the 5%, 1%, and 0.1% probability levels, respectively; LSD—least significant
difference. S1—Pădureni; S2—Granny; S3—Triso; S4—Taisa; S5—Ciprian; S6—Lennox; F1-ct. (control
variant) = N36P92; F2 = F1 + N72; F3 = F1 + N105; LSD 5% = 0.68; LSD 1% = 0.93; LSD 0.1% = 1.27.

3.3.2. The Influence of the Triple Interactions on Some Physiological Indicators of
Spring Wheat

Leaves serve as a crucial interface for water, energy, and carbon fluxes in terrestrial
ecosystems [72]. The T leaf is instrumental in regulating the rates of mass and energy
fluxes at the leaf surface [91], impacting several key physical processes including VPD [68],
thermal conductance, emittance, net photosynthetic assimilation, and leaf respiration [72].
Moreover, leaf temperature creates the microenvironment surrounding the plants, signif-
icantly affecting the leaf photosynthetic rate [92]. Notably, leaf temperature can differ
substantially from air temperature, varying between species due to physical and physiolog-
ical plant characteristics. It is primarily determined by air temperature and humidity but is
also modulated by leaf physical traits and transpiration [90].

The interactions between experimental factors and their influence on FLA and T leaf
are depicted in Figure 12. The significant rainfall in May 2019, alongside increased nitrogen
doses, greatly benefited vegetative growth, evident from the high average FLA of 31.3 cm2,
marking a 10.2 cm2 increase compared to 2020. In 2019, FLA ranged from 23 cm2 (Lennox)
to 37.7 cm2 (Pădureni). In contrast, the range in 2020 was between 14.5 cm2 (Lennox) and
31.5 cm2 (Taisa). The scarcity of rainfall in May 2020 contributed to a marked decrease in
FLA, with variations averaging from 4.6 cm2 (Taisa) to 15.7 cm2 (Pădureni).

The average T leaf oscillated between 26.6 ◦C in 2019 and 27 ◦C in 2020. Notably,
in 2020, at the fertilization levels F2 and F3, Granny, Triso, Taisa, and Ciprian genotypes
exhibited a significant reduction in T leaf.

VPD plays a crucial role in regulating 5 interconnected plant physiological processes,
including stomatal opening, CO2 uptake, transpiration, nutrient intake at the roots, and
overall plant stress. As VPD increases, plants experience greater stress [93], leading to
decreased stomatal conductance and increased transpiration up to a certain VPD threshold.
This scenario can result in diminished photosynthesis and growth [68]. Optimal VPD for
plant growth generally ranges from 0.8 to 1.2 kPa but can vary across different growth
stages, reaching up to 1.6 kPa during flowering [93]. Across the study period, the mean
VPD fluctuated from 1.64 kPa in 2019 to 2.95 kPa in 2020. Notably, the Lennox genotype
consistently exhibited the lowest mean VPD value under various conditions—weather,
nitrogen fertilization, and their interactions—in both years, as shown in Figure 13.
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5% = 0.11; LSD 1% = 0.15; LSD 0.1% = 0.21; LSD 5% = 0.04; LSD 1% = 0.06; LSD 0.1% = 0.08.

As Yang et al. [90], noted, an increase in the mean value of VPD is linearly associated
with a decrease in the mean value of Evap., a trend also evident in Figure 13. In 2019, Taisa
exhibited the lowest mean Evap. rate (1.65 mmol m−2 s−1), while Granny had the highest
average (1.96 mmol m−2 s−1). The subsequent year saw markedly lower mean Evap. rates,
ranging from 0.79 mmol m−2 s−1 (Pădureni) to 0.92 mmol m−2 s−1 (Lennox), attributed to
both elevated temperatures and specific humidity conditions. These readings, taken after
a biweekly period of significant rainfall, resulted in wet conditions that led to stomatal
closure [70,71] thereby increasing VPD and substantially reducing Evap., as depicted in
Figure 13.

3.4. The Correlations Established between the Studied Parameters in Spring Wheat

The correlation coefficient between grain GY and TW, valued at r = 0.617, signifies a
strong, positive relationship, suggesting that spring wheat genotypes with larger grains
tend to yield higher. Conversely, Ruske et al. [86] reported a negative correlation be-
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tween yield and TW, implying that lower test weight could be associated with reduced
kernel filling.

Despite the lack of a proportional relationship between leaf surface area and evapo-
transpiration, it’s evident that larger leaf surfaces correlate with higher Evap. rates [94].
This strong, positive association between evapotranspiration and leaf surface has been
recognized since 1974, notably for Gossypium barbadense L. and Dolichos lablab L [73]. Inter-
estingly, genotypes characterized by wide, well-developed leaves tend to produce lower
yields, as indicated by a correlation coefficient (r) of −0.702. Such genotypes, with expan-
sive leaf apparatuses, are typically later maturing, leading to suboptimal grain filling, a
relationship underscored by a Pearson correlation coefficient of r = −0.548. However, these
genotypes play a significant role in the assimilation of protein in grains, as demonstrated
by a correlation coefficient (r) of 0.538.

Among the physiological parameters studied—T leaf, VPD, and Evap.—tight rela-
tionships were established (Table 4), illustrating their coordinated influence on optimizing
plant functions. Pearson correlation coefficients provide insight into the intricate ways
these factors interact [95].

Table 4. The established correlations between yield, quality, and some physiological indices in
spring wheat.

GY P TKW TW FLA T leaf VPD Evap

GY 1
P −0.133 1

TKW 0.046 0.160 1
TW 0.617 0.048 −0.125 1
FLA −0.702 0.538 −0.127 −0.548 1

T leaf −0.004 0.057 0.443 −0.122 −0.182 1
VPD −0.173 0.138 0.167 −0.120 −0.054 0.860 1
Evap 0.210 −0.521 −0.166 0.149 −0.198 −0.679 −0.858 1

GY = grain yield; P = protein content; TKW = thousand kernel weight; TW = test weight; FLA = flag leaf area;
T leaf = temperature of flag leaf; VPD = vapor pressure deficit; Evap = evapotranspiration. α 5% = 0.400 ;

α 1% = 0.468 ; α 0.1% = 0.590 .

4. Conclusions

Weather conditions and fertilization systems influenced the studied genotypes in distinct
ways, yet they did not significantly alter the average yields across the two experimental years.

The biplot analysis reveals that the Triso, Lennox, and Taisa genotypes produced high
yields with the application of N108P92 a.s. This suggests that utilizing a higher dose of N is
not justified. Conversely, the Ciprian and Granny genotypes showed only a weak response
to the highest tested nitrogen dose of N140 a.s. kg ha−1.

Biplot analysis indicates that the Triso and Lennox genotypes exhibit a lack of sensitiv-
ity to environmental interactions, consistently achieving the highest yields in both years
of the study. The interaction between genotype and climate significantly influences how
genotypes respond, resulting in Ciprian and Taisa producing higher yields in the 2019
conditions, whereas Granny and Pădureni performed better in 2020. Pădureni and Taisa
yielded the lowest in both years.

Protein content saw increases of up to 23% under fertilization with N140 a.s. kg ha−1,
with the Pădureni, Ciprian, and Taisa genotypes experiencing the most notable enhancements.

Fertilization and weather conditions positively affected the TW in the Lennox and
Triso genotypes, while the Taisa genotype experienced a negative impact. These changes in
TW are directly reflected in the yield outcomes for these genotypes.

In genotypes characterized by large FLA, increased evapotranspiration contributes to
a reduction in T leaf, which in turn lowers VPD.
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