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Abstract: Protoplast culture and transformation technology offer a novel method for developing new
plant varieties. Nonetheless, the effective preparation of protoplasts and transformation technology
specific to celery has yet to be achieved. This study utilized celery seedling leaves as the primary
materials to examine the key factors influencing protoplast isolation. The aim was to prepare
leaf protoplasts with a high yield and of high quality and subsequently conduct transient gene
transformation and expression. The findings indicated that the most effective procedure for isolating
and purifying protoplasts was enzymatic digestion using an enzyme solution consisting of 2.0%
cellulase, 0.1% pectolase, and 0.6 M mannitol for a duration of 8 h. Subsequently, the protoplasts
were filtered through a 400-mesh sieve and purified through centrifugation at 200× g. Within
this system, the overall protoplast yield was exceptionally high, reaching a viability rate of up
to 95%. The transient transformation system yielded a maximum transformation efficiency of
approximately 53%, as evaluated using the green fluorescent protein (GFP) as a reporter gene. The
parameters of the transient transformation system were as follows: a protoplast concentration of
5 × 105 cells·mL−1, exogenous DNA concentration of 500 µg·mL−1, final concentration of PEG4000
at 40%, and transformation duration of 15 min. The transient transformation system was also utilized
to further analyze the protein localization characteristics of the celery transcription factor AgMYB80.
The findings indicated that AgMYB80 predominantly localizes in the nucleus, thereby confirming
the reliability and effectiveness of the transient transformation system. This study successfully
established an efficient system for isolating, purifying, and transforming celery protoplasts, and will
serve as a basis for future studies on molecular biology and gene function.

Keywords: celery; protoplast preparation; transient transformation system; subcellular localization

1. Introduction

Protoplasts are plant cells devoid of cell walls, possessing both totipotency and vitality,
enabling a range of metabolic activities within them [1]. Protoplasts are a distinctive
single-cell system representing excellent fundamental research and crop enhancement
materials. They offer valuable opportunities for investigating the physiology and genetics
of plant cells, including cell wall formation and regeneration, somatic hybridization, and
genetic transformation [2]. Plant protoplasts can be isolated and prepared from various
plant tissues, including leaves, cotyledons, petals, roots, hypocotyls, cells in suspension
culture, and callus tissues. Among these, leaves are the most frequently utilized tissue for
protoplast isolation [3]. The methods employed for protoplast isolation primarily consist
of mechanical, chemical, and enzymatic techniques [4,5]. Research has demonstrated that
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enzymatic methods yield high protoplast yields with excellent integrity, which is why
they are widely employed. However, the enzymatic method for protoplast isolation is
influenced by several factors, including the type of explant, choice of enzyme, concentration
of enzymes used, and duration of enzymatic digestion [6,7]. The optimal protoplast
preparation system can vary depending on the specific plant tissue. For instance, in the
case of tobacco (Nicotiana tabacum L.) leaf protoplasts, a digestion time as short as four
hours is sufficient to achieve optimal results [8]. However, the yield of Hibiscus cannabinus
hypocotyl protoplasts is relatively low after 9 h of digestion, whereas the maximum output
is accomplished with a 12 h digestion period [9]. Furthermore, in the case of maize leaf
protoplasts, the optimal result is achieved by employing 1.5% cellulase and 0.5% pectolase
for a digestion period of 5 h [10]; for Arabidopsis leaf protoplast digestion, a highly effective
combination consists of 1.5% cellulase and 0.4% pectolase [11].

After enzymatic or mechanical removal of their cell walls, protoplasts can readily
incorporate exogenous organelles and nucleic acids under specific conditions. Transient
gene expression is a rapid and effective cellular and genetic research technique. It proves
particularly valuable for swiftly assessing gene function, including subcellular protein
localization, protein–protein interactions, protein activity, and signal transduction [12,13].
Among the different methods for protoplast transformation, PEG-mediated transformation
has been extensively researched and has seen widespread application. This method offers
several advantages, including convenient operation, a shorter processing time, lower
experimental costs, good reproducibility, and relatively high transformation efficiency.
Additionally, PEG-mediated transformation allows the direct targeting of individual cells,
enabling a more direct investigation of transient gene expression and study of exogenous
substances. As a result, it is extensively utilized in plant molecular biology research [14,15].
At present, protoplast isolation and the preparation of a transient transformation system
using protoplasts have been successfully conducted on various plant species. These include
Arabidopsis [16], cucumber [17], maize [18], sweet cherry [19], and cassava [20]. These
advancements provide a solid foundation for gene function analysis in these plants and
offer valuable tools for further research in these species.

Celery (Apium graveolens L.) is a biennial vegetable from the Apiaceae family. It is
renowned for its nutritional richness and diverse functional bioactive compounds, which
make celery highly prized for its culinary applications and medicinal properties. It is popu-
lar among consumers both domestically and internationally [21]. The release of the whole
genome data of celery has opened up valuable genetic resources for studying its evolution,
gene function, functional analysis, and other related research areas [22]. A comprehensive
and efficient method for protoplast preparation and transformation specifically tailored to
celery is lacking. Existing techniques are time-consuming and challenging and often fail
to produce protoplasts that meet the requirements of subsequent genetic transformation
and gene functional studies. Subcellular localization studies primarily rely on tobacco or
onion tissues as carriers. While heterologous expression systems can be employed for gene
functional studies, including heterologous genetic backgrounds can potentially yield abnor-
mal results and introduce confounding factors into the analysis. Arabidopsis gene proteins
introduced into tobacco plants may undergo mislocalization, highlighting the limitations of
using heterologous expression systems for subcellular localization analysis [8]. Establishing
an efficient protoplast preparation and transformation system for celery is essential for
studying its gene function and conducting gene editing. In the study, we report a simplified
and efficient method for protoplast isolation and transient gene expression. Various factors
affecting the efficiency of protoplast isolation including enzymatic composition, digestion
time, mannitol concentration in the enzyme solution and centrifugal speed were evaluated
to optimize protoplast isolation and purification procedures. Additionally, using green
fluorescent protein (GFP) as a reporter gene, critical parameters that affect transient trans-
formation efficiency were also investigated such as PEG concentration and transformation
time. This transient gene expression system using leaf mesophyll protoplasts could be
applied to analyze complex regulatory mechanisms and contribute to the study of protein
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subcellular localization, protein–protein interactions and functional gene expression in
celery and related species.

2. Materials and Methods
2.1. Plant Material

In this study, the celery variety ‘Lvling Huangxinqin’ was selected as the plant material.
The seeds were placed into sterilized 50 mL centrifuge tubes and a disinfectant solution
consisting of 20% sodium hypochlorite bleach and 80% sterile water was added. The tubes
were subsequently shaken with 150 rotations per minute (rpm) using a shaker for 30 min
at room temperature. The disinfectant solution was carefully placed in a laminar flow
cabinet, and the sterilized seeds were thoroughly rinsed with sterile water five times to
ensure cleanliness. After rinsing, the seeds were placed on clean filter paper and air-dried.
Subsequently, the dried seeds were evenly distributed in a sealed bottle on a sterile MS
(Murashige and Skoog) (3% (w/v) sucrose, 0.8% (w/v) agar, and pH 5.8) medium. The
cultures were then incubated under sterile conditions at a temperature of 25 ◦C, with a
humidity level of 40% and a light cycle of 16 h of light and 8 h of darkness.

2.2. Protoplast Isolation and Purification

A modified and optimized protoplast isolation protocol for celery has been adapted
from Pua and Yoo’s protocols [16,17]. To initiate the process, a stock solution was prepared,
consisting of KCl, CaCl2, MES, mercaptoethanol, BSA, and a separate solution containing
mannitol. Subsequently, cellulase R-10 (at concentrations of 1.5%, 2.0%, and 2.5%) (Yakult
Honsha Co., Ltd., Tokyo, Japan) and pectolase (at concentrations of 0.05%, 0.10%, and
0.20%) (Yakult Honsha Co., Ltd., Tokyo, Japan) were added to the enzyme solution. To
ascertain the ideal concentration of mannitol (0.4, 0.5, 0.6, and 0.7 M) for the enzyme
solution was used, we compared different concentrations of mannitol. The pH of the
enzyme solution was adjusted to 5.8, and it was subsequently filter-sterilized using a
0.22 µm syringe filter. The solution was then stored at 4 ◦C for future use. For protoplast
preparation, well-grown leaves from three-week-old plants were selected. A blade was
used to carefully cut these leaves into 0.5–1 mm wide strips. The cut leaf strips were then
immersed in the pre-prepared enzyme solution and incubated at 25 ◦C in the dark, with
gentle shaking at 45 rpm. Protoplast yield and viability were assessed at different intervals
to optimize the digestion time (6, 8, 10, and 12 h). The protoplasts were resuspended in a
W5 salt solution (2 mM MES, 154 mM NaCl, 125 mM CaCl2, and 5 mM KCl; pH 5.7) and
gently mixed after isolation. The centrifugation speed was further optimized by testing
different speeds (50, 100, 200, 300, and 400× g) to determine the most effective rate for
separating and collecting the protoplasts.

The protoplast yield was quantified using a dual-chamber hemocytometer under an
Olympus CX21 optical microscope (Olympus, Tokyo, Japan). The calculation of protoplast
yield involved dividing the number of protoplasts obtained in the enzyme solution by the
fresh weight of the plant leaves utilized in the enzyme solution. Protoplast viability was
assessed using fluorescein diacetate (FDA) staining [23]. A solution of FDA (5 mg·mL−1)
was prepared by dissolving FDA in acetone. The isolated protoplasts were stained with FDA
at 25 µL·mL−1 and incubated in the dark at room temperature for 20 min. Subsequently, the
stained protoplasts were examined under a fluorescence microscope. Three random fields
were selected for observation and photography, and each sampling was repeated three
times. The number of fluorescent and total cells was counted to determine the protoplast
viability rate. The protoplast viability rate was calculated by dividing the fluorescent
protoplasts by the total number of protoplasts and multiplying the result by 100%.

2.3. Cloning of the AgMYB80 Gene

Total RNA was extracted from celery leaves using Total RNA Extraction Kit (Shen-
zhen Aweidy Biotechnology Co., Ltd., Shenzhen, China). Subsequently, cDNA was
synthesized through reverse transcription using Reverse Transcription Kit (Beijing Ts-
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ingke Biotech Co., Ltd., Beijing, China). The sequence of the AgMYB80 gene was am-
plified using specific primers (forward: 5′-ATGAAGAACACGCCATTGT-3′; reverse: 5′-
TAAATCATCTGAGGGTAGATCC-3′). The amplified product was then cloned into the
pUCm-T vector and sent for sequencing at Sangon Biotech (Shanghai) Co., Ltd, Shanghai,
China. After sequence verification, the specific primers (forward: 5′-ACGGGGGACTAGAG
AGATCCATGCACATATATTTCA-3′; reverse: 5′-GCCCTTGCTCATGCATGCATGCATCCT
CTCATTCCA-3′) were used to amplify the verified sequence. The amplified product
was cloned into the pSPYE vector with a GFP tag using the BamH I site, resulting in the
generation of recombinant plasmid 35S: AgMYB80-GFP. The recombinant plasmid was
transformed into the Escherichia coli strain DH5α using the heat shock transformation
method.

Plasmid extraction was conducted using SanPrep Column Plasmid DNA Mini Extrac-
tion Kit (Sangon Biotech (Shanghai) Co., Ltd., Shanghai, China). The concentration of the
extracted plasmid DNA was measured using a micro-nucleic acid protein quantifier and
subsequently adjusted to a concentration of 1000 ng·µL−1. The recovered plasmid DNA
was then stored in a refrigerator at −20 ◦C for future use.

2.4. Protoplast Transformation

The protoplast transformation of celery involves utilizing a PEG-mediated transient
protoplast transformation system, adapted from the established protocols used for Ara-
bidopsis and tomato, with slight modifications to suit the specific requirements of cel-
ery [17,24]. The isolated protoplast solution was chilled on ice and precipitated for 30 min
by gravity. The supernatant was discarded, and the protoplasts were resuspended in MMG
solution (0.4 M mannitol, 15 mM MgCl2, and 4 mM MES; pH 5.7). A mixture of 10 µL of
the target plasmid and 100 µL of protoplasts was gently mixed, followed by 110 µL of PEG
solution (PEG4000, 0.2 M mannitol, and 100 mM CaCl2). The mixture was left at room
temperature for 15 min. Different concentrations of PEG4000 (0%, 10%, 20%, 30%, 40%,
and 50%) were tested to optimize the PEG concentration. To optimize the transformation
duration, the mixture was incubated in the dark at room temperature for 5, 10, 15, 20, and
25 min. To stop the reaction, 420 µL of W5 solution was added. Transfected protoplasts
were incubated in the dark for 18–24 h and resuspended in 100 µL of W1 solution (4 mM
MES, 0.5 M mannitol, and 20 mM KCl).

In order to determine the efficiency of transformation, we counted the number of
protoplasts expressing a GFP fusion protein. Transformation efficiency = (number of
fluorescent protoplasts/total number of protoplasts) × 100%.

2.5. Subcellular Localization

The AgMYB80 fusion expression vector was transformed into celery protoplasts using
the PEG-mediated method, and mCherry carrying a nuclear localization signal was used as
a nuclear marker. The localization of AgMYB80 in celery protoplasts was observed using a
laser confocal scanning microscope.

2.6. Data Analysis

All experiments were replicated three times. Statistical analysis of the data was
performed using SPSS 18.0. The significant differences between treatments were determined
using the least significant difference (LSD) test at p ≤ 0.05. The heat map was generated
using TBtools software (version 1.12).

3. Results
3.1. Effect of Enzyme Combination and Enzymatic Digestion Time on Protoplast Isolation from
Celery Leaves

As depicted in Table 1 and Figure 1, 45 combinations were utilized for protoplast
isolation from plant leaves to identify the most effective enzyme combination and optimal
enzymatic digestion time. The results demonstrated significant variations in the number of
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protoplasts obtained under different enzyme combinations and digestion time conditions.
The enzymatic digestion was conducted throughout the period of 6 to 12 h, with a mannitol
concentration of 0.6 M in the enzyme solution.

Table 1. The yield of protoplasts treated with different combinations of enzymatic hydrolysates.

No. Enzyme-Liquid Combination
Enzymatic

Hydrolysis Time
(h)

Protoplast Number (107

Protoplasts·g−1 FW)
Active Quantity (%)

1 1.5% cellulase + 0.05% pectolase 4 2.75 t 78.89 p
2 1.5% cellulase + 0.10% pectolase 4 4.84 lm 80.11 op
3 1.5% cellulase + 0.20% pectolase 4 4.84 lm 83.22 ghijkl
4 2.0% cellulase + 0.05% pectolase 4 5.14 jk 82.37 klmn
5 2.0% cellulase + 0.10% pectolase 4 5.21 j 87.1 cd
6 2.0% cellulase + 0.20% pectolase 4 5.17 jk 84.49 fgh
7 2.5% cellulase + 0.05% pectolase 4 4.88 l 82.83 hijklm
8 2.5% cellulase + 0.10% pectolase 4 4.97 kl 82.52 ijklmn
9 2.5% cellulase + 0.20% pectolase 4 4.78l mn 85.44 def
10 1.5% cellulase + 0.05% pectolase 6 3.15 s 84.43 fghi
11 1.5% cellulase + 0.10% pectolase 6 6.55 fgh 83.44 ghijkl
12 1.5% cellulase + 0.20% pectolase 6 6.62 fgh 84.31 fghij
13 2.0% cellulase + 0.05% pectolase 6 7.03 e 85.48 b
14 2.0% cellulase + 0.10% pectolase 6 6.59 fgh 86.03 b
15 2.0% cellulase + 0.20% pectolase 6 6.39 hi 89.22 a
16 2.5% cellulase + 0.05% pectolase 6 6.28 i 84.29 fghij
17 2.5% cellulase + 0.10% pectolase 6 6.58 fgh 85.00 efg
18 2.5% cellulase + 0.20% pectolase 6 6.24 i 80.99 mno
19 1.5% cellulase + 0.05% pectolase 8 3.40 r 88.08 c
20 1.5% cellulase + 0.10% pectolase 8 7.37 d 87.18 cd
21 1.5% cellulase + 0.20% pectolase 8 7.62 c 90.67 a
22 2.0% cellulase + 0.05% pectolase 8 7.99 a 91.90 a
23 2.0% cellulase + 0.10% pectolase 8 8.01 a 93.00 a
24 2.0% cellulase + 0.20% pectolase 8 7.86 b 91.73 ab
25 2.5% cellulase + 0.05% pectolase 8 7.45 cd 83.00 hijkl
26 2.5% cellulase + 0.10% pectolase 8 7.58 cd 82.04 lmn
27 2.5% cellulase + 0.20% pectolase 8 7.10 e 80.23 op
28 1.5% cellulase + 0.05% pectolase 10 4.53 op 83.90 fghijkl
29 1.5% cellulase + 0.10% pectolase 10 6.53 fgh 86.62 cde
30 1.5% cellulase + 0.20% pectolase 10 6.76 f 84.10 fghijk
31 2.0% cellulase + 0.05% pectolase 10 6.67 fg 87.03 cd
32 2.0% cellulase + 0.10% pectolase 10 7.48 cd 85.09 efg
33 2.0% cellulase + 0.20% pectolase 10 7.10 e 82.48 jklmn
34 2.5% cellulase + 0.05% pectolase 10 6.66 fg 80.67 no
35 2.5% cellulase + 0.10% pectolase 10 6.5 gh 82.02 lmn
36 2.5% cellulase + 0.20% pectolase 10 6.53 fgh 71.64 s
37 1.5% cellulase + 0.05% pectolase 12 4.55 nop 75.05 r
38 1.5% cellulase + 0.10% pectolase 12 4.55 nop 76.84 q
39 1.5% cellulase + 0.20% pectolase 12 4.79 lm 74.43 r
40 2.0% cellulase + 0.05% pectolase 12 4.76l mno 77.09 q
41 2.0% cellulase + 0.10% pectolase 12 4.80 lm 75.04 r
42 2.0% cellulase + 0.20% pectolase 12 4.55 nop 71.89 s
43 2.5% cellulase + 0.05% pectolase 12 4.45 p 71.13 st
44 2.5% cellulase + 0.10% pectolase 12 4.63 mnop 69.87 t
45 2.5% cellulase + 0.20% pectolase 12 4.10 q 65.86 u

Notes: The letters represent statistically significant differences at p ≤ 0.05.
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The findings from the cellulase concentration screening revealed that, with a constant
pectolase concentration (0.2%) and digestion time (4 h), the protoplast yield and viability
initially increased and subsequently decreased as the cellulase concentration increased.
The highest yield of 5.17 × 107 protoplasts with a viability of 84.49% was achieved at a
cellulase concentration of 2.0%. Similarly, in the pectolase concentration screening, with a
constant cellulase concentration (2.0%) and digestion time (4 h), the protoplast yield and
viability initially increased and then declined with higher pectolase concentrations. The
highest yield of 5.21 × 107 protoplasts with a viability of 87.10% was attained at a pectolase
concentration of 0.1%.

The results of the digestion time screening revealed that the protoplast yield exhibited
an initial increase followed by a decrease as the digestion time was extended. The highest
yield of 8.01 × 107 protoplasts with a maximum viability of 93% was achieved after
eight hours of digestion. The protoplasts exhibited intact cell morphology, improved cell
dispersal, and minimal fragmentation with this duration. In contrast, at 4 and 6 h of
digestion, the cells remained clustered or only partially separated. Moreover, the yield was
lower at 10 and 12 h of digestion, and the cell morphology was compromised with signs of
cellular damage.

Based on the experimental findings, the optimal enzyme combination for protoplast
isolation is a mixture of 2.0% cellulase and 0.1% pectolase, with an 8 h digestion time. This
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combination has shown the highest protoplast yield and viability. Consequently, it will be
employed for subsequent experiments in the study.

3.2. Effect of Mannitol Concentration on Protoplast Isolation

For optimum mannitol concentrations in enzyme solutions, a range of mannitol
concentrations from 0.4 M to 0.8 M were tested. All treatments were performed using a
combination of 2.0% cellulase and 0.1% pectolase for an 8 h digestion time. As the mannitol
concentration in the enzyme solution increased, the yield and viability of protoplasts
initially increased and then subsequently decreased (Figure 2A). The highest yield and
viability of protoplasts were achieved with a mannitol concentration of 0.6 M, resulting
in a total yield of 8.01 × 107 protoplasts with a viability of 93%. However, when the
mannitol concentration was increased to 0.7 M and 0.8 M, the protoplast yield and viability
decreased while the proportion of broken protoplasts increased. Conversely, when the
mannitol concentration was reduced to 0.4 M and 0.5 M, the protoplast yield and viability
were significantly lower compared to the optimal concentration of 0.6 M. Based on the
results obtained, the optimal mannitol concentration in the enzyme solution for protoplast
isolation is determined to be 0.6 M.
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3.3. Effect of Centrifugation Speed on Protoplast Purification

Following enzymatic digestion using 2.0% cellulase and 0.1% pectolase in an enzyme
solution containing 0.6 M mannitol for 8 h, the impact of different centrifugation speeds (50,
100, 200, 300, and 400× g) on protoplast purification was evaluated. Upon filtration through
a 400-mesh sieve, the purified protoplasts were obtained. The outcomes of this purification
process are presented in Figure 2B. The results indicate that as the centrifugation speed
increased, the yield and viability of the lower layer protoplasts initially increased and then
gradually decreased.

The optimal centrifugation speed for obtaining the highest viability and yield of
protoplasts was 200× g, resulting in a yield of 8.22 × 107 protoplasts and viability of
95%. Further increases in centrifugation speed led to decreased protoplast yield and
viability, accompanied by an increased proportion of broken protoplasts and fragments.
At centrifugation speeds exceeding 300× g, some intact protoplasts were observed to be
broken during the process, resulting in a lower yield of purified protoplasts. Hence, a
centrifugation speed of 200× g was identified as the most suitable speed for the purification
of protoplasts.

An optimized protocol for celery protoplast isolation involved an eighth round of
enzymatic digestion using a mixture of 2.0% cellulase and 0.1% pectolase in an enzymatic
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solution containing 0.6 M mannitol. Subsequent purification of the protoplasts was suc-
cessfully performed through centrifugation at a speed of 200× g. This optimized protocol
resulted in a high yield, viability, and purity of protoplasts. Following optimization, the
total protoplast yield reached 8.22 × 107, with a viability of 95% being determined using
FDA staining (Figure 3).
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3.4. Protoplast Transformation of Celery Leaf Cells

This study utilized the PEG-mediated method to investigate the influence of proto-
plast concentration, exogenous DNA content, and PEG concentration on the efficiency
of transient transformation in celery leaf protoplasts. The collected celery leaf proto-
plasts were diluted into cell suspensions of various concentrations and subjected to the
same transformation method and incubation period. The efficiency of protoplast trans-
formation was assessed using a fluorescence microscope, as depicted in Figure 4A,B. The
optimal concentration of celery leaf protoplasts for transformation was determined to
be 5 × 105 cells·mL−1, with an exogenous DNA content of 50 µg·mL−1, resulting in the
highest transformation efficiency of approximately 53%. Deviating from this optimal con-
centration significantly decreased the transformation efficiency. For instance, at protoplast
concentrations of 1 × 105 cells·mL−1 and 7 × 105 cells·mL−1, the transformation efficiency
was only around 23%. Similarly, higher or lower exogenous DNA concentrations had
a negative impact on protoplast transformation efficiency. At an exogenous DNA con-
tent of 30 µg·mL−1, the efficiency was less than 20%, while at a higher DNA content of
70 µg·mL−1, the efficiency was less than 30%.
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Figure 4D illustrates that the transformation efficiency gradually increased with higher
concentrations of PEG4000. Protoplasts displayed minimal successful transformation when
the PEG4000 concentration was below 10%. The highest transformation efficiency was
attained at PEG4000 concentrations of 30% and 40%, with no significant difference observed
between the two concentrations. However, when the PEG4000 concentration exceeded 40%,
a slight decrease in the transformation efficiency was observed. Notably, the transformation
efficiency at a 50% PEG4000 concentration was lower than 30% and 40%.

Furthermore, the transformation efficiency demonstrated an initial increase with
longer transformation durations (Figure 4C). The highest efficiency, reaching 40%, was
achieved at 10 min of transformation, with no significant difference between 10 and 15 min.
However, as the transformation time exceeded 20 min, a noticeable decline in the transfor-
mation efficiency was observed.

The optimized protocol for celery protoplast transformation involves using a pro-
toplast concentration of 5 × 107 cells·mL−1 and a plasmid concentration of 50 µL·mL−1.
The transformation is performed by exposing the protoplasts to a 40% concentration of
PEG4000 for 10 min. Utilizing this optimized system, the efficiency of celery leaf protoplast
transformation can reach 53%.

3.5. Subcellular Localization of AgMYB80

Celery leaf protoplasts were used to validate the transient expression system by
examining the subcellular localization of AgMYB80. The results confirmed the expected
outcome, as the co-expression of the GFP-MYB80 fusion protein in celery leaf protoplasts
resulted in a distinct GFP signal specifically localized in the nucleus (Figure 5). In contrast,
the reporter gene GFP was observed in all organelles, serving as a control. This validation
confirms that the expression of celery leaf protoplasts is a reliable method suitable for
subcellular localization analysis.
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4. Discussion

To establish an efficient transient transformation system, a stable protoplast isolation
method must be employed to yield many highly viable protoplasts. Several factors play a
crucial role in protoplast preparation, including the selection of plant tissues, enzyme con-
centration, and enzymatic digestion time. Careful consideration and optimization of these
factors are necessary to ensure successful protoplast isolation and subsequent transforma-
tion experiments [6,7]. Healthy and young leaves are preferred for protoplast preparation.
This study used 4-week-old celery tissue culture seedlings, improving protoplast practice
and transient gene transformation efficiency. The enzyme composition and digestion time
play a critical role in successful protoplast isolation, especially in the dissociation of leaf
cells and the release of protoplasts. The specific enzymes and their optimal concentrations
may vary depending on the plant species and tissue. For instance, previous studies in
Arabidopsis demonstrated that a combination of 1.5% cellulase and 0.5% pectolase resulted
in complete cell wall lysis and a reduced cell fragment presence [25]. The most favorable
outcomes for maize leaf protoplast preparation were achieved using a combination of
1.5% cellulase and 0.5% macerozyme, as reported in previous research [10]. Digestion
time and enzyme concentration have an interactive relationship, typically necessitating
shorter digestion times with higher enzyme concentrations. In this experiment, various
cellulase R-10 and pectolase Y-23 concentrations were employed to release protoplasts
from leaf tissue at different digestion times. The findings revealed that a combination
of 2.0% cellulase and 0.1% pectolase, with an 8 h digestion period, yielded the highest
number of active and viable protoplasts. Furthermore, osmotic pressure plays a crucial
role in protoplast isolation, and mannitol is commonly employed as an osmotic stabilizer
in this process [26]. In the enzymatic function of protoplast isolation, the absence of cell
walls leaves protoplasts vulnerable and in need of osmotic regulators to maintain the
balance between their internal and external environments. Glucose, mannitol, and sorbitol
are commonly added to adjust the enzymatic solution’s osmotic pressure. In this study,
different concentrations of mannitol were examined in the enzyme solution containing
2.0% cellulase and 0.1% pectolase. The results indicated that a mannitol concentration of
0.6 M resulted in an optimal protoplast yield and optimal viability, aligning with previous
research findings [27].

Limited research has been conducted on the factors influencing protoplast purification,
with only a few reports available in the current literature [28]. The efficient purification and
isolation of protoplasts are essential to eliminate any undigested protoplast fragments and
broken protoplasts [29]. Our experimental investigations assessed the factors influencing
protoplast purification, particularly centrifugation speed. After subjecting the leaf samples
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to enzymatic digestion using 2.0% cellulase and 0.1% pectolase in a solution containing
0.6 M mannitol for 8 h, the mixture was filtered through a nylon mesh to eliminate leaf
fragments and cell clusters. To remove broken cell debris, centrifugation was employed. The
purity of the obtained protoplasts was confirmed through optical microscopy. We observed
that the highest yield of purified protoplasts was achieved at a centrifugation speed of
200× g. Similar observations have been reported, with lower centrifugation speeds being
generally recommended to prevent protoplast rupture [28]. In our study, by optimizing
various parameters affecting protoplast isolation and purification, we obtained high-yield
and comparatively pure protoplasts satisfied for protoplast transformation. The yield and
viability of protoplasts (8.22 × 107 protoplasts g−1 FW, 95%) were comparable to the values
reported for perennial ryegrass (5.6 × 107 protoplasts g−1 FW, more than 80%) [30] and
cassava (4.4 × 107 protoplasts g−1 FW, more than 90%) [31]. Notably, the system developed
for celery protoplast isolation and purification in this investigation outperformed previous
systems employed in other vegetable crops, such as Chinese cabbage [32], cabbage [33],
and rape [34]. These discrepancies may be attributed to inherent characteristics of the plant
itself. The results indicated that the system of protoplast isolation and purification using
our protocol was highly efficient.

The PEG-mediated transformation of protoplasts is widely used in plant molecular
biology studies. It has the advantages of convenience, a shorter processing time, and high
transformation efficiency [35–39]. The success of transgenic expression systems depends
on the choice of a suitable transformation method. Transformation efficiency is influenced
by several factors, including the number of protoplasts, plasmid DNA concentration, PEG
concentration, and transformation time [6,7]. Transformation efficiency can be hindered
by an excessive or densely packed number of protoplasts or a low amount of plasmid
DNA, leading to the limited entry of DNA into the protoplasts. Conversely, a low num-
ber of protoplasts and a high plasmid DNA concentration do not necessarily enhance
transformation efficiency. This study achieved optimal transformation efficiency with a
celery protoplast concentration of 8 × 107 per milliliter and a plasmid DNA concentra-
tion of 50 µL·mL−1. Previous research has also highlighted the significance of PEG4000
concentration and transformation time in maximizing transformation efficiency [20]. For
the purpose of assessing the effect of PEG4000 concentration and transformation duration
on the efficiency of transformation, this study optimized the transformation protocol for
celery leaf protoplasts. The efficiency of protoplast transformation was evaluated using
GFP as a detection marker. The findings revealed that both the PEG4000 concentration
and transformation duration played a crucial role in determining the transformation effi-
ciency of celery protoplasts. Elevated concentrations of PEG4000 and longer transformation
durations positively affected the transformation efficiency. However, excessively high con-
centrations of PEG4000 or extended transformation durations had inhibitory effects on the
transformation process. For instance, using PEG4000 at a concentration of 50% or duration
of ≥20 min resulted in reduced transformation efficiency. For instance, using PEG4000 at a
concentration of 50% or duration of ≥20 min resulted in reduced transformation efficiency.
This is the same as what has been observed previous studies on Arabidopsis [16], rice [40]
and other plants. In this study, the optimum combined conversion efficiency was found to
be 53%. Although this efficiency value is comparable to that previously reported for sweet
cherries [19], it is lower than the conversion efficiency value for the protoplast separation
of Arabidopsis (60–90%) [16]. This difference in conversion efficiency can be attributed to
intrinsic differences between plant species, with the higher conversion rates of Arabidopsis
protoplasts. This observation is in accordance with the findings of earlier research, which
underscores the existence of noteworthy inter-species disparities [41]. The disparities in
transformation efficiency could be attributed to inherent differences between plant species,
as Arabidopsis protoplasts exhibit higher transformation rates. In this study, we introduced
a rapid transient transformation method as an alternative for investigating gene function in
celery. By employing this system, we successfully examined the subcellular localization of
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the AgMYB80 gene. The results confirmed the nuclear localization of AgMYB80 in celery
protoplasts, validating the efficacy of this approach for subcellular localization studies.

5. Conclusions

The main findings of this study highlight the successful optimization of celery proto-
plast preparation and the establishment of an efficient, stable, and rapid transient expression
system. By employing an enzymatic digestion process using 2.0% cellulase and 0.1% pec-
tolase in an enzyme solution containing 0.6 M mannitol for 8 h, a substantial yield of
8.22 × 107 viable protoplasts was achieved using a centrifugation speed of 200× g. Ad-
ditionally, by adjusting the protoplast concentration to 5 × 107 cells·mL−1 and plasmid
concentration to 50 µL·mL−1, combined with 10 min of incubation using 40% PEG4000, a
protoplast transformation efficiency value of approximately 53% was obtained.

These optimized methods and systems provide robust support for subcellular localiza-
tion studies and protein interaction analysis. Through successful subcellular localization
studies, the nuclear localization of the AgMYB80 protein was confirmed, offering key
insights into the functional genomics, regulatory mechanisms, and gene positioning in the
transcription factors of plants.

Furthermore, this study has significant implications for future research and potential
applications in biotechnology. The efficient, stable, and rapid celery protoplast preparation
and transformation system established here lays a solid foundation for functional genomic
and gene editing studies on celery. It opens up new avenues for a deeper understanding of
gene functions, metabolic pathways, the development of improved varieties, and proteomic
research in celery. Moreover, this successful methodology holds the potential for adaptation
and application in other areas of crop research, promising a wide-ranging impact in the
field of plant science research and agricultural innovation.

In conclusion, the important findings and optimized methods of this study not only
provide valuable tools for celery protoplast research but also present breakthroughs for
biotechnological applications in related fields, offering vast prospects for future research
and innovation in plant science.
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