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Abstract: Phytoextraction is a promising technology for remediating heavy metal-contaminated soil.
Continuously screening potential plants is important for enhancing the efficiency of remediation.
In this study, fourteen local native plant species and four cultivated plant species, along with their
paired soils, were collected from around a copper smelter. The characteristics of soil pollution were
evaluated using contaminant factors (CF) and a geoaccumulation index (Igeo). The phytoextraction
potential of plants was investigated using the translocation factor (TF) and bioconcentration factor
(BCF). The soils around the smelter were very acidic, with a mean pH of 5.01. The CF for copper and
cadmium were 8.67–32.3 and 5.45–44.2, and the Igeo values for copper and cadmium were 2.43–4.43
and −0.12–2.29, respectively, indicating that the level of soil contamination was moderate to severe.
The copper concentrations in the root (357 mg/kg), shoot (219 mg/kg), and leaf (269 mg/kg) of
Elsholtzia splendens Nakai were higher than that in the other species. The cadmium in the shoot
(32.2 mg/kg) and leaf (18.5 mg/kg) of Sedum plumbizincicola was the highest, and Phytolacca acinosa
Roxb. had the highest cadmium level (20 mg/kg) in the root. Soil total and CaCl2-extractable copper
and cadmium were positively correlated with copper and cadmium in the plant roots, respectively.
The results of TF and BCF for copper and cadmium suggested that the accumulation and translocation
capacities for cadmium were higher than those of copper in the eighteen plant species. Although not
all plants met the criteria of being hyperaccumulators, Sedum plumbizincicola, Mosla chinensis Maxim,
and Elsholtzia splendens Nakai showed the most potential as candidates for the phytoextraction of
copper and cadmium contaminated soils, as indicated by their TF and BCF values.

Keywords: heavy metals; phytoremediation; environmental risk; accumulation capacities; hyperac-
cumulator

1. Introduction

Heavy metals (HMs) are characterized by a specific weight of more than 5.0 or a density
over 4.5 g/cm3, which cannot be degraded by microorganisms and pose significant hazards
to plant growth and human health [1]. With the rapid urbanization and industrialization,
large amounts of HMs have been accumulated in soil and water due to activities such as
smelting, mining, fertilization, and irrigation. Currently, soil contamination by HMs is a
global issue, particularly in developing countries [2]. According to a survey by Chinese
government, 16.1% of soil sampling points exceeded the environmental quality standard
and 82.8% of these points were polluted by cadmium, mercury, arsenic, copper, lead, etc. [3].
Moreover, the survey showed that the majority of the polluted soils were located near
heavily polluting enterprises, industrial wastelands, smelters, and mining areas. HMs in
soil and water can accumulate in crops and fish, posing a potential hazard to human health
through the food chain.
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Compared with the traditional physical and chemical remediation techniques, phytore-
mediation is a promising method for remediating soils contaminated with HMs, because
this technique is advantageous due to its cost-effectiveness and environmentally friendly
nature [4,5]. This technique can purify the environment through phytoextraction, phytosta-
bilization, phytovolatilization, phytofiltration, and phytotransformation. Of these methods,
the phytoextraction is the most widely used [6]. Phytoextraction can effectively remove
soil HMs by harvesting the plants that can accumulate large amounts of HMs in their
aboveground parts [7,8]. For phytoextraction, promising plants are characterized by high
biomass, high growth rate, and the ability to accumulate HMs [4,9]. But plant genotype,
soil physical, and chemical characteristics (pH, organic matter, cation exchange capacity,
etc.); climatic conditions (temperature, rainfall); and the availability of HMs all influence
the efficiency of phytoextraction [9,10]. Therefore, identifying and selecting appropriate
plants that tolerate or have hyper-accumulate capacities for HMs is the key to successful
phytoextraction [9,11].

Previous studies have shown that both wild and cultivated plants were extensively
utilized for phytoextraction [11,12]. As for artificially cultivated restoration plant species,
they mainly consist of hyper-accumulators, such as Sedum plumbizincicola (a cadmium
hyper-accumulator), Pteris vittata L. (an arsenic hyper-accumulator), and Elsholtzia splendens
Nakai (a copper-tolerant plant). These species may be replaced by local native plant species
in the polluted area once human intervention is withdrawn [13–16]. On the contrary,
native wild plants can grow robustly after undergoing long-term natural selection and can
withstand a series of natural disasters, such as local extreme climate conditions, pests, and
diseases [11,17]. Moreover, some studies have reported that the phytoextraction efficiency
for HMs in artificially cultivated hyper-accumulators was lower in field experiments
compared to pot experiments [18–20]. For example, the concentrations of cadmium in Sedum
plumbizincicola grown in a pot soil (total cadmium, 1.25 mg/kg) were 0.44 times higher than
those grown in a cadmium-contaminated field (total cadmium, 1.25 mg/kg) [21]. However,
the copper contents in the shoots of Elsholtzia splendens Nakai under field conditions were
24 times higher than in those grown under greenhouse conditions [22]. The phytoextraction
efficiency for hyper-accumulators depends on the environmental conditions. Thus, the
further assessment of the phytoextraction potential for both native and cultivated plants is
needed when they are all grown under similar environmental conditions.

The goal of this study was to screen the phytoextraction potential of plants species by
comparing native and cultivated plants growing around a copper smelter. In this study,
we collected fourteen local native plant species and four cultivated plant species. The
cultivated plants were grown in a demonstration zone and included Pennisetum sinese
Roxb. (an energy plant), Sedum plumbizincicola (a cadmium hyper-accumulator), Elsholtzia
splendens Nakai (a copper-tolerant plant), and Canna indica L. (a landscape plant). Objectives
included: (1) investigating the pollution level of the soils using contaminant factors (CF) and
the geoaccumulation index (Igeo); (2) exploring the concentration of copper and cadmium
in different plant tissues; and (3) determining the phytoextraction potential of plants based
on the translocation factor (TF) and bioconcentration factor (BCF).

2. Materials and Methods
2.1. Site Description

The copper smelter is located in Guixi city, China (Figure 1), and was established in
1985. The long-term smelter activities have released significant amounts of HMs into the
surrounding area, resulting in severe crop pollution and posing high health risks to local
residents [23]. The primary pollutants in the region include copper and cadmium, which
originate from the wastewater, atmospheric deposition, and leachate from solid waste.
In previous studies, there was a high atmospheric deposition of copper and cadmium in
the northwest and southeast areas near the smelter. Additionally, the soil in these areas
was found to be highly acidic and heavily contaminated by copper and cadmium [24,25].
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Therefore, the paired plant and soil samples were collected from these two directions near
the smelter.
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2.2. Samples Collection and Chemical Analysis

Eighteen plant species were sampled, and the codes (S1–S18), latitude, and longitude
are listed in Table S1 and Figure 1. Among the plants, Pennisetum sinese Roxb. (S11),
Sedum plumbizincicola (S16), Elsholtzia splendens Nakai (S13), and Canna indica L. (S14) were
collected from a demonstration plot for the remediation of HM-contaminated soil, while
the others were native wild plants. The paired soil samples were also collected from the
rhizosphere of the plant, and both the plant and soil samples were replicated in triplicate
for each site.

The tiny ash from plants surfaces was washed successively with tap water, 10% HNO3,
and deionized water. They were then divided into roots, shoots (without leaf), and leaves,
respectively. All plant samples were dried at 85 ◦C until constant weight in an oven, and
then ground to a powder. Copper and cadmium in plant tissues were analyzed using
atomic absorption spectrometry with graphite furnace (AAS-GF) after digestion with 5 mL
of HNO3 and 1 mL of HClO4 on a hot plate. A plant reference (GBW10010, rice) was
analyzed to ensure the quality control.

Soil samples were air-dried indoors for 14 days. One portion of the soil was sieved
using a 2 mm sieve and the other portion was sieved using a 0.15 mm sieve. The soil
samples that passed through a 2 mm sieve were used to determine soil pH using a pH
electrode. Available copper and cadmium were determined after extraction with 0.01 mol/L
CaCl2 at a ratio of 1:5 (solid to liquid) [24]. Total copper and cadmium in soils that passed
through 0.15 mm sieve were determined using AAS-GF after digestion with a mixture of
acids on a hot plate [26]. Meanwhile, a soil reference material (GBW07405) was analyzed
for quality control.

2.3. Data Analysis
2.3.1. Contaminant Factors (CF)

The CF can reflect the pollution level of soil, and it was calculated using Equa-
tion (1) [27]. The CF consisted of four levels: low (CF < 1), moderate (1 ≤ CF < 3),
considerable (3 ≤ CF < 6), and very high (6 ≤ CF) contamination [28].

CF = Cmetal/Cbackground (1)
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Cmetal (mg/kg) represents the metal contents in soil samples; Cbackground (mg/kg) repre-
sents the metal contents in background soil (Cu 20.3 mg/kg; Cd 0.11 mg/kg).

2.3.2. Geoaccumulation Index (Igeo)

Igeo can be calculated using Equation (2) and can quantify the extent of metal pollution
for the studied soil [27]. The Igeo is divided into seven grades (Table 1) [29].

Igeo = log2(Cn/1.5Bn) (2)

where Cn and Bn represent the metal content (n) in the soil sample and the background
content of the metal (n) (Cu 20.3 mg/kg; Cd 0.11 mg/kg). Factor 1.5 is the background
matrix correction factor due to lithospheric effects.

Table 1. Pollution level and values of Igeo.

Grade Level Values of Igeo

Grade 0: unpolluted Igeo ≤ 0
Grade 1: unpolluted to moderately polluted 0 < Igeo < 1

Grade 2: moderately polluted 1 ≤ Igeo < 2
Grade 3: moderately to heavily polluted 2 ≤ Igeo < 3

Grade 4: heavily polluted 3 ≤ Igeo < 4
Grade 5: heavily to extremely polluted 4 ≤ Igeo < 5

Grade 6: extremely polluted 5 ≤ Igeo

2.3.3. Translocation Factor (TF)

The TF can be used to assess the capacity of plants to translocate metals from the root
to shoot:

TF = Cshoot/Croot (3)

where the Cshoot and Croot are the concentrations of metals in shoot and root, respectively.
If the TF > 1, it represents the high capacity for removing HMs from soil [6].

2.3.4. Bioconcentration Factor (BCF)

BCF can be used to evaluate the efficiency of plants adsorbing metals from the soil to
their aboveground parts. It can be calculated using Equation (4) [30]. When the BCF >1, it
suggests the high potential for plant phytoextraction [31].

BCF = Cshoot/Csoil (4)

where the Cshoot and Csoil are the contents of metals in shoot and soil samples, respectively.

2.4. Statistical Analyses

All data were analyzed using SPSS 28.0 software (IBM, Armonk, NY, USA). Each
datapoint is the mean ± standard error. Comparisons of datasets were performed using a
one-way analysis of variance (ANOVA) test at a significance level of p < 0.05.

3. Results and Discussion
3.1. Total and Available Copper and Cadmium in Soils

The soil pH in the plant rhizosphere around the smelter ranged from 4.54 to 5.85
(Table 2). The mean pH was 5.01, and over 50% of the soil values were less than 5.0,
indicating that the soil was very acidic. This may be due to the fact that the soils were
derived from Quaternary red clay, which is classified as Ultisols [24]. These soils were
affected by acid rain with a pH of 3.09–4.50 [32]. Total copper and total cadmium in soil
ranged from 176 to 655 mg/kg and from 0.60 to 4.87 mg/kg, respectively. The CFs for
copper and cadmium were 8.67–32.3 and 5.45–44.2 (Figure S1), respectively, which were
significantly higher than 6 (except for Mosla chinensis Maxim). This indicates that the
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study area was severely contaminated due to smelter activities [27,28,33]. Furthermore, the
concentrations of soil copper and cadmium were 4.52–12.1 and 1.0–15.2 times higher than
the recommended screening values for copper and cadmium (GB 15618-2018, pH < 5.5),
respectively. Meanwhile, the soils around the smelter were also severely contaminated
compared to the clean soil located about 16.4 km away (copper 33.3 mg/kg, cadmium
0.368 mg/kg; Table 2) [34]. Moreover, the Igeo values were 2.43–4.43 for copper and
−0.12–2.29 for cadmium (Figure S2). The Igeo values indicated moderate to heavy pollution
for copper and cadmium, except for the soil from Mosla chinensis Maxim.

Table 2. Soil pH and total and available copper (mg/kg) and cadmium (mg/kg) around the Guixi
smelter.

Species of Plants Soil pH Total Cu Available Cu Total Cd Available Cd

Oenothera biennis L. 5.02 ± 0.08 bcd 290 ± 5 hi 41.3 ± 3.5 bc 1.63 ± 0.05 ghi 0.52 ± 0.27 h
Cyclosorus interruptus 4.92 ± 0.05 bcd 430 ± 42 cd 64.7 ± 2.9 abc 2.73 ± 0.08 c 1.31 ± 0.03 c
Verbena officinalis L. 5.03 ± 0.03 bcd 250 ± 26 i 35.6 ± 4.1 c 2.03 ± 0.16 ef 1.02 ± 0.08 d

Xanthium strumarium L. 4.93 ± 0.04 bcd 333 ± 34 efgh 64.5 ± 4.3 abc 2.26 ± 0.16 de 1.03 ± 0.06 d
Solidago canadensis L. 5.14 ± 0.02 abcd 331 ± 43 efgh 57.1 ± 4.3 abc 1.64 ± 0.06 ghi 0.75 ± 0.06 fg

Saccharum arundinaceum Retz. 5.09 ± 0.03 abcd 319 ± 28 fghi 51.7 ± 6.8 abc 1.92 ± 0.16 fg 0.96 ± 0.08 de
Pteris multifida Poir. 4.58 ± 0.03 d 559 ± 44 b 99.7 ± 11.8 a 3.18 ± 0.24 b 1.59 ± 0.12 b

Pteris vittata L. 5.44 ± 0.04 abc 412 ± 14 cd 45.2 ± 7.2 abc 1.44 ± 0.12 hij 0.48 ± 0.03 h
Phytolacca acinosa Roxb. 4.8 ± 0.03 bcd 176 ± 20 j 29.8 ± 2.6 c 4.87 ± 0.33 a 2.43 ± 0.17 a

Artemisia sieversiana Ehrhart
ex Willd. 4.68 ± 0.02 cd 394 ± 14 cdef 68.7 ± 2 abc 1.7 ± 0.11 gh 0.87 ± 0.04 def

Pennisetum sinese Roxb. 4.65 ± 0.04 cd 441 ± 39 cd 76.5 ± 3.4 abc 1.95 ± 0.06 efg 0.97 ± 0.04 de
Lophatherum gracile Brongn. 4.81 ± 0.04 bcd 399 ± 23 cde 65 ± 6 abc 1.36 ± 0.06 ij 0.68 ± 0.04 fgh
Elsholtzia splendens Nakai 4.74 ± 0.03 bcd 586 ± 51 ab 95.7 ± 11.3 ab 1.17 ± 0.18 j 0.57 ± 0.07 gh

Canna indica L. 5.85 ± 1.41 a 655 ± 33 a 76.6 ± 5.1 abc 1.61 ± 0.06 ghi 0.77 ± 0.05 efg
Aster subulatus Michx. 5.29 ± 0.03 abcd 370 ± 25 defg 57.6 ± 9.8 abc 1.47 ± 0.06 hij 0.69 ± 0.04 fgh
Sedum plumbizincicola 4.55 ± 0.02 d 462 ± 56 c 86.4 ± 5.4 abc 2.51 ± 0.12 cd 1.3 ± 0.01 c
Mosla chinensis Maxim 5.54 ± 0.04 ab 311 ± 17 ghi 37.3 ± 3.5 c 0.6 ± 0.08 k 0.25 ± 0.03 i
Vetiveria zizanioides L. 5.15 ± 0.04 abcd 600 ± 14 ab 79.9 ± 11.9 abc 3.18 ± 0.08 b 1.49 ± 0.1

Mean value 5.01 406 2.07
Clean soil * 33.3 n.d. 0.368 0.015

Background value 20.3 0.11
Soil screening value

(GB 15618-2018, pH ≤ 5.5) 50 0.3

Note: * the data of the clean soil was obtained from the study by Cui et al. [34]. Mean (n = 3) and standard error
followed by different letters indicates significant differences (p < 0.05). n.d., not detectable.

The above results suggest that the soils in the study area are significantly more con-
taminated than clean soil. This contamination may be attributed to the smelter activities,
including the atmospheric deposition, wastewater discharge, leaching solutions from solid
waste, etc. Furthermore, the CaCl2 extractable copper and cadmium concentrations were
also significantly higher than those found in the clean soil, suggesting that these metals may
be easily transported into crops [35]. Our recent study showed that local residents were
exposed to high health risks due to the presence of heavy metals (HMs) in rice, vegetables,
eggs, etc. [23]. Therefore, remediating the contaminated soils and controlling the potential
risk to human health are meaningful.

3.2. Accumulation of Copper and Cadmium in Plants

To mitigate the impact of extreme values on the assessment of metal accumulation
in plants, the top and bottom 25% of copper and cadmium concentrations were excluded.
The distribution of copper and cadmium accumulation in different plant tissues are shown
in Figure 2. Similar to the concentrations of metals in soil, the mean metal contents
in the roots, shoots, and leaves of plants all followed the order of copper > cadmium.
Moreover, the mean copper contents in plants followed the root > leaf > shoot order, while
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cadmium followed the root > shoot > leaf order. The results indicated the significant
variations of metal uptake capacities among different parts of plant species. For instance,
the copper concentrations in the roots (47.2–156 mg/kg) were significantly higher than those
of cadmium (1.81–3.73 mg/kg). Meanwhile, the copper concentration in the plant leaves
ranged from 32.3 to 74.4 mg/kg, which fell within the phytotoxic level (20–100 mg/kg) [36].
This may be the main reason for the decline in crop yield and the metal accumulation in
crops in the local area.
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Figure 2. Concentrations of copper and cadmium in different parts of the plants around the
Guixi smelter.

Furthermore, the specific concentrations of copper and cadmium in the root, shoot,
and leaf are provided in Table S2. The highest copper contents in the root, shoot, and leaf
were found in Elsholtzia splendens Nakai, with the values of 357 mg/kg, 219 mg/kg, and
269 mg/kg, respectively. The lowest copper concentrations in the root (23.5 mg/kg) and
leaf (8.07 mg/kg) were both found in Saccharum arundinaceum Retz. The shoot of Solidago
canadensis L. had the lowest copper concentration (4.18 mg/kg). The highest concentration
of cadmium in the root was found in Phytolacca acinosa Roxb. (20.0 mg/kg), followed by
Sedum plumbizincicola (16.4 mg/kg). The highest levels of cadmium were found in the shoot
(32.2 mg/kg) and leaf (18.5 mg/kg) of Sedum plumbizincicola, while the lowest levels were
found in the shoot and leaf of Solidago canadensis L. (0.79 mg/kg) and Lophatherum gracile
Brongn. (0.34 mg/kg), respectively. Moreover, the copper concentrations in the plant root
were significantly lower than those in their paired soils. However, 72.2% of the cadmium
concentrations in plant roots were higher than those in the associated rhizosphere soil.
Soil total and available copper were positively correlated with the copper concentrations
in plant roots (p < 0.01) (Figure 3). Similarly, the total and available cadmium in the soil
were positively correlated with the cadmium concentrations in the plant roots (p < 0.01)
(Figure 3). This indicated that the metal accumulation in plants was significantly influenced
by total and available metal concentrations in the soil.
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Figure 3. Correlation coefficients of total soil and available copper and cadmium and metal accumu-
lation by plants.

In general, the Elsholtzia splendens and Sedum plumbizincicola had a higher potential for
accumulating copper and cadmium, respectively, compared to other plants. For the copper-
tolerant plant, copper in Elsholtzia splendens is bound to the cell wall and histidine, and its
detoxification occurs the complexation with nitrogen/oxygen and S ligands [37,38]. Some
specific proteins, including pABCB28, SpMTP5, SpNRAMP5, SpHMA2, and SpHMA3,
are involved in the translocation and detoxification of cadmium [39,40]. These proteins
play important roles in the hyper-accumulation capacity for cadmium in Sedum plumbiz-
incicola. Specifically, SpHMA3 is responsible for transporting cadmium and localizing it
to the tonoplast. It plays a crucial role in the detoxification of cadmium in the shoots of
Sedum plumbizincicola by sequestering cadmium into the vacuoles [41]. However, not all
eighteen species of plants met the threshold value for copper (1000 mg/kg) and cadmium
(100 mg/kg) hyperaccumulation [42,43]. For example, the concentration of cadmium in
the shoot (34.2 mg/kg) of Sedum plumbizincicola in this study was significantly lower than
the average value of cadmium (170–172 mg/kg) reported by Wang et al. [18]. This may
be due to the following reasons. First, the metal accumulation in plants depends on the
total and available metal in the soil. For example, the cadmium content in the shoots of
Sedum plumbizincicola reached 100–540 mg/kg when the total cadmium in the soil was
8.68–16.9 mg/kg, as reported by Li et al. [44]. This concentration was 1.78–3.47 times higher
than the highest soil cadmium observed in this study. Second, the climatic conditions in-
cluding the rainfall deposition and temperature also significantly influenced the behavior
of metal uptake [45]. Finally, the source of HMs and their bioavailability also significantly
affected the metal accumulation in plants. In particular, the atmospheric deposition of
copper and cadmium in the study area ranged from 106–1369 mg/m2 and 2.3–10.3 mg/m2,
respectively, which were the main sources of the soil metal [23]. Meanwhile, the 84% and
87% of atmospheric the wet deposition of copper and cadmium were found in ionic specia-
tion, making them more prone to accumulation in the above-ground parts of plants [23,46].
This may be the reason for higher copper concentrations in plant leaves compared to shoots
(Figure 2). Similarly, our recent study showed that the accumulation of copper and cad-
mium in the new leaves of campour at high deposition points was much higher compared
to that at low deposition points [25].
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3.3. TF and BCF of Plants

The TF values of copper and cadmium among the plants are shown in Figure 4.
Elsholtzia splendens Nakai had the highest TF for copper (0.62), while Solidago canadensis L.,
Artemisia sieversiana Ehrhart ex Willd. and Canna indica L. had the lowest TF for copper
(0.06–0.09). However, the TFCu values for all the eighteen plants were less than 1, indicating
a low accumulation capacity for copper. Regarding cadmium, Mosla chinensis Maxim
had the highest TFCd (3.39), followed by Sedum plumbizincicola (2.12), Lophatherum gracile
Brongn. (1.54), Pteris vittata L. (1.39), Cyclosorus interruptus (1.20), Saccharum arundinaceum
Retz. (1.18), Xanthium strumarium L. (1.15), and Artemisia sieversiana Ehrhart ex Willd. (1.03).
The TFCd values for the other ten plant species were all less than 1, suggesting a low
capacity for cadmium translocation.
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Figure 4. TF values of copper and cadmium for eighteen plant species. Mean (n = 3) and standard
errors followed by different letters above the columns indicated significant difference at p < 0.05.

In addition to TF, the BCF values for copper and cadmium by the plants were also
evaluated. The BCF values of copper ranged from 0.01 to 0.38 (Figure 5), and Elsholtzia
splendens Nakai exhibited the highest BCFCu. The BCFCu values for plants in this study
were all lower than 1, suggesting a low capacity to accumulate copper into plant tissues for
the eighteen plant species. The BCF values of cadmium ranged from 0.16 to 13.7. Among
the plants tested, Sedum plumbizincicola exhibited the highest BCFCd (13.7), which was
5.11 times higher than the second highest BCFCd observed in Mosla chinensis Maxim (2.24).
In contrast to BCFCu, the BCFCd values in twelve of the eighteen plants were higher than
1, indicating that the plants had higher cadmium accumulation capacities compared to
copper. Moreover, the values of BCFCd for all the plants were higher than those of copper.
Similarly, Wu et al. reported that the BCF values for HMs in plants followed the order
of cadmium > zinc > copper > nickel > lead > chromium [47]. The higher accumulation
capacity for cadmium by the plants may be due to the higher bioavailability of cadmium
than that of copper, which was more easily adsorbed by plants [48].

It has been noted that BCF and TF values are more accurate in reflecting the metal
accumulation and translocation capacities of different plants than the original metal con-
centrations in plants [49]. Especially for plants with high capacities to adsorb metals
from the soil into their above-ground parts, the metal BCF and TF values were higher
than 1 [36]. Consequently, we listed the top six plant species that have the potential for the
phytoextraction of copper and cadmium (Table 3). It was clearly indicated that Elsholtzia
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splendens Nakai had the highest capacities for copper accumulation among all the plant
species. Sedum plumbizincicola and Mosla chinensis Maxim had high cadmium accumulation
capacities and moderate copper accumulation capacity. Therefore, the three plant species
can be considered potential candidates for phytoextraction in this study.
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Figure 5. BCF values of copper and cadmium for eighteen plant species. Mean (n = 3) and standard
error followed by different letters above the columns indicated significant difference at p < 0.05.

Table 3. The top six TF and BCF of Cu and Cd for plant species.

TFCu BCFCu TFCd BCFCd

Elsholtzia splendens Nakai (0.62) Elsholtzia splendens Nakai (0.38) Mosla chinensis Maxim (3.39) Sedum plumbizincicola (13.7)
Vetiveria zizanioides L. (0.60) Vetiveria zizanioides L. (0.30) Sedum plumbizincicola (2.12) Mosla chinensis Maxim (2.24)
Mosla chinensis Maxim (0.59) Pennisetum sinese Roxb. (0.24) Lophatherum gracile Brongn. (1.54) Artemisia sieversiana Ehrhart ex Willd. (2.18)
Sedum plumbizincicola (0.56) Mosla chinensis Maxim (0.16) Pteris vittata L. (1.39) Pennisetum sinese Roxb. (1.86)

Pennisetum sinese Roxb. (0.43) Sedum plumbizincicola (0.16) Cyclosorus interruptus (1.20) Pteris vittata L. (1.75)
Lophatherum gracile Brongn. (0.41) Cyclosorus interruptus (0.09) Saccharum arundinaceum Retz. (1.18) Cyclosrus interruptus (1.50)

3.4. Phytoextraction Potential Evaluation and Environmental Implication

The selection of appropriate plant species is the key for the phytoextraction of soil
polluted with HMs [50,51]. The ideal plant should have high/hyper metal accumulation
capacities and considerable biomass, and it should be able to quickly remove HMs from
soils [4]. This study did not find any heavy metal hyperaccumulators, but Elsholtzia
splendens Nakai, Sedum plumbizincicola, and Mosla chinensis Maxim exhibited high BCF and
TF for copper and cadmium. Similar to the majority of previous studies, this study also
neglected to consider the biomass of plants, thus the removal efficiency for HMs cannot be
calculated [11,37,52]. This is primarily because of the challenge in accurately calculating the
biomass (kg/ha) of plants during field investigations. Nevertheless, our study can provide
theoretical guidance for phytoextraction, based on the capacities of metal accumulation
and translocation.

The best candidates for phytoextraction should be evaluated based on their efficiency
in removing heavy metals (HMs), as well as the concentration of metals in plants and their
biomass. This evaluation considers the following four aspects. First, the most important
factor for phytoextraction is the total removal efficiency of HMs from the polluted soil
by the plants. However, the biomass of the majority of the hyper-accumulators was at a
low level, which restricted the removal efficiency for HMs [4,6]. For example, the biomass
of Sedum plumbizincicola ranged from 1.38 to 6.33 t/ha (dry weight), which was signifi-
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cantly lower than that of Pennisetum sinese Roxb. (39 t/ha), maize (8.7–45 t/ha), and reed
(13.9 t/ha) [24,53,54]. Second, the economic cost, including the planting, management, and
safe disposal of harvested biomass, should also be taken into considered for phytoextrac-
tion. Especially for the hyper-accumulators with low biomass and large amounts of HMs,
most of them have no potential economic value and require additional investment in incin-
erators or landfills [55,56]. Recently, there has been advocacy for using energy plants such
as Salix, Populus, Miscanthus, and Arundo to remediate soils contaminated with HMs. These
plants have high biomass and fast-growing rate, making them suitable for this purpose.
The biomass can be sold to biomass power plants and used to generate electricity [57–60].
Meanwhile, they can effectively remove HMs from soil due to their high biomass and
moderate metal accumulation capacities. Our recent demonstration project also indicated
that Pennisetum sinese Roxb. can remove 6142 g/ha of copper and 138 g/ha of cadmium.
Additionally, it can generate a profit of 2604–2791 USD/ha in heavily contaminated soil.
Furthermore, it can be used as feed for livestock in lightly contaminated soils (Figure 6).
Third, the potential ecological benefits from the phytoextraction process were neglected
in most cases. For example, some plants may require a significant amount of water and
fertilization, which can lead to a decrease in groundwater levels and soil quality in the
short term. Even some plants are considered alien species, which can potentially cause
ecological disasters. Meanwhile, it is important to consider the suitability of plants for the
local climate. Some tall plants, including Pennisetum sinese Roxb. and reed, can provide
habitats for various organisms, including insects, birds, and snakes. For instance, Sedum
plumbizincicola cannot survive at temperature below 273.15 K or above 303.15 K. Forth, the
environmental aesthetic benefits should be taken into account for the phytoextraction. The
polluted soils or mining wastelands around large cities could be redeveloped into parks.
We could select restorative plants that have beautiful flowers or are suitable for large-scale
planting. These plants could be planted alone or mixed with other plants to establish an
ecological park.
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In general, Sedum plumbizincicola, Mosla chinensis Maxim, and Elsholtzia splendens Nakai
were the most promising candidates for the phytoremediation of the polluted soils, based
on their metal accumulation and translocation capacities. Nevertheless, the efficiency of
metal removal should be further studied through pot or field experiments. In the future, it
is essential to investigate and screen native or cultivated plants with high biomass, valuable
properties, moderate HMs absorption capacity, and high metal removal efficiencies. Our
previous studies had noted that the total removal efficiency of copper for Pennisetum sinese
Roxb was 1.50 times higher than that of Elsholtzia splendens Nakai, and the removal efficiency
of cadmium was similar to that of Sedum plumbizincicola [24]. Therefore, in the future, more
efforts should be made to transform plants with a high biomass into fast-growing, valuable
hyper-accumulators using transgenic technology. This will enable the rapid removal of
heavy metals from the soil.
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4. Conclusions

This study demonstrated that the soils around the smelter were moderately to heavily
polluted with copper and cadmium and had a low soil pH. Elsholtzia splendens Nakai had
higher copper concentrations in the roots, shoots, and leaves than the other plant species.
The highest levels of cadmium were found in the shoots and leaves of Sedum plumbizincicola,
while the highest concentration of cadmium in the roots was observed in Phytolacca acinosa
Roxb. The eighteen plant species had higher accumulation and translocation capacities for
cadmium compared to copper, as indicated by the TF and BCF. However, none of them
met the criteria to be classified as hyperaccumulators. Elsholtzia splendens Nakai, Sedum
plumbizincicola, and Mosla chinensis Maxim were the most promising candidates for the
phytoextraction of copper and cadmium in the polluted soils. In the future, further studies
are needed to examine the biomass, total removal efficiency, and economic benefits for
these three plant species.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agronomy13122874/s1, Table S1: The codes, latitude, and longitude
of plants with paired soils; Table S2: Concentrations of copper (mg/kg) and cadmium (mg/kg) in
roots, shoots, and leaves; Figure S1: The CF values for copper and cadmium around the copper
smelter; Figure S2: The Igeo values for copper and cadmium around the copper smelter.
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