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Abstract: This study investigated the impacts of biochar addition on N conversion, humification,
and bacterial community during Flammulina velutipes waste composting. The mixture of chicken
manure and Flammulina velutipes waste was 4:6 (dry weight basis). The biochar was added into the
mixture and mixed thoroughly at ratios of 0, 2.5, 5, and 7.5% (w/w) and labeled as CK, T1, T2, and T3,
respectively. The results showed that the biochar treatment significantly improved the compost matu-
rity by increasing humic substances and the conversion of NH4

+-N to NO3
−-N. With the increase in

biochar supplemental level, the abundance, diversity, and uniformity of the microbial community
were improved. The dominant taxa were Firmicutes, Bacteroidota, Actinobacteriota, Proteobacteria, and
Gemmatimonadota, especially the Firmicutes and Bacteroidota. Biochar addition facilitated the prolifera-
tion of thermophilic bacteria such as Bacillus, Actinobacteriota, Parapedobacter, and Sphingobacterium,
leading to enhanced organic decomposition to increase humus. The findings of this study highlighted
the positive effects of biochar addition on the composting mixture of chicken manure and Flammulina
velutipes waste. These results can help to produce high-quality biochar composting products by
balancing organic decomposition and humification based on the bacterial community.

Keywords: Flammulina velutipes waste composting; biochar; bacterial community; N conversion;
humification

1. Introduction

In China, various types of mycelium residues (about 22.38 million tons a year) are
generated as 25~33% of fresh mushroom production [1]. Flammulina velutipes waste is the
residue after collecting the fruiting bodies of mushrooms. Currently, the utilization of mush-
room waste is used as animal feed, composting, or polysaccharide isolates [1–4]. According
to previous research, the production of mushrooms has increased globally, resulting in
approximately 53 million tons of mushroom waste being produced, calculated on the basis
of 1 kg of mushrooms requiring 5 kg of media substrate [3]. As mushroom production
continues to increase, a new application for mushroom waste or spent mushroom substrate
is necessary. An important part of the mushroom growing process is the fruiting body
of the mushrooms, which is frequently disposed of as waste [5]. It was converted into
flour and utilized as cookies, steamed buns, and mushroom-chicken patties [5]. Other
research has shown that the mushroom waste could regulate soil nutrition as a soil amend-
ment, improving plant growth [6]. Thus, finding a rational way to use mushroom waste
is important.

For agricultural production, chemical fertilizers or animal waste are inevitably used.
Livestock waste was used as an important organic fertilizer raw material based on valuable
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nutrients, especially nitrogen [7,8]. It is worth noting that animal waste is an important
source of pathogenic microorganisms such as Salmonella, Escherichia coli, Staphylococcus,
Streptococcus, Clostridium, Listeria, Campylobacter, Corynebacterium, and Mycobacterium [9].
Although chicken manure contains many pathogens, it is also used as a fertilizer for
crops after being reasonably treated, including incineration, anaerobic digestion, direct
burning, and composting [6–8,10,11]. Currently, in China, poultry production is growing
rapidly based on the excellent low cholesterol properties of poultry meat, and it provides
about 82% of meat production [12]. However, the massive poultry production results in
a huge amount of excrement, which is considered a major source of poultry waste [7].
At present, increasing applications of organic fertilizer is an effective way to improve
crop yield [13–15]. Previous studies have shown that organic fertilizers can optimize
rhizosphere bacterial community structure and improve soil fertility and soil continuous
production capacity [13,16]. On the one hand, organic fertilizer can provide more adequate
nutrition, regulate and stimulate crops, and control and reduce the harm of diseases and
insects in the process of crop growth [17]. On the other hand, organic fertilizers can
reduce soil compactness and improve soil porosity, which is conducive to the utilization
of nutrients [14].

Biochar as a conventional composting material is environmentally friendly, resulting
in cost effectiveness, promoting the availability and distribution of food, and facilitating
planetary conservation [18]. Another purpose, using biochar in composting, could reduce
pathogenic microorganisms and improve plant nutrients [19]. It is well known that chicken
manure is an important source of pathogenic microorganisms such as Salmonella, Escherichia
coli, Staphylococcus, Streptococcus, Clostridium, Listeria, Campylobacter, Corynebacterium, and
Mycobacterium [9]. Although chicken manure contains many pathogens, it can be used
effectively as a fertilizer and is useful for incineration, anaerobic digestion, direct burning,
and compost [7,10,11,20,21]. Importantly, composting can enhance the soil environment by
increasing soil organic matter, nitrogen, phosphorus, and many trace elements [22,23]. In
addition, compound organic fertilizer with biochar can increase the soil organic carbon con-
tent and the activity of acid phosphatase, catalase, and other microbial enzymes [21,24,25].

At present, composting is the ideal environmentally friendly technology, using mi-
croorganisms to convert organic waste into humus-like substances and then obtain organic
fertilizer and biomass resources [22]. According to previous research, in in-vessel compost-
ing, biochar as an additive was an important carbonaceous material [26]. Biochar could
also stimulate microbial activity to improve the quality of the compost product, which
was proven by comparing it to other materials have been widely investigated such as
sheep manure, pig manure, and chicken manure [7,26–28]. However, information about the
effects of biochar on the composting quality of mushroom waste and the microbial response
was limited. In this study, we hypothesized that the addition of biochar to the mixture
of mushroom waste and manure could improve the quality of the compost products and
shift the microbial community. Therefore, the aims of this study were: (1) to investigate the
effects of different ratios of biochar on the main parameters of the composting products
of mushroom waste and livestock manure; (2) to explore the microbial response of the
composting products.

2. Materials and Methods
2.1. Compost Treatment, Raw Materials and Sample Collection

The raw materials of chicken manure, Flammulina velutipes waste, and biochar were
used in the composting. The medium of Flammulina velutipes provided by Fuzhou Yida
Food Co., Ltd. (Lianjiang, Fuzhou, China). It mainly consisted of corn cobs, rice bran,
bran, corn meal, and cottonseed shells and after harvesting, and some of the Flammulina
velutipes mycelium waste was separated. The fresh chicken manure was collected from a
large-scale livestock farm located in Fujian Sunner Development Inc. (Nanping, China).
Biochar (corn stalk, grain size 100 mesh, specific surface area 1000–1300 m2/g, C content
95%, ash 5%) was purchased from Pingdingshan Lvzhiyuan Activated Carbon Co., Ltd.
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(Pingdingshan, China). The composting process was conducted in the compost research
laboratory of the Fujian Academy of Agricultural Sciences. The composting process referred
to Ravindran’s method, using a 60 cm × 60 cm × 55 cm container [21]. The ventilation
mode was intermittent, the fan was started for 2 min every 60 min, and the ventilation
rate was 0.2 L/(kg·min). The mixture of chicken manure and Flammulina velutipes waste
was 4:6 (dry-weight basis). The biochar was added into the mixture and mixed thoroughly
at ratios of 0, 2.5, 5, and 7.5% (w/w) and labeled as CK, T1, T2, and T3, respectively.
Additionally, the temperature of the compost and the ambient temperature were measured
daily at 9:00 am and 5:00 pm. The compost was refurbished weekly, then about 500 g of
sample was collected on days 0, 7, 14, 21, 28, 35, 42, 49, and 77. The samples were divided
into two parts. One part was stored at −4 ◦C for determination, and the other part was
dried and crushed for reserve use.

2.2. Determination Items and Methods

Air-dried samples were used for the determination of electrical conductivity (EC), mea-
sured in a 1:5 (w/v) aqueous extract using a conductivity meter (DDSJ-308A, Shanghai, China).
The pH was determined from soil–water suspensions (1:10 w/v) using a pH meter (AB150,
Thermo Fisher Scientific Inc., Beijing, China). A 20 g soil sample was extracted using 100 mL
of ultrapure water and filtered through 0.45 membrane to analyze the dissolved organic car-
bon (DOC) and total nitrogen (TN). The total organic carbon (TOC) and TN was determined
using an elemental analyzer of Liqui TOC II (Elemetar Liqui TOC, Elementar Co., Ltd.,
Hanau, Germany) and a UV-1700 Pharma Spec visible spectrophotometer (220 nm and
275 nm), respectively. The germination index (GI) was determined as reported in refer-
ences [29,30]. Chinese cabbage seeds were used and germinated on a tray to analyze the GI.

According to previous reports [31,32], the humification was quantified by determining
the humus content. The humic acid (HA) and fulvic acid (FA) were separated from the
humus using centrifugation at 4400 rpm with mixture of 1 g of sample, 0.1 M sodium
pyrophosphate (Na4P2O7·10H2O), and 0.1 M NaOH. The FA in the supernatant and
the HA in the precipitate were collected, then the HA was extracted from the precipi-
tate sample by re-dissolving it in 0.1 M NaOH. Finally, the FA and HA contents of the
humus were quantified using a total organic carbon (TOC) analyzer (TOC-L, Fuzhou,
China). The humification properties of the composting products were determined using
ultraviolet–visible (UV–vis) spectroscopy (N4S, Huachen, China) according to a previous
method [31]. The SUVA280 and E4/E6 ratio was determined base on the ratio of absorbance
at 280, 465, and 665 nm, respectively. Finally, the humus aromaticity and molecular weight
of the compost were calculated [31]. The soil inorganic N in 20 g of fresh soil samples was
extracted using 100 mL of K2SO4, filtered through a 0.45µm membrane and analyzed using
a LACHAT Quikchem Automated Ion Analyzer (Hach Corp, Loveland, CO, USA). A more
detailed description of the measurements of the soil NH4

+-N and NO3
−-N can be found in

Li et al. [8] and Fu et al. [33].

2.3. DNA Extraction and High-Throughput Sequencing

DNA extraction was performed using an Omega DNA Kit (Omega Bio-Tek,
Norcross, GA, USA) following the manufacturer’s instructions. Qualitative PCR was
performed according to the instructions contained in the Fast DNA® Spin Kit for Soil
(MP Biomedicals, Irvine City, CA, USA) based on the DNA production evaluated using
a NanoDrop spectrophotometer (ND2000; Thermo Scientific, Waltham, MA, USA) and
agarose gel electrophoresis, respectively. The V3-V4 hypervariable region of 16S rRNA
genes was amplified using the primers 343F TACGGRAGGCAGCAG and
798R AGGGTATCTAATCCT equipped with 12-base barcodes for sample distinction. A
25 µL reaction solution containing 12.5 µL of PCR MasterMix, 5 µM of each primer,
5.5 µL of ddH2O, and 10 ng of template DNA was used for the analysis. The PCR con-
ditions were set to 98 ◦C for 1 min, followed by 35 cycles for denaturation at 98 ◦C for
20 s, annealing at 50 ◦C for 60 s, extension at 72 ◦C for 30 s, and a final extension at
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72 ◦C for 5 min. The PCR product was extracted and purified using a Qiagen DNA
gel extraction kit (Qiagen, Valencia, CA, USA) and 1.5% agarose gels. A sequencing li-
brary was generated using a TruSeq® DNA PCR-Free Sample Preparation Kit (Illumina,
San Diego, CA, USA). The library was applied to an Illumina NovaSeq PE250 platform by
Oebiotech Bio-Pharm Technology Co. Ltd. (Shanghai, China).

2.4. Bioinformatic and Statistical Analysis

A one-way analysis of variance (ANOVA) and Duncan multiple comparisons test
were used to analyze the high-throughput sequencing data using SPSS (version 21.0,
IBM, New York, NY, USA) (p < 0.05). Visualization of the OTUs for each sample was
performed using the online platform Genes Cloud (https://www.genescloud.cn, accessed
on 11 January 2024). An LEfSe analysis and the LDA scores were completed using the
Wekemo Bioincloud platform (https://www.bioincloud.tech, accessed on 11 January 2024).
The data are reported as means and standard deviations (SDs). Statistical significance was
set at p < 0.05.

3. Results
3.1. Effects of Biochar on Physiochemical Properties and Humification during Composting

The temperature, pH, EC, and GI of the composting products were characterized.
The temperature in all the treatments broadly followed a similar profile, including the
four critical mesophilic, thermophilic, cooling, and maturation steps (Figure 1A). The
temperature of the compost first increased and then decreased. After each artificial turning,
the temperature rose slightly and eventually settled at to room temperature (Rt). The results
demonstrated that the biochar addition significantly increased the temperature compared
with the control group during the thermophilic period during composting (p < 0.05), and
the duration of the high-temperature period (above 50 ◦C) was more than 8d.

The matrix pH increased rapidly in the initial stage of composting and then stabilized
in the mesophilic stage for all the treatments (Figure 1B). The biochar addition could
obviously reduce the EC value of the compost products compared with the CK (p < 0.05,
Figure 1C). According to the GI (Figure 1D), the biochar addition was more notable for
the compost compared with the control treatment. The GI ranged from 0.178 to 2.01 in
all the groups. The biochar treatment increased the GI after 20 days of composting. The
GI was greater than 50% after 20 days of composting, indicating that the compost had
reached maturity.

In Figure 1E, the humus content in all the treatments increased incessantly throughout
composting. Increased humus is associated with changes in HA and FA. The two results
were opposite (Figure 1F,G). In the initial stage of composting, a large amount of organic
matter was decomposed, and fulvic acid, which is easier to decompose, was fully utilized
in the high-temperature stage of composting (Figure 1A). The FA content was obviously
decreased in the initial stage of composting (Figure 1G). When the biochar was added,
there was an apparent increase in the humus and HA contents (Figure 1E,F) compared with
the CK, but there was an apparent reduction in the FA contents in the thermophilic stage of
composting. When the compost entered the cooling period (during d25–d40 period), the
HI value had a slight downward trend (Figure 1H). In order to determine the alteration
on humification, the SUVA280 and E4/E6 were also determined. The results showed that a
high SUVA280 value (Figure 1I) and low E4/E6 value (Figure 1J) indicated a high degree
of maturity and stabilization. In this study, the SUVA280 value and E4/E6 values of the
composting products increased by 14.78% or decreased by 8.75% with the increases in the
biochar addition, respectively.

https://www.genescloud.cn
https://www.bioincloud.tech
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Figure 1. Effects of biochar addition on (A) temperature, (B) matrix pH, (C) electrical conductiv-
ity (EC), (D) germination index (GI), (E) total humus, (F) humic acid (HA), (G) fulvic acid (FA),
(H) HA/FA, (I) SUVA280, and (J) E4/E6 during composting. CK, control, without biochar addition;
T1, 2.5% biochar treatment; T2, 5% biochar treatment; T3, 7.5% biochar treatment. * means p < 0.05;
** means p < 0.01.

3.2. Effects of Biochar Addition on C and N Conversion

The changes in the organic carbon can reflect the degree of compost maturation to
a certain extent. The TOC was decreased during the composting process (Figure 2A).
In the early stage of composting, the compost pile contained more easily decomposed
organic matter, and the mass propagation of microorganisms caused the rapid decline in
organic carbon. Different from TOC, the DOC can be directly decomposed and utilized
by microorganisms in the compost mass, and it is an important indicator that is used to
reflect the microbial activities and rate of composting. According to Figure 2B, the DOC
content was obviously reduced with the 7.5% biochar treatment (p < 0.05). The biochar
addition could increase the N conversion (Figure 2C–E). The content of TN of the final
compost product was decreased with the biochar addition (Figure 2C). The biochar addition
significantly decreased the content of NH4

+-N (Figure 2D) and increased the content of
NO3

−-N (Figure 2E). According to the red arrow in Figure 2E,F, the conversion of NH4
+-N

to NO3
−-N in the compost products showed a one-to-one correspondence at different

sampling times. The C/N ratio was also higher in the biochar addition group than in the
control group (Figure 2E), especially in the initial period of composting.
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Figure 2. Effects of biochar addition on C and N conversion during the composting process. (A) total
organic carbon (TC), (B) dissolved organic carbon (DOC), (C) total nitrogen (TN), (D) NH4

+-N,
(E) NO3

−-N, (F) C/N ratio. The red arrow showed that the conversion of NH4+-N to NO3−-N in
compost products at different sampling times. CK, control, without biochar addition; T1, 2.5% biochar
treatment; T2, 5% biochar treatment; T3, 7.5% biochar treatment. * means p < 0.05; ** means p < 0.01;
*** means p < 0.001.

3.3. Effects of Biochar on Bacterial Community Diversity and Composition

The biochar treatment was found to increase the bacterial community’s diversity
during composting (Table 1). The α-diversity indices decreased notably and then increased
in all the group with biochar addition. These results indicated that the bacterial community
compositions during composting were different among the different biochar treatments.
The differences in the bacterial community compositions were also reflected in the relative
abundances of bacterial taxa at the phylum level (Figure 3A,C). The dominant taxa were
Firmicutes, Bacteroidota, Actinobacteriota, Proteobacteria, and Gemmatimonadota, with a total
abundance of above 95%. It is worth noting that the biochar addition obviously increased
the Nitrospirota content (Figure 3A), which belongs to the Nitrobacter genus. Furthermore,
Firmicutes was the most abundant, with a notable increase in the relative abundance with the
biochar treatment (Figure 3A). The heat map in Figure 3B depicts the relative abundances of
the top 15 genera, with the dominant genera being Galbibacter in the T3 group. This result is
consistent with the changes in temperature (Figure 1A). At the mature stage of composting,
the Pseudomonas, Flavobacterium, MWH-CFBk5, Parapedobacter, and Sphingobacterium were
key contributors to the phylum Bacteroidetes for the all the treatment groups (Figure 3B).

Table 1. Alterations in α-diversity indices during composting.

Treatment Time (d) Chao1 Shannon Observed
Species Simpson PD Whole

Tree ACE

CK

0 789 6.66 783 0.97 71 787
7 466 6.45 462 0.97 39 465

21 533 6.43 526 0.96 46 529
35 493 6.56 487 0.97 44 494
77 527 6.65 521 0.97 47 527

T1

0 661 6.28 657 0.96 61 660
7 423 6.25 419 0.97 35 418

21 467 6.40 463 0.96 41 468
35 586 6.88 581 0.98 50 585
77 464 6.60 460 0.97 41 464
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Table 1. Cont.

Treatment Time (d) Chao1 Shannon Observed
Species Simpson PD Whole

Tree ACE

T2

0 806 7.24 801 0.98 70 804
7 498 6.41 492 0.97 41 496

21 480 6.47 474 0.97 42 474
35 441 6.45 437 0.97 39 437
77 698 6.99 694 0.98 59 696

T3

0 565 6.44 562 0.97 55 563
7 658 6.30 654 0.95 55 656

21 473 6.18 468 0.96 42 470
35 752 6.76 745 0.97 61 747
77 583 6.31 578 0.97 50 579

Note: CK, control, without biochar addition; T1, 2.5% biochar treatment; T2, 5% biochar treatment;
T3, 7.5% biochar treatment; PD, phylogenetic diversity; ACE, abundance-based coverage estimator metric.
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Figure 3. Relative abundance of the predominant bacterial community at the phylum level (A), genus
levels (B), and circos at phylum (C) during composting. “Others” have a relative abundance of <1%.
* means p < 0.05; ** means p < 0.01; *** means p < 0.001.

3.4. Relationship between Bacterial Community and Composting Properties

A network analysis was used to identify the correlation among the bacteria, C-N conver-
sion, and humification properties (Figure 4). As shown in Figure 4A,C, the C-N conversion had
a significant correlation with several abundant bacteria. Especially, the TOC and C/N contents
exhibited significantly positive correlations with the genera Bacillus. This genus was abun-
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dant at the thermophilic stage of composting to decompose the organic compounds, thereby
inducing considerable carbon loss (low C/N ration and TOC, as shown in Figure 2A,C).
Moreover, the genera Prevotella, Bacteroides, and Fastidiosipila were significantly negatively
correlative with TN and NO3

−-N, whereas the NH4
+-N had a significantly positive correlation

with the genus Prevotella, indicating that the organic substances were rapidly decomposed
at the thermophilic stage of composting (Figure 4A,C). As shown in Figure 4B,D, the HA,
HI, SUVA280, and total humus were positively correlated with the genera Flavobacterium,
MWH-FBk5, Parapedobacter, and Sphingobacterium in all the treatment groups. These results
indicate that the biochar addition enhanced the formation of functional groups associated
with a high abundance of the phylum Bacteroidetes in composting.
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Figure 4. Relationships between bacterial community and C and N conversion or humification properties
based on Pearson results (A,B) and Spearman results (C,D). Red and blue colors represent positive and
negative correlations in the Pearson results, respectively. Red and green lines represent positive and neg-
ative correlations in the Spearman results, respectively. Pink and blue nodes represent C-N conversion
and humification, respectively, with the size indicating the connectivity. * means p < 0.05.
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The composting bacterial function with the biochar treatment was analyzed using PICRUSt
based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Figure 5). In
the present study, the relative abundance of six function categories of level-1 was recorded
(Figure 5A). Metabolism was the primary factor, with a relative abundance of more than
90%, and the rest were less than 6%, including the ABC transporter and carbon fixation in
photosynthetic organisms. The result showed that the biochar treatment, especially at a rate
of 7.5% (T3 group), increased the relative abundance of some bacterial genes associated with
amino acid metabolism (e.g., phenylalanine, tyrosine, tryptophan, and pyruvate metabolism)
and carbohydrate metabolism (e.g., fructose and mannose metabolism, galactose metabolism,
glycolysis/gluconeogenesis, citrate cycle). The carbon metabolism and nitrogen metabolism
were obviously increased in the T3 group compared with the CK (p < 0.05). During the
composting, the total abundance of functional bacteria for carbon metabolism was increased.
Based on the above results, the carbon metabolism was driven by a possible benefit from
chemoheterotrophs for all the treatments, such as Nitrospirota. In all the treatments, the biochar
addition resulted the highest abundance of bacterial Nitrospirota (Figure 3A). The genera Bacillus,
Actinobacteriota, Parapedobacter, and Sphingobacterium were identified as biomarkers of the biochar
treatment at the mesophilic and mature stages based on the LEfSe analysis (Figure 5B).
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Figure 5. Effects of biochar on biomarkers during the composting of a mixture of chicken manure
and Flammulina velutipes waste. (A) C and N metabolism; (B) LDA scores of biomarkers in different
treatments based on an LEfSe analysis during composting. Gene families are colored by functional
categories. CK, control, without biochar addition; T1, 2.5% biochar treatment; T2, 5% biochar
treatment; T3, 7.5% biochar treatment. * means p < 0.05; ** means p < 0.01; *** means p < 0.001.
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4. Discussion

At the initial stage of composting, the compost contains a large amount of organic
matter, resulting in bacteria proliferation, which in turn releases a large amount of heat
and eventually causes the temperature of the compost to rise [34]. The temperature in the
composting piles is increased by enhancing the biodegradation of organic substances [31].
This change in temperature also meets the requirements of the harmless treatment of
livestock and poultry waste. Moreover, biochar addition prolongs the high-temperature
period of compost, which is attributed to filling the pores of the compost raw materials and
reducing the heat loss of the compost pile [35]. On the other hand, the huge specific surface
area and pore structure of biochar can provide favorable space conditions for microbial
activities and improve microbial activity [8].

At the beginning of the composting process, the pH value increased rapidly, which
could be attributed to the biochar treatment increasing the consumption of organic acids.
Subsequently, the raw materials of poultry manure were decomposed and produced organic
acids, which caused the pH values to decrease gradually [28]. In this study, the pH values
of the final product were more than 7.5, which were attributed to the alkaline action of
the biochar. Additionally, biochar addition can enhance ammonification in composting to
rapidly reduce organic acid contents [31]. The EC is an important indicator of the soluble
salt content of reactive compost products and also indicates the potential phytotoxicity
of the composting products [27]. Biochar has a strong adsorption on water-soluble ions,
resulting in a decrease in the soluble salt content, which can also be caused by the dilution of
biochar on the soluble salt in the compost piles [27]. In the initial stage of composting, a large
amount of organic matter is decomposed, and fulvic acid, which is easier to decompose,
is fully utilized in the high-temperature stage of composting [36,37]. This alteration is
possibly due to the changes in the exogenous microbe. When the compost enters the
cooling period, the HI value can decrease, which is attributed to the microorganisms
using cellulose, lignin, and other difficult-to-decompose organic matter to form part of
the FA content [37]. In order to determine the alterations in humification, the SUFA280
and E4/E6 values were also determined, which showed a high SUFA280 value and low
E4/E6 value. This which indicated that the biochar could improve the compost maturity by
increasing humic substances [36]. Thus, biochar treatment could decompose the waste and
improve the TOC.

The change in organic carbon can reflect the degree of compost maturation to a certain
extent; a reduction in the DOC content in the biochar addition was reported during pig
manure composting [27]. The biochar addition could also enhance the DOC decomposition
by decreasing the composting density [35]. Humus formation involves a complex process
of organic decomposition and polymerization to secure compost quality. Previous research
has explored inoculating exogenous microbes to accelerate organic decomposition and
humification. For example, inoculation of Bacillus subtilis to cow manure could enhance the
formation of stable humus-like substances [38]. Adding self-cultured Bacillus megaterium
could enhance ammonia oxidation and regulate nitrification [39]. Their functions or roles in
humification during composting are also largely unknown. Thus, no matter what method is
chosen to regulate humification, it is good to change the reuse of waste. Another important
indicator for the advantage of compost is the GI. In the present research, the GI was greater
than 50% after composting for 20 days. These results are also consistent with previous
studies. When the GI value is greater than 50%, it is generally believed that the compost is
in the formation stage. When the GI value is greater than 80%, it is completely mature [40].

In the present study, the biochar addition improved the N cycling, which was in
accordance with previous studies [14,28,41,42]. The previous study showed that NO3

−-N
is a better form of N for many plants than NH4

+-N [43]. A high nitrate concentration in
compost is normally desired to improve the compost quality. In compost products, the
conversion of NH4

+-N to NO3
−-N showed a one-to-one correspondence, which indicated

that the biochar addition was conducive to the formation of NO3
−-N and effectively

reduced the loss of N [8]. In previous research, a low C/N ratio could inhibit the utilization
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of carbon sources, resulting in a reduced quality of the compost products [7]. However, the
content of TN of the final compost product was decreased with the biochar addition. This
result was different from previous research showing that biochar addition could obviously
increase the TN contents in the final compost product [42]. This difference may be related
to the original C/N of the compost. This variation in the difference may be related to raw
material use, which we will also verify in further studies.

In previous research, biochar was found to provide favorable space conditions to
improve microbial activity [8]. A positive effect of biochar addition on bacterial diversity
was reported in rice straw compost with chicken manure mixed with peanut straw com-
post [8,44]. It has also been reported that some of these phyla were the most predominant
in biochar-amended compost. According to the previous results, Proteobacteria and Aci-
dobacteria are important phyla [31]. Proteobacteria played a vital role during the process
of nitrogen and carbon cycling and directly affected the quality of the compost [28,45].
Acidobacteria represents an underrepresented soil bacterial phylum whose members are
pervasive and copiously distributed across nearly all ecosystems. However, Acidobacteria
possesses an inventory of genes involved in diverse metabolic pathways, as evidenced
by their pan-genomic profiles [46]. It is worth noting that the biochar addition obviously
increased the Nitrospirota (Figure 3), which belongs to the Nitrobacter genus. The Nitrobacter
genus is frequently used as a model strain to drive the nitrogen cycle process by converting
ammonia nitrogen into nitrite and nitrate to reduce harmful products [47]. Thus, biochar
addition increased the Nitrospirota abundance could improve the compost preponderance.
Actinomyces are also important because they can degrade lignocellulose and secrete multiple
antibiotics to eliminate pathogenic microorganisms [48]. At the genera level, bacteroides in-
cludes Clostridium and Enterobacter, which have proved to directly promote plant Ageratina
Adenophora [49]. Furthermore, the dominant genera Galbibacter in the T3 group contains an
important bacterium in regulating innocent treatment efficiency [50]. As a previous study,
the relative abundance of thermophilic bacteria and Galbibacter were increased during
composting [51]. At the mature stage of composting, the Pseudomonas, Flavobacterium,
MWH-CFBk5, Parapedobacter, and Sphingobacterium were key contributors to the Bacteroidete
phyla, which were involved in the humification of the organic matter during composting.
For example, Flavobacterium has been widely used in the degradation of macromolecular
organic matter such as lignocellulose [36]. The relative abundance of these bacteria genera
was increased, which could raise the contents which from lignocellulose decomposition
to humic substances. Thus, this may also be one of the reasons why biochar addition can
improve the quality of composting.

The PICRUSt results showed that the metabolism was the most primary based on
the KEGG database, especially some bacteria associated with amino acid metabolism and
carbon metabolism such as Nitrospirota. Nitrospirota could rapidly regulate the matrix
conditions and increase the carbon fixation rate [52]. According to previous results, biochar
addition could increase the amino acid metabolism and carbohydrate mentalism of the
bacteria [28], and it also increased the humic substance contents [53]. Importantly, Bacillus,
Actinobacteriota, Parapedobacter, and Sphingobacterium were identified as biomarkers, which
have proved to be beneficial to increasing the C-N conversion and the formation of humic
substances [53]. However, the properties of biochar are affected by high moisture, tempera-
ture, and organic matter contents [54], especially limiting its sorption capacity. The high
potential of compost is associated with the non-carbonized organic matter content and the
conditions of the production of biochar [55]. For example, biochar produced at 300 ◦C has
a larger sorption capacity, retains the heavy metals present in the soil on its surface, and
reduces the carbon dioxide emissions [56,57]. Therefore, the selection of biochar produced
at the right temperature and the addition of the appropriate proportion are conducive to
the use of compost.
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5. Conclusions

Biochar addition significantly enhanced compost maturity and influenced some of the
physicochemical properties (temperature, pH, EC, GI, TOC, TN, NO3

−N, and NH4
+-N) of

the final compost product, especially the NO3
−-N content. Biochar addition significantly

affected the bacterial community composition, especially the relative abundance of some
beneficial taxa. The predominant bacterial taxa included Bacillus, Actinobacteriota, Parape-
dobacter, and Sphingobacterium. The findings of this study highlight the positive effects of
biochar addition on the composting mixture of chicken manure and Flammulina velutipes
waste. These results can help us to produce high-quality biochar composting products by
balancing organic decomposition and humification.
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