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Abstract: Plant height is regarded as a key indicator that is crucial for assessing the crop growth status
and predicting yield. In this study, an advanced method based on solid-state LiDAR technology is
proposed, which is specifically designed to accurately capture the phenotypic characteristics of plant
height during the maize growth cycle. By segmenting the scanned point cloud of maize, detailed
point cloud data of a single maize plant were successfully extracted, from which stem information was
accurately measured to obtain accurate plant height information. In this study, we will concentrate on
the analysis of individual maize plants. Leveraging the advantages of solid-state LiDAR technology
in precisely capturing phenotypic information, the data processing approach for individual maize
plants, as compared to an entire maize community, will better restore the maize’s original growth
patterns. This will enable the acquisition of more accurate maize plant height information and more
clearly demonstrate the potential of solid-state LiDAR in capturing detailed phenotypic information. To
enhance the universality of the research findings, this study meticulously selected key growth stages of
maize for data validation and comparison, encompassing the tasseling, silking, and maturity phases.
At these crucial stages, 20 maize plants at the tasseling stage, 40 at the flowering stage, and 40 at the
maturity stage were randomly selected, totaling 100 samples for analysis. Each sample not only included
actual measurement values but also included plant height information extracted using point cloud
technology. The observation period was set from 20 June to 20 September 2021. This period encompasses
the three key growth stages of maize described above, and each growth stage included one round
of data collection, with three rounds of data collection each, each spaced about a week apart, for a
total of nine data collections. To ensure the accuracy and reliability of the data, all collections were
performed at noon when the natural wind speed was controlled within the range of 0 to 1.5 m/s and the
weather was clear. The findings demonstrate that the root mean square error (RMSE) of the maize plant
height data, procured through LiDAR technology, stands at 1.27 cm, the mean absolute percentage error
(MAPE) hovers around 0.77%, and the peak R2 value attained is 0.99. These metrics collectively attest to
the method’s ongoing high efficiency and precision in capturing the plant height information. In the
comparative study of different stem growth stages, especially at the maturity stage, the MAPE of the
plant height was reduced to 0.57%, which is a significant improvement compared to the performance at
the nodulation and sprouting stage. These results effectively demonstrate that the maize phenotypic
information extraction method based on solid-state LiDAR technology is not only highly accurate and
effective but is also effective on individual plants, which provides a reliable reference for applying the
technique to a wider range of plant populations and extending it to the whole farmland.

Keywords: iterative closest point; maize; plant height; point cloud; solid-state LiDAR; supervoxel
clustering algorithm
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1. Introduction

In the foreseeable future, the continuous growth of the population and the decrease
in the per capita arable land area are expected to further increase the demand for food [1].
Moreover, the frequent occurrence of natural disasters, such as pests, floods, and droughts,
poses a severe challenge to global food security [1]. As one of the three major staple
crops worldwide, maize [2] plays a crucial role in this. Enhancing maize yield is not only
essential for meeting the growing demand for food [3] but is also a key measure to ensuring
food security [4]. Against this backdrop, breeding high-yield maize varieties becomes an
important strategy to address the global food crisis [5,6]. Additionally, the detection and
analysis of crop phenotypes are of significant importance for increasing maize yields [7].
Maize phenotypic information encompasses a massive number of growth parameters.
Among them, the maize plant height is used to monitor the growth status of maize. It
provides important indications of the growth, light use efficiency, and carbon stocks in
agroecosystems [8]. Therefore, extracting the plant height phenotype is necessary to select
dwarf maize with more kernels for improving maize yield and plays a major role in crop
growth monitoring and yield estimation [9].

The traditional method of detecting maize height is usually manual, which has many
disadvantages, including not only its high cost, low efficiency [10], and error-proneness
but also its smaller scale, lower precision, and the damage it causes to crops. Therefore,
detecting and studying mass maize phenotypes is currently in a bottleneck period. The
development of sensor technology and image processing algorithms [11] has made it
possible to obtain and analyze maize phenotypes in recent years [12–14]. Three-dimensional
measuring devices [15] like 3D cameras [16], photogrammetric methods [17], or laser
scanners [18] provide a non-contact and non-destructive 3D measurement method [19].
Niu et al. [20] used remote sensing images combined with ground control points (GCPs)
to produce a high-precision digital surface model (DSM). The canopy heights of maize
breeding material at each growth stage were obtained by calculating the difference in the
DSM between different growth stages and verifying the precision. Hu et al. [21] estimated
sorghum height using an unmanned aerial vehicle (UAV) equipped with a digital camera
based on high-throughput phenotypic analysis. Zhu et al. [22] provided a method that
extracted a maize plant point cloud skeleton from the Laplace algorithm to segment a
variety of phenotypes. Qiu et al. [23] came up with a technique that quickly measures the
maize stem diameter in fields based on an RGB-D camera.

From the above research results, the main methods that measure maize plant pheno-
types are based on visible images [24], which costs less. However, only highly resolved and
accurate 3D point clouds enable a valid description of the geometry of plant organs [25].
But the data quality of 3D cameras is susceptible to varying illumination, especially for
some tall maize plants with large densities. The accuracy of maize phenotypic acquisition
is comparatively low. Li et al. [26] introduced a technique for 3D reconstruction and phe-
notypic measurement of maize seedlings, based on a series of multi-view images. While
this approach facilitates high-precision 3D reconstruction and phenotypic measurements
of maize, it harbors a limitation: the implementation of this technique necessitates the
construction of a dedicated photography platform, a constraint that renders large-scale
data collection and 3D reconstruction onsite inconvenient.

Light Detection and Ranging is one of the 3D scanning technologies that could gen-
erate point clouds directly by scanning. Laser scanning results in huge point clouds with
more than one hundred thousand data points for a whole plant or ten to thirty thousand
points per plant organ [16], and it has the advantages of high-precision and strong dis-
turbance resistance. This technique has been used in various studies for plant analysis
widely [27], but Light Detection and Ranging is still rarely used in detecting crop pheno-
types. Jin et al. [28] proposed an advanced technique for maize stalk and leaf segmentation
and phenotypic trait extraction using ground-based LiDAR data. This technique focuses on
the 3D modeling of maize plants and the automated decomposition of their 3D structures
for stem and leaf segmentation. Although the study demonstrated its proof of concept,
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there is still the challenge of extracting maize stems and the in-depth analysis of their 3D
phenotypic data.

This study utilized ground-based LiDAR technology to collect and reconstruct the
point cloud data of maize in a field. This process encompassed complex post-processing
steps such as the filtering, registration, and segmentation of point cloud data. By accurately
extracting and measuring the maize stem, the phenotypic height data of the maize were
obtained, and these data were then cross-verified with field measurement results. The
results show that LiDAR measurements exhibit high accuracy and consistency at different
stages of maize plant growth, with excellent accuracy and near-perfect coefficients of de-
termination throughout the growth cycle. This highly efficient plant height measurement
technology not only enhances the precision of data extraction but also offers novel avenues
for the automated collection and management of plant phenotypic data. This technique is
crucial for monitoring crop growth, the early identification of anomalies, the adjustment of
management strategies, the optimization of resource utilization, the control of pests and
diseases, and accurate yield prediction [29]. Simultaneously, it facilitates research into ge-
netic and environmental interactions, accelerates breeding processes, and makes significant
contributions to the fields of agricultural production and plant phenotypic analysis.

2. Materials and Methods
2.1. Data Acquisition
2.1.1. Point Cloud Data Acquisition

In this paper, the experimental site was the experimental base of South China Agricul-
tural University in Zengcheng District, Guangzhou, Guangdong Province (113◦38′38′′ E,
23◦14′34′′ N). As shown in Figure 1, the rectangular experimental field was composed of
112 rows and 30 columns of maize plants. The maize row spacing was 1.1 m, and the plant
spacing was 0.40 m. The research object was the maize with a growth cycle from 20 June to
2 September 2021.

Livox-mid 40 LiDAR (Livox Company, Shenzhen, China) collected maize point cloud
information. Its main parameters are shown in Table 1. The Livox Mid-40 LiDAR uses non-
repetitive scanning and a solid-state structure, with increased integration time, enhancing
the probability of detecting objects and details within the FOV [30] (Figure 2).

Table 1. Main parameters of Livox-mid 40 LiDAR.

Parameters Values

Laser Wavelength 905 nm
FOV 38.4◦ Circular

Range Precision (1σ@20 m) 2 cm
Angular Accuracy <0.1◦

Point Rate 100,000 points/s
Weight Approx. 710 g

Size 88 × 69 × 76 mm

The scheme of scanning the maize is shown in Figure 3, and the point clouds were
collected by the Livox-mid 40 LiDAR. A coordinate system was created with the origin that
was the LiDAR position, and the y-axis that was the LiDAR orientation. The LiDAR was set flat
on the tripod, which made filtering easy. Because detected plants would be blocked by objects
in front of them (Figure 3B), this study adopted a method to avoid collecting point clouds that
were not complete. Within the designated maize sampling field, three data collection points
were determined and arranged according to the collection strategy. Each point was located
approximately 2.5 m from the edge of the field, forming a 30-degree angle with each other.
Sequentially, point cloud data were collected from points 1 to 3. By aggregating the point
cloud data obtained from different perspectives and integrating information from multiple
advantageous positions, this study successfully reconstructed the 3D point cloud model of the
maize plants, thereby obtaining a comprehensive point cloud model of the maize vegetation.
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Figure 1. The location and field image of the study site. The two images on the left denote that the 
experimental site for this study is located at the South China Agricultural University Experimental 
Base in Zengcheng District, Guangzhou City, Guangdong Province, China (113°38′38′′ E, 23°14′34′′ 
N). The subfigure on the right shows a top view of the data collection test field, where the main part 
marked by the red box line is the corn planting area. 

 
Figure 2. Schematic of LiDAR scanning method: (a) illustrates the point cloud effect of corn gener-
ated by a single-frame LiDAR scan; (b) depicts the point cloud detection range of a single-frame 
LiDAR scan; (c) shows the point cloud effect of corn synthesized from continuous multi-frame Li-
DAR scans; (d) presents the point cloud detection range of continuous multi-frame LiDAR scans. 

The scheme of scanning the maize is shown in Figure 3, and the point clouds were 
collected by the Livox-mid 40 LiDAR. A coordinate system was created with the origin 

Figure 1. The location and field image of the study site. The two images on the left denote that the ex-
perimental site for this study is located at the South China Agricultural University Experimental Base
in Zengcheng District, Guangzhou City, Guangdong Province, China (113◦38′38′ ′ E, 23◦14′34′ ′ N).
The subfigure on the right shows a top view of the data collection test field, where the main part
marked by the red box line is the corn planting area.
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Figure 2. Schematic of LiDAR scanning method: (a) illustrates the point cloud effect of corn generated
by a single-frame LiDAR scan; (b) depicts the point cloud detection range of a single-frame LiDAR
scan; (c) shows the point cloud effect of corn synthesized from continuous multi-frame LiDAR scans;
(d) presents the point cloud detection range of continuous multi-frame LiDAR scans.
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adopted to measure maize plant height at different growth periods. 

As depicted in Figure 4, since the stems, branches, and leaves of maize during the 
tasseling stage are not fully developed yet, the measurement of plant height is taken from 
the ground base to the new leaves at the top of the stem [31]. By the time maize plants 
reach the flowering and maturity stages, they have completed the tasseling process. Con-
sequently, the height of maize plants is measured from the ground base to the top of the 
canopy. In this study, for maize plants at the tasseling stage, 20 were randomly selected 
as the initial control group, with the aim of measuring their height [32]. For maize plants 
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control group. Additionally, 40 plants at the maturity stage were also randomly selected, 
forming the third control group, bringing the total sample size to 100 plants. To minimize 

Figure 3. (A) shows a maize plant point cloud data collection in a field using a Livox Mid-40 LiDAR.
(B) displays date collection: point (a), point (b), and point (c) are the LiDAR’s placements, point
(d) is the targeted maize area for collection, and point (e) represents the non-targeted maize zones.
(C) displays working conditions: point (f) is the LiDAR, point (g) is the tripod, point (h) is the ground,
point (i) is the LiDAR’s scanning range, point (j) is the laser-accessible maize zone, point (k) is the
non-scannable maize area, and point (l) is the laser’s trajectory.

2.1.2. Standardization of Maize Plant Height Measurement

In this paper, the height information of maize plants in the sampling field was collected
and verified by manual measurement. Different measurement standards were adopted to
measure maize plant height at different growth periods.

As depicted in Figure 4, since the stems, branches, and leaves of maize during the
tasseling stage are not fully developed yet, the measurement of plant height is taken
from the ground base to the new leaves at the top of the stem [31]. By the time maize
plants reach the flowering and maturity stages, they have completed the tasseling process.
Consequently, the height of maize plants is measured from the ground base to the top of
the canopy. In this study, for maize plants at the tasseling stage, 20 were randomly selected
as the initial control group, with the aim of measuring their height [32]. For maize plants
at the grain flowering stage, another 40 were randomly chosen, constituting the second
control group. Additionally, 40 plants at the maturity stage were also randomly selected,
forming the third control group, bringing the total sample size to 100 plants. To minimize
measurement errors, the height of the same maize plant is measured three times, and an
average value is computed to determine the plant height.
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Figure 4. The measurement standard of different growth maize height by manual. (A) The standard
for manually measuring the height of maize at the jointing stage. (B) The standard for manually
measuring the height of maize during the flowering and grain filling stage and at maturity.

2.1.3. The Method of Extracting Multi-Phenotypic Maize Plant Height Information Using
Solid-State LiDAR

This study proposes a method for extracting multitemporal maize plant height in-
formation in the field using solid-state LiDAR, and verifies its effectiveness. The basic
idea is shown in Figure 5. First, variations in the accuracy of plant height measurements
were explored for maize at three phenological stages: staminate, flowering, and maturity,
followed by the development of standards for measuring maize plant height for data
processing and statistics. LiDAR was utilized for multi-angle continuous scanning of maize
plant communities to achieve high-precision data collection. The processing included
three steps: point cloud filtering, point cloud alignment, and plant segmentation. The
point cloud filtering stage utilized the passthrough filter algorithm and statistical outlier
removal filtering algorithm to purify the point cloud data. The Iterative Closest Point
(ICP) [33] algorithm was used in the point cloud alignment stage to realize the point cloud
alignment of the maize plants, while the plant segmentation stage utilizes the supervoxel
clustering algorithm to realize the segmentation of the plants. The next step was to mea-
sure the height of the maize point cloud plants. First, stem preprocessing was performed
by the least squares and Z-axis fitting methods, and then the segmentation of the corn
stems was realized. Then, the Euclidean distance formula was utilized for measurement
and calculation.

In terms of evaluation metrics, eight metrics, namely, recognition rate (R), the mean
absolute percentage error (MAPE), the root mean square error (RMSE), the rate of the true
stem (TSR), the rate of the true leaf (TLR), stem predictive values (SPV), leaf predictive
values (LPV), and the closeness between a given set of measurements (TS and TL) and
their true values (ACC), respectively, were used to evaluate the feasibility of the proposed
method. The results were analyzed to verify the feasibility of multitemporal maize plant
height information extraction in the field using solid-state LiDAR in terms of three aspects:
comparison before and after filtering, plant segmentation and identification, and plant
height phenotypic parameter extraction. The results were analyzed to verify the feasibility
of multitemporal maize plant height information extraction in the field using solid-state
LiDAR in three aspects: comparison before and after filtering, plant segmentation and
identification, and extraction of plant height phenotypic parameters.
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Figure 5. This is a technology roadmap for extracting multi-phenotypic maize plant height informa-
tion using solid-state LiDAR. Several key terms are used in the diagram. ICP stands for Iterative
Closest Point; MAPE refers to mean absolute percentage error; and RMSE represents the root mean
square error. TSR and TLR denote the rate of the true stem and the rate of the true leaf, respectively.
SPV and LPV correspond to the stem predictive values and leaf predictive values, respectively. Finally,
ACC is used to measure the closeness between a given set of measurements (TS and TL) and their
true values.
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2.2. Data Processing
2.2.1. Filtering Point Cloud

The field environment was complex. Therefore, there was a lot of point cloud noise
and complex background that were non-target area point information in the collected
point cloud data. It is necessary to filter out invalid pointsets from the input data, such
as ground, weeds, and point cloud noise. The maximum acquisition distance of LiDAR
could reach about 200 m, far beyond the effective acquisition range of maize plants and
the range of target fields. The point cloud information beyond the target area was filtered
preliminarily by using the passthrough filtering algorithm. This study, by integrating noise
filtering and statistical contour removal algorithms, allows for a more precise depiction of
the point cloud model contours of maize plants. This approach enhances the preservation
of the point cloud model’s integrity. It also simplifies the process of point cloud registration.
Moreover, it substantially lowers the incidence of registration errors. This research primarily
employs the Point Cloud Library (PCL) [34] and the C++ language to realize this point
cloud processing workflow.

The passthrough filter algorithm was used to filter along the specified dimension of
the point cloud and retained the point cloud data within the specified range [35]. The point
cloud was composed of points with 3D coordinate information. The point cloud of any
dimension can be filtered by setting the threshold. In this experiment, the point cloud data
was obtained by LiDAR scanning that included a large number of invalid point clouds, the
point cloud of the blocked part of maize plants, and maize plant point clouds that could
not be completely collected. Through passthrough filtering, the point cloud was roughly
filtered to reduce the operation time of statistical outlier removal filtering. At the same
time, it could improve the accuracy of registration and reduce the registration time. Since
the acquisition point that we set was located 2.5 m in front of the target point cloud, the
y-direction passthrough filtering could be carried out on the Y-axis of the point cloud data
when the coordinate was larger than the range of the target point cloud. Similarly, the same
processing method was adopted for the non-target areas in the X and Z axes.

The statistical outlier removal filtering algorithm was employed to enhance the quality
of point cloud data. This algorithm addressed the removal of outliers in sparse point clouds
by evaluating the distance distribution from each point cloud to its neighboring clouds
within the input dataset [36]. The assumption was made that all resulting distributions
followed Gaussian distributions, characterized by their mean and standard deviation.

When scanning maize plants with LiDAR to obtain point cloud data, multiple factors
can affect the quality and accuracy of the data [27]. Firstly, the displacement of maize
plants over time, as well as under the influence of wind, can result in uneven density in
the collected point cloud data. Specifically, due to varying collection distances at the test
points, the point cloud density of the maize plants changes significantly, and environmental
factors like wind introduce sparse outliers into the data. This is particularly evident on
the maize leaves and branches, which are more prone to displacement relative to the stem,
thus generating more outliers in consecutive short-frame scans [37].

These outliers and noise not only increase the difficulty of data processing but can also
lead to the failure of point cloud information registration, affecting the accurate calculation
of surface normals and curvature, and consequently reducing the measurement precision
of features such as maize plant height.

To address this issue, a statistical outlier removal [38] filtering algorithm is employed,
which conducts a statistical analysis of the neighborhood of each point, in order to enhance
the smoothness and uniformity of the point cloud data, thereby removing outliers from the
point cloud.

The specific calculation process is as follows:

mdi =
1
K

K

∑
k=1

√
dk (1)
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µ =
∑N

i=1 mdi

N
, (2)

σ2 =
∑N

i=1
(
mdi)

2 − (∑N
i=1 mdi)

2

N
N − 1

, (3)

th = µ + stdmul ·σ, (4)

First, the average moving distance of each point mdi is calculated, as shown in
Formula (1). Then, the global average value µ and variance σ2 of all points’ mdi val-
ues are calculated, given by Formulas (2) and (3), respectively. Finally, a threshold th is
set, as shown in Formula (4), to determine which points should be considered outliers
and removed. This threshold is calculated by multiplying the standard deviation σ by a
coefficient stdmul and adding it to the average value µ. Points in the point cloud whose
average moving distance exceeds this threshold will be marked as outliers and removed
from the dataset.

In this study, for the point cloud of maize leaf and stem sparsity values, the neigh-
borhood number is set to 50, and the standard deviation multiplier stdmul is set to 1. This
means that points whose standard deviation of the average distance from the query point
exceeds 1 will be identified as outliers and eliminated. By denoising through statistical
methods, the normal vectors of each organ in the maize plant point cloud become more
consistent, aiding in feature extraction and improving the accuracy of stem segmentation
and plant height measurement, thereby enhancing the efficiency and reliability of point
cloud processing.

2.2.2. Point Cloud Registration

The single point clouds of maize plants could be obtained through point cloud seg-
mentation, but the segmented point clouds of maize were incomplete, especially the point
clouds on the side far away from the LiDAR [39]. Moreover, due to the mutual shielding
of maize plants and multiple folding of maize leaves, both the acquisition accuracy of
the 3D position and the scanning effect of the maize plant point clouds [40,41] would be
affected. According to the acquisition scheme described in this paper, the 3D point clouds
information of the target maize plant was obtained from three different angles, and then
the point cloud information of the target plant was registered to obtain the complete maize
point cloud.

Point cloud registration was the process of aligning various 3D point cloud data views
into a complete model, finding the relative position and direction of the separately obtained
view in the global coordinate framework, and perfectly overlapping areas intersected by
other point clouds. The common algorithm for registration was the ICP algorithm, and its
principle is expressed as follows:

In the overlapping area of the two groups of point clouds data to be matched, two-
point sets are selected to represent the source point set and the target point set, where
P = {pi|pi ∈ R3, i = 1, 2, ····n} is the source set, Q =

{
qj
∣∣qj ∈ R3, j = 1, 2, ····m

}
is the

target set, and m and n represented the scale of the two-point sets, respectively. The
rotation and the translation matrix are identified as R and t. So, the question of solving the
optimal transformation matrix can be transformed into finding the optimal solution (R, t)
satisfying min R, t.

R∗, t∗ = argR,tmin
n

∑
i=1

∣∣∣|(Rpi + t)− qi|
∣∣∣2, (5)

where pi represents the corresponding points of the source point cloud to be registered, qi
represents the points of the target point cloud; n is the number of points of point clouds to
be registered; R, t are the rotation matrix and the translation matrix of registration; R*, t*

are the optimal solutions of R and t to be solved.
In Figure 6, Figure 6A shows the source point cloud of a single maize plant to be

aligned, and Figure 6B shows the reference point cloud of a single maize plant. First, the
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point set pi was extracted from the target maize point P, piϵP. The corresponding point
set qi is found in Figure 6A, qiϵQ. The rotation matrix R and the translation matrix t were
calculated to minimize the error function. The point set P was rotated and translated
to obtain a new corresponding point set p′i. The average distance between p′i and the
corresponding point set qi was calculated. It was set as d = 1

n ∑n
i=1

∣∣∣∣p′i − qi
∣∣∣∣2 when d was

less than a given threshold or greater than the preset maximum number of iterations, and
the iterative calculation was terminated. Otherwise, the optimal calculation was returned
until the convergence condition was met. After convergence, the complete maize point
clouds model was obtained, as shown in Figure 6C.
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Figure 6. Schematic diagram of ICP registration process. (A) Source point cloud of a single maize
plant to be aligned; (B) reference point cloud of single maize; (C) the result after registration between
source point cloud and reference point cloud.

2.2.3. Plant Segmentation

To measure the plant height of a single maize plant, it was necessary to segment the
filtered plant point clouds to extract a single maize plant [39]. The interference of field weeds
and ground bulge make it difficult to segment plant point clouds accurately. Moreover,
due to the distortion phenomenon of point clouds when LiDAR collected the point cloud
data, it was impossible to obtain an accurate maize point cloud model. Especially in a
windy state, the distortion of the maize point clouds was obvious, which made it difficult to
extract their skeletons from the maize point clouds. To accurately segment the single maize
point clouds, we used the supervoxel clustering algorithm [42] and Euclidean clustering
algorithm to segment the maize point clouds.

During segmentation, it was necessary to search the adjacent points to deal with the
point clouds composed of multiple spatial isolation areas. The cluster included a single
maize plant point cloud, and the scanned data were both large and dense. Therefore, this
resulted in the lack of a large number of point clouds to be searched, a large search volume,
and a long search time. As a result of the supervoxel clustering algorithm, points in the
point clouds were clustered and segmented as nodes, thus reducing the size of the point
cloud, reducing the time it took to search, improving segmentation accuracy, and effectively
segmenting a single maize skeleton [43].

The supervoxel clustering segmentation algorithm deleted isolated point clouds in
the process of generating point cloud voxels. After finding the skeleton of the maize point
clouds through the clustering results of supervoxels, the adjacent point cloud was queried
by the Euclidean algorithm and segmented by the clustering method to obtain a single
maize point cloud.
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By employing Euclidean distance vectors to cluster feature points within a Euclidean
cloud, each Euclidean distance vector primarily comprises a set of associated feature
points [44]. Based on the voxel eigenvalues of point clouds obtained by supervoxel cluster-
ing segmentation, the threshold judgment segment of voxel eigenvalues of adjacent point
clouds in space was divided into the same point cloud set. Finally, it was inferred that all
point cloud voxels were used to segment the point clouds of a single maize plant.

2.3. Measurements of Point Cloud Plant Height

After obtaining the complete maize single plant model from the above steps, the maize
plant was divided to obtain the maize plant height value.

2.3.1. Stem Segmentation

As maize stalks resemble cylindrical bodies in shape, accurate extraction of the main
structure of maize stalks can be achieved by fitting a cylindrical model to the point cloud
data of the maize plants. To construct a maize stalk model, a cylindrical model is required
to precisely segment the point cloud data. During the data acquisition phase, the precise
positioning of the LiDAR sensor ensures that its scanning plane is perpendicular to the
maize plants, aligning the growth axis of the stalks with the Z-axis of data collection [45].
This alignment facilitates cylindrical fitting along the Z-axis, which significantly improves
segmentation efficiency, reduces computation time, and substantially lowers the likelihood
of segmentation errors.

In the preprocessing phase of constructing the maize stalk model, specific steps are
needed to process the point cloud data to enhance the accuracy and efficiency of the model.
The detailed computational steps are as follows:

→
v =

(
vx, vy, vz

)
, (6)

→
p0 =

(
x0, y0, z0

)
(7)

→
ni = LS({pi1, pi2, . . . , piK}), (8)

di = ||(→pi −
→
p0)− (

(→
pi −

→
p0

)
·→v

||→v ||2
)
→
v ||, (9)

Let p0 be a reference point on the axis of a cylinder, and v be the directional vector of
that axis. Through the least squares method, the nearest neighbor point set ni, aligned with
the cylinder’s normal vector, is selected from the point cloud, as defined in Equation (8).
Subsequently, for randomly selected sample points pk, their distance di to the cylinder’s axis
is calculated, following Equation (9). This process is executed through multiple iterations,
aiming to find an optimal cylindrical model fit, ensuring that the chosen sample point set
accurately represents the geometric characteristics of the cylinder. In this study, the growth
direction of a maize plant was defined as the Z-axis in a cylindrical coordinate system [42].

In this study, the measurement of maize plant height using this method does not
exclude the maize canopy. This is because the canopy is consistent with the stalk in the
vertical direction Z − axis, and therefore, canopy information is also taken into account
during the data segmentation and fitting process. This means that the measured plant
height is a comprehensive value, including the entire vertical distance from the base of
the plant to the top of the canopy. This integrated measurement approach enhances the
accuracy of the stalk point cloud model extraction, and is particularly applicable to maize
stalks during flowering and maturity phases, as their shape is more cylindrical.

When fitting point clouds of maize stalks during flowering and maturity stages, since
their shape is closer to a perfect cylinder, it is necessary to adjust the normal threshold
during the optimization of the segmentation process, while also considering the different
spatial distributions of leaves and branches at various growth stages of the maize plants.
Setting the threshold too high may lead to inaccurate segmentation, while setting it too
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low could affect the precise fitting of the ears and other parts of the plant, resulting in
suboptimal segmentation outcomes. Considering that the spatial distribution of leaves and
branches of maize plants during the elongation stage is relatively sparse, appropriately
increasing the range of the segmentation normal threshold becomes a key step in improving
the accuracy of the cylindrical fit.

2.3.2. Measurement and Calculation

After cylindrical fitting the single plant model of maize plant point clouds, the stem
model was composed of point clouds and could be expressed by 3D coordinates. Then,
the maize plant height was calculated by the Euler distance formula. The Euler distance
formula was as follows:

D =
2
√
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2. (10)

In this study, the height of a maize plant is defined as the Euclidean distance D
between two points: the lowest point with coordinates (x1, y1, z1) and the highest point
with coordinates (x2, y2, z2). This method involves traversing through all the point cloud
coordinates of the stem and calculating the distances between all points to accurately
measure the height of the maize. According to the definition described in Section 2.1.2, the
ground reference is identified as the stem’s lowest point. In maize, during the tasseling
phase, the apex of the stem is considered the highest point of the stem model; for maize
in the flowering and maturing phases, the top of the maize canopy is recognized as the
highest point of the stem model.

2.4. Assessment Indication

In this paper, the segmentation success rate R is used to represent the segmentation
effect of a single maize plant. The segmentation success rate is expressed as the ratio of the
number of successful segmentations to the actual number of maize plants. The calculation
formula of recognition rate R is as follows:

R =
n
m

, (11)

where n is the number of successful recognitions, and m is the total number of recognitions.
This paper evaluated the recognition effect of the segmented point clouds of maize

stems and branches and leaves, which was statistically analyzed through the confusion
matrix. The recognition effect before and after filtering were compared. The recognition
effects of different parts of maize plants were evaluated in terms of accuracy. The calculation
formula is as follows:

TSR =
TS

TS + FL
, (12)

TLR =
TL

TL + FS
, (13)

SPV =
TS

TS + FS
, (14)

LPV =
TL

TL + FL
, (15)

ACC =
TS + TL

TS + TL + FS + FL
, (16)

where TSR is the rate of the true stem, and TLR is the rate of the true leaf. They described
the accuracy of a test that reported the presence or absence of the condition. Individuals
that met the condition were considered stems or leaves. SPV and LPV are stem and leaf
predictive values, respectively, which were the proportions of true stems and true leaves
in the predicted results of statistics and diagnostic tests. TS is the value of the true stem
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condition; FS is the value of the false stem condition; TL is the value of the true leaf
condition; FL is the value of the false leaf condition; ACC is the proximity between a given
set of measured values (TS and TL) and their true values. In other words, it is the proportion
of correct classifications among all categories [46].

In addition, the mean absolute percentage error (MAPE) and root mean square error
(RMSE) are both used as indexes to evaluate the calculation accuracy of plant height. The
calculation formula is as follows:

MAPE =
1
n

n

∑
i=1

∣∣xj − xs
∣∣

xs
× 100%, (17)

RMSE =

√
1
n

n

∑
i=1

(
xj − xs

)2, (18)

where n is the number of samples; xj is the extracted value; and xs is the manual measure-
ment value.

3. Results
3.1. Comparison before and after Filtering

In the process of point cloud registration, the existence of noise point clouds increased
the number of local features. The registration difficulty rose and the accuracy decreased as
the local features and vectors became more complex, thereby impacting the registration
effect. Point cloud filtering removed a large amount of redundant point cloud information,
reduced the amount of data in the point cloud, and simplified local features. At the same
time, it effectively improved the registration efficiency of the point clouds.

Figure 7 showed the comparison of the viewpoint feature histogram before and after
filtering. It could be seen that the number of viewpoint direction components and the
number of Fast Point Feature Histogram (FPFH) [47] surface shapes decreased by about 20%
after filtering, which reduced the complexity of registration feature extraction and helped to
improve the accuracy of point cloud registration. From the maize plant point clouds filtered
by the statistical value, there were fewer nodes in the whole area. Moreover, compared with
the point clouds without filtering, the average number of skeleton supervoxels extracted
before filtering was 5839. The average number of skeleton supervoxels removed after
filtering was 4646, indicating that the statistical value filtering effectively reduced the
number of point clouds by about 11%. It mainly reduced the redundant nodes generated
from the redundant noise and effectively reduced the phenomenon of wrong segmentation
when extracting the skeletons.

3.2. Plant Segmentation and Recognition

The same point cloud image was tested before and after filtering, which was used for
the segmentation of single plants and the identification of the stems and leaves. The test
results are shown in Figure 8.

It can be seen from the confusion matrix that there were actually 25 maize plants in
the point cloud sample, and 21 maize plants were segmented before filtering. Among them,
five samples were identified incorrectly in the stem and branch identification test. After
filtering, a total of 23 maize plants were segmented. In the identification test of the stems
and branches, two samples were misidentified, and both of them identified the point clouds
of the branches and leaves as the point clouds of the stems.

Regarding the success segmentation rate of a single maize plant before and after
filtering, the success segmentation rate after filtering increased significantly from 64.00%
to 84.00%. This improvement was attributed to the reduction in the clutter in the single
maize plants. The application of contour and skeleton extraction techniques on the maize
proved beneficial. Given that the primary objective of this study was to extract height
information from maize plants, the segmentation of the maize organs was focused mainly
on two components: the stems (including the ears) and the branches. The segmentation
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process of a single plant’s point cloud primarily involved fitting the stem to identify its
branches and leaves. Given that the data for the stems and leaves in the sample were
balanced, successful identification also suggested a balanced distribution of branches and
leaves. Consequently, the recall rate for the stem was equivalent to the precision rate for
the branches and leaves, and vice versa.
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As demonstrated in Table 2, after the application of filtering, the recall rate for stem
identification increased from 88.89% to 100%, and the recall rate for the branches and leaves
improved from 84.21% to 91.30%. The recognition rates for the stem and the branches
and leaves, increased from 84.21% to 91.30%, and from 88.89% to 100%, respectively.
Additionally, the overall recognition accuracy improved from 86.55% to 95.65%. The data
revealed that the recall rate for the branches and leaves was lower than that for the stems.
This discrepancy arose because the branches and leaves within the maize point clouds were
frequently misidentified as stems. The occlusion between maize plants led to less distinct
characteristics of the branches and leaves, and the continuity of the stem’s point clouds
was poor. In the process of fitting the stems, branches and leaves were mistakenly regarded
as part of the stem due to the failure to preserve their overall extension characteristics. This
resulted in segmented stem point clouds that included the branch and leaf point clouds.

Table 2. Comparison table of stem and leaf identification results based on point cloud before and
after filtering.

Stem
Recall Rate

Leaf
Recall Rate

Precision of
Stem

Precision of
Leaf Accuracy Segmentation

Successful Rate

Before 88.89% 84.21% 84.21% 88.89% 86.55% 64.00%
After 100% 91.30% 91.30% 100% 95.65% 84.00%

However, after filtering, the contours of the branch and leaf point clouds became
relatively clearer, and the number of adjacent points was significantly reduced. This led to
a notable improvement in the recall rate, precision rate, and accuracy rate.

From the visualization results of stem recognition and segmentation in Figure 9, it
could be seen that the supervoxel clustering segmentation and the Euclidean clustering
performed better in segmenting a single plant. Figure 9A,B showed the segmentation
effect of an incomplete point cloud model on maize plant stems due to occlusion. Due to
the incompleteness of the stalk point cloud with missing parts in the center, adopting a
cylindrical fitting method can improve the accuracy of estimating the stalk shape. Moreover,
given the effectiveness of point clouds in segmenting the upper and lower parts of the
maize stalk, this method is of significant importance for the precise measurement of the
maize plant height. Figure 9C displayed the segmentation and recognition effect of maize
at the flowering stage.
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Figure 9. Here are some visual results of maize stem recognition and segmentation: (A,B) display
the stem segmentation effects of incomplete point cloud models of maize at the maturity stage, as
Example 1 and Example 2, respectively; (C) shows the segmentation effect of a complete point cloud
model of maize at the maturity stage; (D–F) each present the segmentation effects of complete point
cloud models of maize at the tasseling stage, as Example 1, Example 2, and Example 3, respectively.

The model shown in Figure 9C, when compared to Figure 8A,B, demonstrates a higher
level of completeness. Hence, from this comparison, it is evident that maize plants located
at the periphery of the crop population have achieved significant improvements in the
accuracy of stem identification and segmentation during the flowering and maturity stages.
Meanwhile, the maize at the tasseling stage, as depicted in Figure 9D–F, despite having
relatively complete point cloud models, exhibit underdeveloped organ growth, particularly
evident at the jointing stage, which results in inferior segmentation and identification
outcomes compared to the maize plants at the flowering and maturity stages. Nevertheless,
their performance remains commendable. For successfully fully segmented maize plants
at the flowering and maturity stages, data acquisition primarily relies on measuring the
distance between the canopy and stem point clouds; for maize plants at the tasseling stage,
data are mainly obtained by measuring the distance between the stem point clouds.

3.3. Extraction of Phenotypic Parameters of Plant Height

This manuscript delineates four datasets, encompassing various developmental stages
of maize throughout its life cycle: the tasseling stage, flowering period, maturity phase,
and the entire growth cycle. Specifically, for the flowering and maturity phases of maize,
this study has not only gathered manual height measurement data of maize plants from
40 randomly selected groups, both internally and externally, but it also encompasses data
obtained through point cloud technology measurements of maize stems. These measure-
ments extracted via point cloud technology have been compared and analyzed against
traditional manual measurement results, with specific findings illustrated in Figure 9.

As depicted in Figure 10, the analysis comparing the derived plant height values
with actual measurements reveals that during the tasseling stage, the mean absolute
percentage error (MAPE) and the root mean square error (RMSE) stood at 1.71% and
1.21 cm, respectively. Moving to the flowering stage, these metrics improved to 0.57% for
MAPE and 1.15 cm for RMSE. At the maturity stage, the figures slightly adjusted to an
MAPE of 0.51% and an RMSE of 1.40 cm. Considering the entire growth cycle, the overall
MAPE and RMSE were calculated at 0.77% and 1.27 cm, respectively.

Figure 10A shows that maize at the tassel stage had slightly more measurement
errors compared to the other stages. This discrepancy can be attributed to the incomplete
head growth, impacting the precision of stem segment segmentation and fitting in the
early stages. Additionally, manual measurement errors were also observed to be more
pronounced during this phase for similar reasons.
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As shown in Figure 10B, the plant height measurement accuracy of maize at the
flowering stage exceeded that of maize at the maturity stage, with an MAPE of about 0.5%.
This improvement is linked to the more distinct and clearer organ differentiation observed
at this stage. Despite challenges in single maize plant segmentation due to occlusion and
other factors, obtaining complete stems was more feasible compared to the tasseling stage,
facilitating better stem recognition and segmentation, and consequently, higher accuracy in
height extraction.

The data presented in Figure 10C show that the extraction accuracy of the maize plant
height values at maturity was almost the same compared to the maize at flowering, with an
MAPE of about 0.5%. This similarity in accuracy between the two stages can be attributed
to comparable levels of organ differentiation and segmentation challenges, notwithstanding
the differences in plant height, thus resulting in a minimal disparity in the accuracy of the
extracted values.

The extracted value of the maize stems was compared with the measured values
across the entire growth cycle. As shown in Figure 10D, the MAPE and RMSE was 0.77%
and 1.27 cm, respectively. From this result, the method using ground LiDAR to collect
maize phenotypes for plant height measurement had a higher accuracy compared with the
manual measurement results. The determination coefficient between the extracted value
and the manually measured value of plant height was 0.99, which showed that there was
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good consistency between the extracted value and the measured value. The method of
extracting the plant height information by ground LiDAR was feasible.

4. Discussion

The plant height serves as a vital indicator reflecting the growth condition of maize,
and its anomalous rate of change often signals potential disease infections or nutritional
deficiencies within the crop community [48]. The continuous monitoring of maize plant
height is crucial for the early detection of abnormal growth, enabling researchers and farm
managers to implement timely management interventions. The long-term monitoring of
plant height aids in more accurately determining the growth stages of the plant community,
optimizing irrigation, fertilization, and pest management, and contributes to more precise
yield forecasts [49], thus facilitating earlier market strategy development.

In the field of phenotypic research in agriculture, plant height is an important trait
for assessing the impact of genetic and environmental interactions. Precise measurements
of plant height improve our comprehension of maize genetic responses to environmental
changes. These measurements facilitate the identification of plants with superior traits.
High-throughput phenotyping platforms use these data to speed up the creation of new
maize varieties. Accurate measurement techniques for plant height increase precision
and efficiency in crop management. These techniques also offer considerable support and
convenience for agricultural research.

This study developed a multi-angle measurement method of corn plant height using
solid-state LiDAR. This method shows significant improvements in precision and efficiency.
It provides a valuable technological tool for agricultural management and research.

The data acquisition by LiDAR scanning had the advantages of high precision, fast
speed, non-contact, and multi-information collection [26,50]. Moreover, the 3D point cloud
data collected by solid-state LiDAR can simultaneously contain three types of information:
the spatial coordinates, depth, and reflectivity of the target crops. Solid-state ground-
based LiDAR, with its high resolution and multi-angle shooting technology, can capture
more comprehensive point cloud data. This allows for a more precise depiction of the
actual growth conditions of the crops. Therefore, it can not only be used to extract various
phenotypic parameters of other types of crops but also its 3D data can be used to verify the
accuracy of other plant models.

Compared to drone technology [51], solid-state LiDAR exhibits superior interference
resistance. It can intricately capture information from the main stems and the ground
from a lower perspective, effectively reducing errors in plant height assessments. Al-
though traditional remote sensing techniques have some advantages in collecting data
over large areas, although traditional remote sensing techniques have some advantages
in collecting data over large areas, they are usually not as accurate as solid-state LiDAR
in constructing high-precision three-dimensional plant models or making accurate plant
height measurements.

Considering that manual measurements have the highest accuracy among the methods
discussed previously, to enhance the validity of this study, the plant height data obtained
from the maize by LiDAR were compared with the actual manual measurements. The
results indicate that LiDAR measurements exhibit a high precision and consistency through-
out the growth cycle, with a total MAPE of 0.77%, a total RMSE of 1.27 cm, and a coefficient
of determination reaching 0.99. During the heading stage, the MAPE and RMSE were 1.71%
and 1.21 cm, respectively; during the flowering stage, these values dropped to 0.57% and
1.15 cm; and during the maturity stage, they were 0.51% and 1.40 cm, respectively.

The purpose of this study was to use ground-based LiDAR to accurately capture
the height of field maize plants. Because ground-based LiDAR has a high resolution and
strong anti-interference capabilities, it can depict the precise structure features of crops.
Compared with UAV-based remote sensing methods involving digital surface models
(DSMs) to measure the maize plant height, ground LiDAR can obtain more comprehensive
plant and ground data through multi-angle collection, and better solve the problem of
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segmentation between the stems and ground to ensure the accuracy of the plant height
assessment [52].

According to the results of the field maize plant height information obtained by ground
LiDAR, the R2 and MAPE increased by 98% and 93.6%. It showed that compared with
the method of the high-definition digital reconstruction of maize point clouds to extract
plant height information, the accuracy of the maize point clouds obtained in this study
was greatly improved. In addition, in the measurement of crop heights, the cloud model is
relatively complete and has certain advantages [53].

Furthermore, the results show that supervoxel clustering algorithms and Euclidean
clustering algorithms exploit the continuity or consistency of regional attributes to aggre-
gate point clouds and divide them into represented node data. Compared with methods
such as density estimation and area search [22,54], these algorithms use smaller volume
point clouds to accelerate and accurately complete the point cloud data segmentation of
individual maize plants.

Furthermore, the analysis results unveil a significant issue: a pronounced mutual
shading phenomenon exists among maize plants in the field during the flowering and
maturity stages. In order to obtain a more complete point cloud model, this study set up
multiple observation points to collect data from different angles on the same plant [39]. By
means of registration, the complete point cloud model of the maize plants near the edge of
the field could be obtained.

To resolve the challenge of measuring the crop height, the method of cylinder fitting
was employed to extract the point clouds of the maize stem along with the phenotype
information pertaining to the maize height. The findings revealed that the organs in the
maize at the tasseling stage had not yet differentiated. Therefore, when extracting the stem
using the cylinder fitting method, the resulting stem point clouds included portions of
branches and leaves, and the extracted portion of the stem point clouds was slightly higher
than the actual height of the maize. This not only affected the extraction of the stem but
also compromised the accuracy of the height extraction. Other studies have primarily used
the highest point of the plant as the indicator of the plant height [26], but this does not fully
conform to the standard for measuring the height of the main stem of maize during its
tasseling stage.

During the flowering and maturity phases, the morphology of maize plants is fully
differentiated, with their shapes and boundary features becoming pronounced. When these
plants are positioned on the periphery of a plant group, stem information can be relatively
directly extracted from the point cloud data, which is crucial for the accurate determination
of the plant height. However, when these plants are located within the interior of the cluster,
the shading phenomenon significantly affects the integrity of the point cloud data. Due to
mutual shading, the point cloud data for internal plants often lack completeness, posing a
significant challenge for plant height measurements based on point cloud technology [55].
During the statistical value filtering process, some incomplete maize plant point clouds
would be excluded, leading to an increased number of incomplete point cloud models.
While multi-angle point cloud registration could somewhat ameliorate the shape of the
point clouds, the integrity of these point clouds was inferior compared to that of the maize
plants in the tasseling stage and those that were not significantly occluded.

However, in the extraction of the maize plant height, the bottom and ear point clouds
were relatively well preserved since the heavily obscured portions predominantly occurred
in the middle of the leafy maize. Segmentation methods based on continuous characteristics
struggle to fully segment stems with missing data [28], which may impact the estimation of
the plant height. Thus, despite the absence of intermediate point clouds and considerable
deviation in the fitting position of the cylinder, the point clouds for the maize ear and
bottom appeared relatively complete when the cylinder was fitted to the maize stem. The
measurement of the maize plant height was primarily based on the top and bottom point
clouds. Consequently, even if the integrity of the maize stem assembly was not high, its
impact on the extracted value of the plant height was minimal.
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By comparing the plant height data of maize at different growth stages obtained by
solid-state LiDAR and traditional manual measurement methods, this study revealed that
when maize was at the tasseling stage, the plant height measured by solid-state LiDAR
had a large error compared to the actual measurement, with a mean absolute percentage
error (MAPE) of 1.71%, which may be attributed to the fact that the head of the maize had
not yet been fully formed at this stage. As the corn entered the flowering and maturity
stages, the plant structure became more complete, and the measurement accuracy of the
ground LiDAR was significantly improved, with the MAPE reduced to 0.57% and 0.51%,
respectively. The measurement accuracy of the corn plant height throughout the growth
cycle was excellent, with a total MAPE of 0.77% and a root mean square error (RMSE) of
only 1.27 cm. This result validates the high accuracy and reliability of terrestrial LiDAR
in accurately measuring maize plant height, especially in the later stages when the plant
structure is more complex, and shows its vast potential for application in agricultural
research. This study emphasizes the increasing accuracy and potential utility of terrestrial
LiDAR technology in plant phenotyping.

5. Conclusions

An approach utilizing solid-state LiDAR was introduced to extract the plant phenotype
of maize height across the entire growth cycle. The point clouds of a single plant were
obtained by filtering, registering, and segmenting the obtained 3D point cloud information
of many maize plants. The stem of a single maize point cloud was extracted and measured
to obtain the plant height information. The results showed that the RMSE of the maize
plant height information obtained by LiDAR was 0.00127 m, the MAPE was 0.77%, and the
maximum R2 value was 0.99. This means that this method exhibits a good performance
in plant height phenotype information acquisition. In addition, the maize plants showed
higher differentiation at different stem stages. In the maturity stage, the MAPE of the plant
height was 0.57%, better than 1.19% (1.71%), which was achieved by the tasseling maize,
and 0.06% (0.57%), which was achieved by flowering-stage maize.

This study provides an economical and stable method for in-field corn phenotype
analysis. To expand the application of this method, there is an ongoing exploration into
integrating solid-state LiDAR with autonomous inspection robots to facilitate more compre-
hensive in situ data collection on corn plants. This approach not only enables the broader
coverage of plant communities but also enhances the precision and efficiency of the data
collection process through automation.

Additionally, this research also examines the combined application of unmanned
aerial vehicles (UAVs) and solid-state LiDAR technology, aimed at synchronizing their
operation with ground-based autonomous inspection robots to collectively perform data
collection tasks on plant communities. By implementing the integrated automation of aerial
and ground data processes, a significant enhancement in the data collection efficiency is
anticipated, along with a substantial reduction in time and labor costs.

The advancements in this method will assist agricultural managers in more accurately
determining the growth stages of corn plant communities, providing decision support for
irrigation, fertilization, and pest management. Moreover, it will aid in more precise yield
predictions and facilitate proactive adjustments to market strategies.
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