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Abstract: Knowledge of the responses of winter wheat yield to meteorological dryness/wetness
variations is crucial for reducing yield losses in Henan province, China’s largest winter wheat
production region, under the background of climate change. Data on climate, yield and atmospheric
circulation indices were collected from 1987 to 2017, and monthly self-calibrating Palmer drought
severity index (sc-PDSI) values were calculated during the winter wheat growing season. The main
results were as follows: (1) Henan could be partitioned into four sub-regions, namely, western,
central-western, central-northern and eastern regions, based on the evolution characteristics of the
time series of winter wheat yield in 17 cities during the period of 1988–2017. Among them, winter
wheat yield was high and stable in the central-northern and eastern regions, with a remarkable
increasing trend (p < 0.05). (2) The sc-PDSI in February had significantly positive impacts on climate-
driven winter wheat yield in the western and central-western regions (p < 0.05), while the sc-PDSI in
December and the sc-PDSI in May had significantly negative impacts on climate-driven winter wheat
yield in the central-northern and eastern regions, respectively (p < 0.05). (3) There were time-lag
relationships between the sc-PDSI for a specific month and the atmospheric circulation indices in the
four sub-regions. Furthermore, we constructed multifactorial models based on selected atmospheric
circulation indices, and they had the ability to simulate the sc-PDSI for a specific month in the four
sub-regions. These findings will provide scientific references for meteorological dryness/wetness
monitoring and risk assessments of winter wheat production.

Keywords: winter wheat yield; meteorological dryness/wetness features; spatial differences; Henan
province

1. Introduction

Global warming has led to an ever-intensifying water cycle, and in particular, increas-
ing rates of evaporation and precipitation, which have also changed the occurrence and
severity of meteorological dryness/wetness events in different regions of the world [1–4].
Crop farming has been the backbone of human society, providing food and other basic needs
for people [5]. With the rapid development of urbanization and industrialization, a large
amount of cultivated land has been occupied, so improving crop yield per unit area has
proven to be an important approach to boost food production [6,7]. However, the weight of
observational evidence indicates that unfavorable meteorological dryness/wetness events

Agronomy 2024, 14, 817. https://doi.org/10.3390/agronomy14040817 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy14040817
https://doi.org/10.3390/agronomy14040817
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://doi.org/10.3390/agronomy14040817
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy14040817?type=check_update&version=1


Agronomy 2024, 14, 817 2 of 15

during the crop growing season can lead to reduced crop yields and even threaten food
security [8–10]. Therefore, analyzing the spatial heterogeneity of yield variability and its
response to meteorological dryness/wetness conditions is of great importance in evaluating
regional yield vulnerability and proposing adaptation strategies under global warming.

With the increasing importance of long time-series data, time series clustering meth-
ods have become widespread in the field of hydrometeorology [11,12]; they divide a large
amount of data into smaller groups according to their similarity so that the data belonging
to the same group are as similar as possible. Traditional clustering methods designed for
static data are susceptible to noise when dealing with the time series clustering problem
due to the high dimensionality of the time series [13]. Under these circumstances, the
characteristic-based time series clustering method was proposed [14], which clusters based
on structural characteristics extracted from the time series rather than using a distance mea-
sure to cluster point values. The characteristic measures used to reflect the time series are
derived from statistical operations, such as statistical, time-domain and frequency-domain
characteristics, and they are then input into arbitrary clustering algorithms. For example,
Garcia-Gutierrez et al. (2022) [15] used a K-means clustering algorithm to regionalize solar
radiation in Spain based on statistical parameters computed from clear-sky index series. As
a typical example of time series data, the regionalization of crop yield for a given region not
only analyzes spatial variations in yield but also provides fine-grained strategies to cope
with unfavorable meteorological dryness/wetness conditions [16]. Despite the widespread
interest in the mean values of and trends in crop yield [17], the statistical, time-domain and
frequency-domain characteristics of yield data have rarely been systematically examined in
previous studies.

To understand the response of crop yield to meteorological dryness/wetness vari-
ations, several meteorological dryness/wetness indices have been proposed in recent
decades [3,18,19], such as the standardized precipitation index (SPI), standardized precipi-
tation evapotranspiration index (SPEI) and self-calibrating Palmer drought severity index
(sc-PDSI). Both SPI and SPEI have similar multi-timescale characteristics, with the former
considering only precipitation and the latter considering precipitation and potential evapo-
transpiration [20]. In contrast to the SPI and SPEI, the sc-PDSI is more physical, as it takes
into account the water balance using a two-layer bucket model and uses self-calibrating
processes that can adjust the original PDSI to the local climate [21]. Recent studies have
suggested that the sc-PDSI demonstrates good performance in monitoring meteorological
dryness/wetness variations in China, and studies have also been carried out to show that
climate–yield relationships vary between regions and crop types [22,23]. Taking China
as an example, the sc-PDSI showed positive relationships with maize yield anomalies
in Northeast China and wheat in North, South and Northwest China, but some regions
(rice in East and Southeast China) had negative correlations [23]. These existing studies
have focused mainly on relationships by considering the entire crop-growing season as
a whole [24,25]. Few studies have examined seasonal differences in yield responses to
meteorological dryness/wetness conditions, particularly the key month affecting yield and
the corresponding key meteorological drought/wetness index (KMDWI). Considering that
atmospheric circulations can be regarded as important premonitory influencing signals
in the analysis of meteorological dryness/wetness variations [26,27], it is necessary to
investigate the relationships between the KMDWI and atmospheric circulation indices in
order to construct an appropriate simulation model, which may be a valuable approach to
sustainable crop production and agricultural water management.

Wheat is an ancient and important grain crop. China is the world’s largest winter
wheat producer, accounting for nearly 20% of the global wheat yield [28]. As the largest
winter wheat production region in China, Henan province accounts for nearly 25% of
the winter wheat yield in China [29]. However, an uneven spatio-temporal distribution
of precipitation has severely affected sustainable winter wheat production in Henan [30].
Although drought and flood events frequently occur in Henan [31], the spatial heterogeneity
of yield variability and its response to meteorological dryness/wetness conditions are still



Agronomy 2024, 14, 817 3 of 15

unclear in this region. Therefore, the main research objectives are (1) to understand the
spatial difference in winter wheat yield using a characteristic-based time series clustering
analysis and (2) to identify the KMDWIs that affect yield fluctuations in different sub-
regions and evaluate the potential impacts of atmospheric circulation indices. The detailed
results are of great significance for meteorological dryness/wetness monitoring and risk
assessments of winter wheat production.

2. Materials and Methods
2.1. Study Region

Located in central China (Figure 1), Henan province covers an area of 167,000 km2.
It consists of 18 cities, i.e., Zhengzhou, Kaifeng, Luoyang, Pingdingshan, Anyang, Hebi,
Xinxiang, Jiaozuo, Puyang, Xuchang, Luohe, Sanmenxia, Shangqiu, Zhoukou, Zhumadian,
Nanyang, Xinyang and Jiyuan, and it has a wide altitude ranging from 16 to 2272 m. Henan
is located mainly in the warm temperate zone, with four distinct seasons and frequent
meteorological disasters [31]. The annual average temperature ranges from 10.5 ◦C in
the north to 16.7 ◦C in the south, and the annual precipitation ranges from 407.7 mm
to 1295.8 mm, mainly concentrated between June and August [16]. As a major grain-
producing province in China, the output of major agricultural products such as grain,
cotton and oil in Henan ranks at the forefront of the country. Among them, winter wheat is
the first grain crop in Henan, with 1/16 of the nation’s arable land producing 1/4 of the
winter wheat in China [29].
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2.2. Datasets

The homogenized datasets of monthly temperature, precipitation, atmospheric pres-
sure, relative humidity, sunshine and wind speed from 116 stations in Henan during the
period of 1987–2017 were obtained from the National Climate Center of China. Data on
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annual winter wheat yield (AWWY, unit: kg/hm2) in 17 cities in Henan, with the exception
of Jiyuan, during the period of 1987–2017 were obtained from the Henan Province Bureau
of Statistics. Monthly atmospheric circulation indices that may drive the regional climate
in Henan were used to analyze the premonitory influencing signals of meteorological
dryness/wetness variations, which included Niño 1+2, Niño 3, Niño 3.4, Niño 4, North
Atlantic Oscillation (NAO), Arctic Oscillation (AO) and Pacific Decadal Oscillation (PDO),
and they were obtained from http://www.cpc.ncep.noaa.gov/products/precip/CWlink/
(accessed on 5 November 2023). All data used in this study were obtained from official
sources and were subjected to rigorous quality controls.

2.3. Methods
2.3.1. Characteristic-Based Time Series Clustering Analysis

In this study, AWWY was selected for a given indicator, and a series of characteristic-
based indices were constructed and are presented in Table 1. As shown in Table 1, we
calculated the statistical characteristics of the AWWY time series, such as the minimum
value (MIN), maximum value (MAX), mean value (AVE), range value (RNG), standard
deviation (STD) and coefficient of variation (CV). Furthermore, a trend analysis is one of
the most important measurements in studying time series data, and it can reflect their
time-domain characteristics. In this study, the Z statistic (ZMK), Sen’s slope (MAG) and the
Hurst index (H) were used to describe the trends and persistent patterns of the AWWY time
series using the Mann–Kendall test, Sen’s slope estimator and the Hurst method, respec-
tively [32]. In addition to a trend analysis, multi-time scale characteristics are also important
in studying time series data. For example, the AWWY time series can be decomposed into
three periodic oscillation intrinsic mode functions (IMFs) and a trend component, and this
was achieved in this study using ensemble empirical mode decomposition (EEMD) [33].
The variance contribution of each IMF (i.e., CIMF1, CIMF2 and CIMF3) and the trend
component (CTrend) to AWWY was selected to reflect the frequency-domain characteristics
of the AWWY time series. More details about the Mann–Kendall test, Sen’s slope estimator,
the Hurst method and EEMD are shown in the Supplementary Materials [34–41].

Table 1. Definitions of characteristic-based indices of annual winter wheat yield (AWWY).

No. Types Indices Definition

1

Statistical characteristics

MIN The minimum value of the AWWY time series
2 MAX The maximum value of the AWWY time series
3 AVE The mean value of the AWWY time series
4 RNG The range value of the AWWY time series
5 STD The standard deviation of the AWWY time series
6 CV The coefficient of variation in the AWWY time series
7

Time-domain characteristics
ZMK The Z statistic of the AWWY time series

8 MAG The magnitude of the AWWY time series
9 H The persistent pattern of the AWWY time series

10

Frequency-domain characteristics

CIMF1 The variance contribution of a short-period
oscillation component to AWWY

11 CIMF2 The variance contribution of a medium-period
oscillation component to AWWY

12 CIMF3 The variance contribution of a long-period
oscillation component to AWWY

13 CTrend The variance contribution of a trend component
to AWWY

Note: MIN, MAX, AVE, RNG, STD, CV, ZMK, MAG, H, CIMF1, CIMF2, CIMF3 and CTrend are abbreviations
for the minimum value, maximum value, mean value, range value, standard deviation, coefficient of variation,
Z statistic, Sen’s slope, Hurst index and variance contribution of each IMF and a trend component, respectively.

Taking into account the potential collinearity and redundancy among these indices, a
principal component analysis (PCA) and a K-means clustering analysis were used in our
study to partition the 17 cities into k clusters, and the clustering result was evaluated using

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/
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silhouette coefficients (SCs) [11,42]. The highest SC value determined the optimum number
of clusters. More details about the PCA and K-means clustering analysis are shown in the
Supplementary Materials [43–50].

2.3.2. Calculation of sc-PDSI

The sc-PDSI is a typical meteorological dryness/wetness index based on a physical wa-
ter balance model, calculated from precipitation and potential evapotranspiration, together
with parameters related to the characteristics of the soil/surface at each location [51]. In the
calculation of the sc-PDSI, potential evapotranspiration is based on the Penman–Monteith
equation, which takes into account energy balance and aerodynamic theory, rather than
the Thornthwaite method [52]. The sc-PDSI values range from −4 to +4, with a negative
(positive) value indicating a dry (wet) period. In this study, we calculated the monthly
sc-PDSI during the winter wheat growing season (from October of the previous year to May
of the current year) in Henan using climate data on temperature, precipitation, relative hu-
midity, sunshine and wind speed to reflect meteorological dryness/wetness conditions, and
this was achieved using an open-access R package (https://github.com/Sibada/scPDSI,
accessed on 5 November 2023).

2.3.3. Calculations of Climate-Driven Winter Wheat Yield (CDWWY)

Crop yield is affected by a variety of factors such as crop varieties, agricultural tech-
nology and meteorological conditions, which is a combination of trend yield and climate-
driven yield [53]. Extracting the climate-driven yield is a crucial step in understanding
the yield impacts of meteorological dryness/wetness variations [9]. In this study, four
statistical methods, namely, EEMD, linear regression (LR), logistic function (LF) and the
Hodrick–Prescott (HP) filter, were used to extract CDWWY [54].

In this study, we mainly focused on the relationships between time series variables
(i.e., CDWWY and sc-PDSI) during the period of 1987–2017. Therefore, we used a Pearson
correlation analysis to examine the relationships between the CDWWY time series and
sc-PDSI time series during the winter wheat growing season, which allowed us to select the
key month that affected the yield and the corresponding KMDWI in Henan. Furthermore,
a regression equation was constructed between the KMDWI and CDWWY using the
following formula [42]:

std (CDWWY) = a × std (KMDWI) + b (1)

where std (CDWWY) and std (KMDWI) are the standardized values of the KMDWI and
CDWWY, respectively. Coefficient a is the sensitivity of the yield to the KMDWI, and it is
multiplied by the trend of the KMDWI for a given period to determine the impact of the
KMDWI trend on yield [42].

2.3.4. Relationships between the KMDWI and Atmospheric Circulation Indices

Atmospheric circulation indices are considered important premonitory influencing
signals in the analysis of meteorological dryness/wetness variations [26,27]. A time-lag
correlation analysis was performed to examine the relationships between the KMDWI and
seven atmospheric circulation indices [55,56], and a time lag of 0–11 months was selected
in this study. According to the results of the correlation analysis, we then selected the atmo-
spheric circulation indices with the highest correlation with the corresponding KMDWI
for each month as the premonitory influencing signals. Finally, we used the multiple
linear regression method to construct an empirical KMDWI simulation model based on the
atmospheric circulation indices selected in this study. Two indicators were used to evaluate
the performance of the multiple linear regression model: the determination coefficients
(R2) and root-mean-square error (RMSE) [57]. More details about the time-lag correlation
analysis and multiple linear regression method are shown in the Supplementary Materials.

https://github.com/Sibada/scPDSI
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3. Results
3.1. AWWY-Based Regionalization in Henan

As described in Section 2.3.1, the values of 13 indices in 17 cities in Henan were
first calculated. Then, the principal components of 13 columns (13 indices)× 17 rows
(17 cities) were analyzed using the PCA method (Table 2). To reduce the dimensionality
of the data, we selected the first three principal components (PCs) because their eigen-
values were greater than 1, and their cumulative variances exceeded 89%. As shown in
Table 2, PC1 had higher loadings on five indices, namely, ZMK, H, CIMF1, CIMF3 and
Ctrend, representing the persistent trend of the AWWY time series. PC2 had higher load-
ings on four indices, namely, RNG, STD, CV and MAG, representing the magnitude of
the change in AWWY. PC3 had higher loadings on three indices, namely, MIN, MAX
and AVE, representing the high (or low) levels of AWWY. According to the first three PCs,
we obtained their corresponding score sequences. A matrix of 3 columns (3 score
sequences) × 17 rows (17 cities) was clustered using the K-means method.

Table 2. The results of the application of the principal component analysis (PCA) method to a matrix
composed of 13 characteristic-based indices of AWWY in 17 cities in Henan.

Eigenvalue Variance (%) Cumulative (%)

PC1 6.64 51.11 51.11
PC2 3.61 27.80 78.90
PC3 1.42 10.92 89.83

The loadings of PC1, PC2 and PC3 on 13 indices
MIN MAX AVE RNG STD CV ZMK MAG H CIMF1 CIMF2 CIMF3 Ctrend

PC1 0.51 0.51 0.52 0.14 0.23 −0.14 0.93 0.51 0.86 −0.90 −0.57 −0.84 0.98
PC2 −0.33 0.59 0.37 0.96 0.98 0.85 0.36 0.92 0.32 −0.07 −0.49 0.08 0.17
PC3 0.82 0.90 0.98 0.30 0.35 −0.32 0.66 0.46 0.71 −0.63 −0.21 −0.29 0.60

Note: PC1, PC2 and PC3 are abbreviations for the first three principal components. MIN, MAX, AVE, RNG, STD,
CV, ZMK, MAG, H, CIMF1, CIMF2, CIMF3 and CTrend are abbreviations for the minimum value, maximum value,
mean value, range value, standard deviation, coefficient of variation, Z statistic, Sen’s slope, Hurst index and
variance contribution of each IMF and a trend component, respectively.

As shown in Figure 2, the SC values varied for different numbers of clusters. The
highest SC value occurred when the number of clusters reached four. Therefore, 17 cities
in Henan could be partitioned into four sub-regions characterized by different AWWY
variations, i.e., Sanmenxia and Luoyang in the western region (Region I); Zhengzhou,
Pingdingshan and Nanyang in the central-western region (Region II); Xuchang, Kaifeng,
Jiaozuo, Xinxiang, Hebi, Puyang and Anyang in the central-northern region (Region III);
and Luohe, Shangqiu, Zhoukou, Zhumadian and Xinyang in the eastern region (Region IV)
(Table S1).

3.2. Spatial Differences in AWWY in Henan

The statistical values of 13 indices characterizing the AWWY time series in the
four sub-regions are shown in Table 3. As shown in Table 3, the AVE of AWWY was
the highest in Region III (5770.9 kg/hm2), followed by Region IV (5091.3 kg/hm2) and it
was the lowest in Region I (3536.3 kg/hm2). Compared with the AVE, the RNG of AWWY
was the highest in Region IV (4736 kg/hm2), followed by Region III (3561.2 kg/hm2) and
it was the lowest in Region II (2543.8 kg/hm2). Furthermore, the ZMK, MAG and CTrend
were higher in Regions III and IV than in Regions II and I. These results indicate that in
Henan, Regions III and IV had a remarkable increasing trend in AWWY, as well as a high
and stable yield.
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Table 3. Statistical values of characteristic-based indices of AWWY for four sub-regions in Henan.

No. Indices Region I Region II Region III Region IV

1 MIN (kg/hm2) 1861.0 2554.3 3592.8 2118.3
2 MAX (kg/hm2) 4812.0 5098.1 7154.0 6855.2
3 AVE (kg/hm2) 3536.3 4023.1 5770.9 5091.3
4 RNG (kg/hm2) 2951.0 2543.8 3561.2 4736.9
5 STD 796.0 710.1 1048.8 1416.1
6 CV (%) 22.5 17.8 18.3 27.8
7 ZMK 4.2 5.2 6.9 6.5
8 MAG (kg/(hm2·a)) 62.2 63.3 111.5 138.1
9 H 0.7 0.8 0.8 0.8

10 CIMF1 (%) 26.9 16.8 2.3 11.2
11 CIMF2 (%) 5.8 4.4 2.6 2.6
12 CIMF3 (%) 3.4 2.4 1.1 2.5
13 CTrend (%) 63.9 76.4 94.0 83.8

Note: MIN, MAX, AVE, RNG, STD, CV, ZMK, MAG, H, CIMF1, CIMF2, CIMF3 and CTrend are abbreviations
for the minimum value, maximum value, mean value, range value, standard deviation, coefficient of variation,
Z statistic, Sen’s slope, Hurst index and variance contribution of each IMF and a trend component, respectively.

3.3. Relationships between CDWWY and sc-PDSIs during the Wheat Growing Season in Henan

In this study, we employed four commonly used methods to extract CDWWY
(Figure 3). Compared with the LR, LF and HP filter, the CDWWY calculated using EEMD
showed a higher correlation with the sc-PDSIs during the winter wheat growing season for
the four sub-regions in Henan. Taking the CDWWY calculated using EEMD as an example,
it was found that the sc-PDSIs from January to February of the current year had a significant
positive impact on CDWWY in Region I (p < 0.05), and the sc-PDSI in February had the
largest impact on CDWWY, which was considered the KMDWI in this sub-region. Similarly,
the sc-PDSI in February also had the largest impact on CDWWY in Region II (p < 0.05),
and a wet February was more favorable for winter wheat production in this sub-region. In
contrast to Regions I and II, the sc-PDSI in December of the previous year and the sc-PDSI
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in May of the current year had significant negative impacts on CDWWY in Regions III
and IV, respectively (p < 0.05), which were considered the KMDWI in both sub-regions,
respectively. These results indicate that meteorological dryness/wetness conditions in
different key months limited winter wheat production in Regions III and IV.
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The responses of CDWWY to KMDWI changes in different sub-regions and periods
are shown in Figure 4. If the KMDWI increased by 1% during the study period, CDWWY
increased by 0.66% and 0.46% in Regions I and II, respectively, and it decreased by 0.35%
and 0.30% in Regions III and IV, respectively (Figure 4a). However, limited impacts
of the KMDWI trends on CDWWY were found for the four sub-regions, ranging from
−0.06% to 0.05%, due to a weak KMDWI trend in each sub-region from 1988 to 2017
(Figure 4b,c). Furthermore, we classified the study period into three sub-periods, i.e.,
1988–1999, 2000–2009 and 2010–2017, and we then found that the responses of CDWWY
to KMDWI changes showed obvious interdecadal differences in Regions I and II. The
sensitivities of CDWWY to KMDWI changes were the highest in 1988–1999, followed
by 2000–2009 and they were the lowest in 2010–2017 in Regions I and II. Consequently,
the impacts of the KMDWI trends on CDWWY gradually weakened from 1988–1999
to 2010–2017 in both sub-regions. Compared with Regions I and II, the impacts of the
KMDWI trends on CDWWY were obviously weaker in Regions III and IV during the
three sub-periods.
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3.4. Relationships between the KMDWI and Atmospheric Circulation Indices in Henan

We used a Pearson correlation analysis to examine the relationship between the
KMDWI of the key month and seven atmospheric circulation indices of the 12 months
previous to that key month (Figure 5). As shown in Figure 5, the most significant correlation
was found in Region IV, with the highest absolute value of 0.49. Compared with this, the
highest correlation coefficient in Region III was less than 0.40. Furthermore, the atmospheric
circulation indices had time-lag effects on the KMDWIs in the different sub-regions. For
example, NAO in December, PDO in November and AO in April of the previous year had a
significant impact on the KMDWI (p < 0.05) in Region I (Figure 5a), while NAO in June and
December and AO in April of the previous year had a significant impact on the KMDWI
(p < 0.05) in Region II (Figure 5b). As for Regions III and IV, NAO in February and AO in
August of the previous year had a significant impact on the KMDWI (p < 0.05) in Region III
(Figure 5c), while the atmospheric circulation indices that affected the KMDWI in Region
IV (p < 0.05) mainly included Niño 1+2, Niño 3 and Niño 3.4 from June to November of the
previous year, as well as NAO in June of the previous year (Figure 5d).

Given the results of the correlation analysis described above, we selected the atmo-
spheric circulation indices with the highest correlation with the corresponding KMDWI
for each month as the premonitory influencing signals in different sub-regions. Then, we
constructed regression models between the KMDWI and selected atmospheric circulation
indices in each sub-region. As shown in Table 4, the multifactorial models that we con-
structed had the ability to simulate the KMDWIs for the four sub-regions. Their R2 values
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were in the range of 0.49 to 0.65, and the corresponding RMSE values were in the range of
0.58 to 0.72 in the different sub-regions.
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Table 4. Regression results between KMDWIs and selected atmospheric circulation indices in Henan.

Lag Time
Region I Region II Region III Region IV

Indices Coefficients Indices Coefficients Indices Coefficients Indices Coefficients

0 AO −0.08 AO 0.02 AO 0.06 PDO −0.45
1 NAO 0.19 NAO 0.10 NAO 0.35 Niño 3 0.27
2 NAO −0.30 NAO −0.39 NAO −0.10 Niño 3 −0.11
3 PDO 0.30 PDO 0.27 AO 0.73 Niño 4 0.92
4 PDO 0.13 NAO −0.11 AO 1.07 Niño 3.4 −0.62
5 PDO 0.08 AO 0.35 AO 0.44 Niño 3 −0.50
6 Niño 4 −0.57 PDO −0.05 AO 0.25 Niño 3 1.19
7 Niño 1+2 −0.18 AO −0.05 AO 0.17 Niño 3 −0.97
8 Niño 3 0.29 NAO 0.38 NAO −0.04 Niño 3 −0.11
9 Niño 3 −0.53 Niño 3 −0.04 AO 0.19 Niño 3 1.90

10 AO −0.08 AO −0.13 NAO 0.08 Niño 3 −0.99
11 NAO −0.10 Niño 3 −0.14 NAO −0.29 Niño 3 0.24
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Table 4. Cont.

Lag Time
Region I Region II Region III Region IV

Indices Coefficients Indices Coefficients Indices Coefficients Indices Coefficients

Intercept 27.29 5.16 −0.02 −32.42
R2 0.50 0.55 0.65 0.49

RMSE 0.66 0.64 0.58 0.72

Note: Niño 1+2, Niño 3, Niño 3.4 and Niño 4 reflect the Niño regions, which are areas of the tropical Pacific Ocean
that are used to monitor and measure the El Niño–Southern Oscillation climate pattern, and each Niño region
covers a different area of the Pacific Ocean. AO, NAO and PDO are abbreviations for North Atlantic Oscillation,
Arctic Oscillation and Pacific Decadal Oscillation.

4. Discussion

According to the AWWY time series from 17 cities, Henan province could be parti-
tioned into four sub-regions using a characteristic-based time series clustering analysis
(Figure 2). The complex geographical environment could be one of the important factors
responsible for the spatial differences in AWWY. Regions I and II are surrounded by the
Taihang Mountains and the Funiu Mountains (Figure 1), and the high mountain terrain
restricts the use of agricultural machinery [58]. Furthermore, the complex climate, poor
quality of arable land and low level of irrigation in the mountainous areas have a combined
effect on the production of winter wheat in both sub-regions [30,58–60]. However, our
finding is similar to that of a risk assessment of an agrometeorological disaster in Henan,
which was the result of a combination of four main factors (hazard, exposure, vulnerability
and restorability) [59]. Therefore, a characteristic-based time series clustering analysis could
also provide a new perspective for the regionalization of crop production risk under the
background of climate change due to its simple data requirements and reliable results [14].

The sc-PDSIs in February, May and December were the KMDWIs that influenced yield
in the four sub-regions (Figure 3). Among them, the sc-PDSI in February had significantly
positive impacts on yield in Regions I and II (p < 0.05), while the sc-PDSI in December
and the sc-PDSI in May had significantly negative impacts on yield in Regions III and IV,
respectively (p < 0.05). The uneven distribution of precipitation during the winter wheat
growing season led to a severe water shortage in the greening stage, and the drought
risk gradually decreased from western to eastern Henan [31,61]. Thus, the higher the
sc-PDSI in February of the current year, the higher the yields in Regions I and II. The
impacts of drought risk on yield could be alleviated by maintaining soil moisture through
appropriate tillage methods, improving irrigation efficiency and using drought-resistant
varieties of wheat [62,63]. Spring waterlogging disasters occurred mainly in the eastern
parts of Henan, and a wetter climate in the maturity stage was unfavorable to spike
development and grain formation [64,65], resulting in lower yields in Region IV with
a higher sc-PDSI in May of the current year. Therefore, conducting farmland drainage
measures in a timely manner is critical for achieving drainage and water logging, as well as
coordinated regulation [66,67]. Additionally, the occurrence of wheat lodging caused by
heavy rainfall and high winds should also be noted [68]. Chill damage in the overwintering
stage was the main unfavorable factor for the growth of winter wheat in the northern
parts of Henan, and more rainfall exacerbated low temperatures and low sunshine [69,70],
which led to lower yields in Region III with a higher sc-PDSI in December of the previous
year. Therefore, shifting the wheat planting calendar, spraying foliar fertilizers and using
cold-resistant winter wheat varieties could reduce the negative effects of chill damage in
the overwintering stage [71–73].

In addition to identifying the KMDWIs that affect yield fluctuations, we also found a
time-lag relationship between the KMDWIs and atmospheric circulation indices. Although
similar results have been reported in previous studies [9,55,56], our study indicates that the
time-lag relationship exhibited spatial differences in the different sub-regions (Figure 5).
In particular, the time lag of the same KMDWI response was different for the different
atmospheric circulation indices in the four sub-regions. Furthermore, the multifactorial
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models used to simulate the KMDWIs for the four sub-regions were constructed by select-
ing suitable atmospheric circulation indices (Table 4). Compared with previous studies
conducted at a larger spatial scale [74,75], the accuracy of our empirical models, together
with R2 and RMSE, could give a reliable output and be applied at the provincial scale. Fur-
thermore, atmospheric circulation indices can be forecasted about 6 to 9 months in advance
by the National Climate Center of China [76], suggesting that our empirical models obtain
KMDWIs for the four sub-regions at an early stage, and they are of great significance for
meteorological dryness/wetness monitoring for winter wheat production and providing
some coping strategies in each sub-region [77,78].

The limitations of our study are based on two main aspects. First, we mainly focused
on the response of winter wheat yield to meteorological dryness/wetness variations in
Henan using statistical data from the perspective of the agricultural climate, without fully
considering the effects of other yield-related factors, e.g., plant cultivation, soil category
and treatments [79,80]. Second, we constructed multifactorial models capable of simulating
KMDWIs in four sub-regions. However, the mechanisms of the natural and anthropogenic
factors, including atmospheric circulation, underlying the KMDWIs are more complex
and still need to be studied in depth [81]. Therefore, we will collect more data on climate,
soil and crop management to understand climate–yield relationships and to improve the
simulation performance of unfavorable meteorological dryness/wetness conditions by
incorporating machine learning methods [82–84].

5. Conclusions

Using long-term data on climate, yield and atmospheric circulation indices, this study
analyzed the response of winter wheat yield to sc-PDSI variations in Henan from 1987 to
2017. The main results were as follows:

(1) A PCA and a K-means clustering analysis were used to partition the AWWY time
series from 17 cities into four sub-regions. Although AWWY exhibited an increasing
trend in all of the four sub-regions (p < 0.05), it was high and stable in Regions III
and IV.

(2) The sc-PDSI for a specific month could be considered the KMDWI affecting CDWWY
in each sub-region, for example, the sc-PDSI in February of the current year for
Regions I and II, the sc-PDSI in December of the previous year for Region III and the
sc-PDSI in May of the current year for Region IV.

(3) The atmospheric circulation indices had time-lag effects on the KMDWIs, and em-
pirical KMDWI simulation models were constructed based on selected atmospheric
circulation indices in the four sub-regions. Their R2 values were in the range of
0.49 to 0.65, and the corresponding RMSE values were in the range of 0.58 to 0.72.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/agronomy14040817/s1, Table S1: statistical values of climate elements for
four sub-regions in Henan. Section S1: detailed explanation of statistical methods used in our study.
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