
Citation: Palmieri, B.; Cilento, F.;

Amendola, E.; Valente, T.; Dello

Iacono, S.; Giordano, M.; Martone, A.

An Investigation of the Healing

Efficiency of Epoxy Vitrimer

Composites Based on Zn2+ Catalyst.

Polymers 2023, 15, 3611. https://

doi.org/10.3390/polym15173611

Academic Editor: Gregorio

Cadenas-Pliego

Received: 7 August 2023

Revised: 25 August 2023

Accepted: 29 August 2023

Published: 31 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

An Investigation of the Healing Efficiency of Epoxy Vitrimer
Composites Based on Zn2+ Catalyst
Barbara Palmieri 1 , Fabrizia Cilento 1,* , Eugenio Amendola 1,* , Teodoro Valente 1,2, Stefania Dello Iacono 1 ,
Michele Giordano 1 and Alfonso Martone 1

1 Institute of Polymers, Composite and Biomaterials (IPCB), National Research Council of Italy,
80055 Portici, Italy; barbara.palmieri@ipcb.cnr.it (B.P.); teodoro.valente@cnr.it (T.V.);
stefania.delloiacono@cnr.it (S.D.I.); michele.giordano@cnr.it (M.G.); alfonso.martone@cnr.it (A.M.)

2 Agenzia Spaziale Italiana (ASI), Via del Politecnico snc, 00133 Roma, Italy
* Correspondence: fabrizia.cilento@ipcb.cnr.it (F.C.); eugenio.amendola@cnr.it (E.A.)

Abstract: The need to recycle carbon-fibre-reinforced composite polymers (CFRP) has grown sig-
nificantly to reduce the environmental impact generated by their production. To meet this need,
thermoreversible epoxy matrices have been developed in recent years. This study investigates the
performance of an epoxy vitrimer made by introducing a metal catalyst (Zn2+) and its carbon fibre
composites, focusing on the healing capability of the system. The dynamic crosslinking networks
endow vitrimers with interesting rheological behaviour; the capability of the formulated resin (AV-5)
has been assessed by creep tests. The analysis showed increased molecular mobility above a topology
freezing temperature (Tv). However, the reinforcement phase inhibits the flow capability, reducing
the flow. The fracture behaviour of CFRP made with the vitrimeric resin has been investigated by
Mode I and Mode II tests and compared with the conventional system. The repairability of the
vitrimeric CFRP has been investigated by attempting to recover the delaminated samples, which
yielded unsatisfactory results. Moreover, the healing efficiency of the modified epoxy composites has
been assessed using the vitrimer as an adhesive layer. The joints were able to recover about 84% of
the lap shear strength of the pristine system.

Keywords: compression moulding; vitrimer; multifunctional composites; epoxy matrix

1. Introduction

The composite industry extensively relies on thermoset materials for their excellent
structural performance. However, the challenge lies in their limited recyclability. Thermoset
polymers possess a stable cross-linked structure between polymer chains, providing them
with high-temperature resistance, thermal and dimensional stability, solvent resistance, and
exceptional mechanical properties. Unfortunately, the strong polymer network restricts
the long-range molecular mobility required for material flow at high temperatures, im-
peding their reforming and recycling. Consequently, thermoset polymers and composites
are predominantly discarded in landfills after their service life, resulting in a significant
environmental impact [1]. Growing environmental consciousness and industrial competi-
tiveness have stimulated the development of repairable and recyclable structural materials
to minimise polymer waste and prolong their lifespan [2].

Currently, several methods have been devised to recycle thermoset composites, in-
volving mechanical, chemical, and thermal processes [3]. Mechanical recycling entails
shredding procedures to reduce the size of composite components, rendering them re-
cyclable. Thermal recycling involves burning carbon fibre composite materials with or
without oxygen to degrade the matrix and extract the fibres [4]. Chemical recycling utilises
supercritical fluids and catalytic solutions to separate oligomers obtained from the decom-
position of polymeric resin, which can be reused as chemical raw materials along with
carbon fibres.
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Nevertheless, none of these processes fully align with sustainability requirements [5].
According to the waste management guidelines outlined by the EU [6], waste prevention
represents the most effective approach to recycling materials.

To enable the recyclability, weldability, and reparability of thermosetting polymers
while retaining their advantageous properties, modifying the polymer network with cleav-
able or dynamic bonds is a promising approach [7]. The development of Covalent Adapt-
able Networks (CANs) represents a significant advancement towards producing recyclable
epoxy resins suitable for composite components that can be reformed as thermoplastic ma-
terials [8,9]. CANs are characterised by covalent crosslinks that possess reversibly dynamic
properties under specific external stimuli, such as heat, catalysts, or light [10,11].

CANs can be categorised into dissociative and associative covalent adaptive networks
based on the mechanism of reversible chemical bond exchange [12]. Dissociative CANs
(dCANs) can be viewed as depolymerisation, involving a reshuffling of the polymeric
network that allows for the reworking and reforming of the cross-linked material [10,13].
When subjected to an external stimulus, the entire dCAN network breaks at a faster rate
than it reforms, leading to increased polymer mobility due to a reduction in crosslinking
density. Once the stimulus is removed, the crosslinking density of the dCAN increases,
restoring the mechanical properties to their initial state [14]. One of the extensively studied
reaction mechanisms for dCANs is the Diels–Alder reaction [11,15–17].

In contrast, associative CANs (aCANs) maintain a constant crosslinking density dur-
ing the exchange reaction by breaking old bonds and simultaneously generating new
bonds. Leibler and colleagues pioneered aCANs in 2011 by employing the well-established
transesterification reaction between hydroxyl and ester groups in an anhydride-cured
epoxy matrix, resulting in the creation of a reworkable thermosetting network known as
vitrimers [18]. During transesterification, the network’s connectivity is altered through
exchange reactions, enabling stress relaxation and plastic flow at elevated temperatures
without undergoing depolymerisation [19].

Vitrimers exhibit distinct behaviour depending on the temperature conditions. Below
the topological freezing transition temperature (Tv), they behave similarly to traditional
thermosets, demonstrating good thermal and mechanical properties. However, above the
Tv, vitrimers display the ability to flow like viscoelastic fluids due to the rearrangement of
their molecular topology induced by transesterification reactions [8,18].

Among vitrimers, epoxy-based systems utilising transesterification reactions have
received significant attention. These systems involve exchange reactions between es-
ters and beta-hydroxyls formed through the reaction of epoxy precursors with suitable
acids/anhydrides [8,20]. The incorporation of a catalyst accelerates the transesterification
reactions. This leads to topological changes, stress relaxation, and flow in the cross-linked
networks without altering the total number of cross-links [21,22].

Various types of catalysts have been explored to facilitate the transesterification re-
actions and the curing process of epoxy vitrimers [23–25]. These catalysts include metal-
containing compounds and organocatalysts.

Metal ions, such as zinc cations (Zn2+), have been utilised to modify the reactivity
of epoxy resin. These Zn2+ cations possess a tetracoordinate structure with two neutral
and two negatively charged oxygen atoms. In the presence of Zn2+, the anhydride group
undergoes ligand exchange, leading to the opening of the anhydride ring and the formation
of a monoester and a carboxylic acid. Subsequently, this acid reacts with an epoxy ring,
resulting in the formation of a diester and the regeneration of a hydroxyl group. This
reaction leads to the formation of a β-hydroxyl ester chain [8,20]. Notably, the catalyst
Zn(Ac)2 plays a pivotal role in accelerating the esterification reaction during the curing
process. It has been reported in several studies [8,18,22,26] that Zn(Ac)2 is involved in the
dynamic transesterification reaction of epoxy-based vitrimer resin.

Yang et al. [27] introduced the transesterification reaction into the anhydride/epoxy
system to prepare a repairable hard epoxy, by adding 2%mol of Zinc Acetylacetonate
(Zn(acac)2). Shi et al. [28] investigated such systems’ capability to be welded and repro-
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cessed. Demongeot et al. [29] investigated the mechanism of action of the catalytic zinc
species active in these materials.

Current research is mainly focused on the formulation of epoxy vitrimers and the study
of vitrimer static and dynamic properties. The development of carbon material/vitrimer
composites is not only for the recycling and reuse of the composite itself but the recy-
cling of carbon materials can also be readily enabled, making such a strategy a win-win
and potential way to cope with the thermoset composite waste [30,31]. To address the
irreversibility of fatigue, we report here a vitrimeric system, for which the reversal of
fatigue damage can be achieved repeatedly by heating the material to above its topology
freezing transition temperature. This enables the intermittent healing of fatigue-induced
damage, as it accumulates in the vitrimer matrix. Few efforts have addressed fabricating
carbon-fibre- or glass-fibre-reinforced composites and exploring their related self-healing
and re-use potential. Wu et al. [32] showed that the healing efficiency should be improved
by modifying the vitrimer with nanofillers. Delamination is one of the major dangers to
the stability and safety of composite structures, hence much attention has been paid to the
delamination growth behaviour and interlaminar toughening. Zhao et al. showed that the
use of a vitrimer could lead to the recovery of delaminated CFRP [33].

In this study, a commercially available epoxy system, specifically ARALDITE® LY
3508 and ARADUR® 917-1 by Huntsman Corporation, commonly used for carbon-fibre-
reinforced polymer (CFRP) manufacturing, was chosen as the base material for vitrimer
modification. The resin has been formulated for enhancing the availability of free hydroxyl
groups, by keeping the ratio between epoxy and carboxylic acid stoichiometric. The pres-
ence of zinc ions embedded within the covalent network promotes transesterification and
therefore dynamic crosslinking. The paper investigated the thermomechanical properties
of the vitrimer and its carbon fibre composites by comparing them to the unmodified epoxy
system. In addition, the chance to repair and reuse has been investigated by attempting to
heal CFRP’s delamination and by restoring the joints between CFRP adherends. The joints
were able to recover about 84% of the lap shear strength of the pristine system.

2. Materials and Methods
2.1. Epoxy Vitrimer Formulation and CFRP Manufacturing

The used resin is a mixture of Bisphenol A diglycidyl ether (DGEBA) epoxy resin with
an Epoxy Equivalent Weight (EEW) of 196.5 g/eq, tetrahydro-methyl phthalic anhydride
(THMPA) curing agent and 2,4,6-tris (dimethyl aminomethyl) phenol as the catalyst, kindly
provided by the Huntsman corporation (The Woodlands, TX, USA) with product names
ARALDITE® LY 3508, ARADUR® 917-1 and Accelerator 960-1, respectively. Anhydrous
Zinc acetate Zn(Ac)2 (99.99%) was used as the catalyst, purchased from Merck Sigma-
Aldrich (Waltham, MA, USA). All reagents were used without further purification.

An epoxy mixture system, with a stoichiometric ratio of epoxy/acyl equal to 1, named
A, has been prepared and the vitrimeric formulation, named AV5, has been obtained by
adding 5% of Zn(Ac)2 with respect to the total acyl groups.

The formulations were prepared following the same procedure, as illustrated in
Figure 1a: (i) hand-mixing of epoxy resin ARALDITE® LY 3508 (100 phi) and zinc acetate
fine powder (20 µm); (ii) addition of cross-linking anhydride ARADUR® 917-1 (40 phr) and
mixing with the planetary centrifugal mixer (THINKY mixer ARV 310, Laguna Hills, CA,
USA) under vacuum at room temperature; (iii) addition of the Accelerator 960-1 (3 phr)
and further mixing as previous step obtaining a homogeneous mixture. Finally, samples
were cast in Teflon moulds, then cured for 1 h 30 min at 120 ◦C and post-cured for 2 h at
140 ◦C in the oven.
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Figure 1. Fabrication procedure of vitrimeric epoxy resin (a) and composites (b,c).

Carbon fibre (CF)-reinforced composite plates have been manufactured by using both
the standard epoxy resin (A) and the vitrimeric epoxy resin (AV5), obtaining CF-A and
CF-AV5 panels. Carbon fibre fabric 3k T300 Twill 2 × 2 (Toray) has been impregnated with
resin (Figure 1b). Carbon fibre composites were manufactured by hand lay-up, following
the lamination sequence [0–90/90–0] and consolidated in the autoclave for 1 h 30 min at
120 ◦C and then post-cured 2 h at 140 ◦C in the oven (Figure 1c).

2.2. Experimental Characterisation

Thermogravimetric analysis (TGA) (TA Instruments Q500, New Castle, DE, USA) was
conducted to evaluate the polymer thermal stability range, according to ASTM E1131. Mea-
surements were performed in an inert atmosphere, using nitrogen gas, with a temperature
ramp of 10 ◦C/min from room temperature to 800 ◦C. The weight loss is evaluated at
600 ◦C.

The thermal properties of the polymer were investigated by differential scanning
calorimetry (DSC) using Discovery DSC of TA Instruments. Each specimen was heated
and cooled twice from 0 to 250 ◦C at a rate of 10 ◦C/min under a nitrogen atmosphere.
About 10 mg samples were encapsulated in aluminium pans before measurements. The
glass transition temperature (Tg) and enthalpy of the reaction were extracted from the DSC
curves, according to ASTM D3418.

Dynamic mechanical analysis (DMA) was performed with a Dynamic Mechanical
Analyzer Q800 from TA Instruments in the Single Cantilever mode (SC). Samples of a
rectangular shape 25 mm in length, 5.5 mm in width and about 2.5 mm in thickness are
tested. Both the behaviour of the polymers and the composites, with temperatures between
30 and 180 ◦C, were investigated by considering a heating rate of 3 ◦C/min, a strain
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amplitude of 15 µm, and a frequency of 1 Hz. Data are elaborated according to the ASTM
D790 standard for the flexural behaviour of unreinforced and reinforced plastics [34].

Tensile tests were performed with an Instron 68TM-50 universal testing apparatus.
Dogbone samples of 2.5 mm thickness were tested at room temperature with a displacement
rate of 2 mm/min. Data are elaborated according to the ASTM D638 standard for plastic
tensile strength tests [35].

Creep tests were performed using the DMA Q800 from TA Instruments equipped
with the Tension Film (TF) clamp. Rectangular specimens of 10 mm × 5.5 mm × 2 mm
were tested. Tests are performed at different temperatures from 70 ◦C to 245 ◦C, with
25 ◦C incremental steps to evaluate the sample strain variation from the glassy to the
rubbery state.

The Plane-Strain Fracture Toughness of polymers has been investigated according to
ASTM D5045. Single-Edge Notch-Bend (SENB) specimens of dimensions 15 × 3.50 × 1.75 cm3

were prepared. The crack length, a, of dimension 0.45 W < a < 0.55 W were carried out
using a blade. Tests were performed using the DMA Q800 from TA Instruments equipped
with the 3-point bending clamp and a displacement speed of 0.5 mm/min. The sample
nominal dimensions are 15 × 3.50 × 1.75 cm3.

For Mode I fracture, composite specimens were prepared according to ASTM D5528
std with dimensions 125 × 25 × 2 mm3, and an initial crack of 65 mm. The edges of Double
cantilever beams (DCBs) samples were painted with a white correctional fluid to improve
crack visibility, and markings were added to track crack growth to the nearest millimetre.
Steel loading blocks were glued to the ends of the sample beams using a cyanoacrylate
adhesive. The bonding surface of the specimen has been lightly scrabbed with sandpaper
and then wiped clean with methylethylketone (MEK) to remove any contamination.

The mode I fracture toughness (GIc, kJ/m2) of a DCB is calculated according to
Equation (1):

GIC =
3Pδ

2ba
(1)

where P (N) is the load, δ (mm) is the load point displacement, b (mm) is the sample width,
and a (mm) is the crack length at fracture. The test beam was loaded in displacement
control mode (2 mm/min), from the loading blocks until the crack front propagated about
20 mm, before unloading.

The Mode II interlaminar fracture toughness, GIIc (kJ/m2), is given by Equation (2):

GI IC =
9a2

0Pδ

2b
(

2L3 + 3a3
0

) (2)

where P (N) is the critical load, a0 (mm) is the initial crack length, δ (mm) is the load point
displacement, L (mm) is the half span, and b (mm) is the beam width. Three specimens
with dimensions of 160 × 25 × 2 mm3 and an initial crack of 45 mm were tested according
to ASTM D7905 std [36] on a 3-point bending fixture. End notch flexure (ENF) beams were
set such that the crack tip was a fixed distance from one of the support rollers (a0 = 30 mm)
and loaded at 1 mm/min.

3. Results
3.1. Thermal Characterisation

Figure 2 depicts the thermal degradation up to 800 ◦C of the standard and modified
epoxy resin and on the composites. The presence of zinc acetate in the vitrimeric polymer
(AV5) leads to a lower onset temperature of thermal degradation. In fact, it is observed
that zinc acetate begins to degrade around 230 ◦C and had its main degradation at 300 ◦C.
System A experiences a 5% weight loss at 358 ◦C, which reduces to 315 ◦C with the addition
of zinc acetate. Also, an increase in the residue at 600 ◦C is found in AV5. This is attributed
to the char formation of zinc acetate powder, which exhibits a 2.7% residue at 600 ◦C.
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This behaviour is also shown by composites, where the thermal degradation of the
vitrimeric composite CF-AV5 occurs at a lower temperature compared to CF-A. The actual
carbon fibre content of CF-A and CF-AV5, reduced by the resin char, is 64% and 63%,
respectively.

Figure 3 illustrates the curing behaviour and Tg of the epoxy and modified epoxy
systems. In the case of the modified system (AV5), two exothermic peaks are observed
around 140 ◦C and 180–230 ◦C. The first peak corresponds to the curing esterification
reaction, while the second peak represents the homomeric ring-opening polymerisation
of excessive epoxy groups. The presence of zinc acetate affects the primary cross-linking
reaction and triggers a secondary reaction between 180 and 230 ◦C.
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During the second heating ramp (Figure 3), the absence of an exothermic peak indicates
complete polymer conversion. The Tg of the cross-linked sample is influenced by the
catalyst content: system A exhibits a Tg of 111.2 ◦C; in the case of the vitrimeric formulations
AV5, the Tg decreases due to a lower cross-linking density. Composites CF-A and CF-AV5
exhibited a slightly higher value of Tg of 116.2 ◦C and 107.3 ◦C, respectively.

3.2. Static and Dynamic Mechanical Characterisation

Stress–strain curves of the tensile tests conducted on the samples are depicted in
Figure 4 and the values of ultimate stress, ultimate strain, and elastic modulus calculated
within the elastic range (0 to 0.005 mm/mm) are reported in Table 2. The incorporation of
zinc within the molecular topology affects the stiffness of the system, as evidenced by a
decrease in Young’s modulus and strength. The catalyst content influences the mobility of
the system, as reflected in the reduction in the Tg.
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Table 1 provides a summary of the thermal behaviour of the analysed samples, charac-
terised through TGA and DSC experiments.

Table 1. Results of TGA and DSC analyses.

Description Residue at 600 ◦C
[wt%]

CF Actual Content
[wt%]

Tg, DSC
[◦C]

A 7.8 - 111.2
AV5 14.5 - 105.1
CF-A 67.2 64.4 116.2

CF-AV5 68.9 62.6 107.3
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Figure 4. Tensile test on samples A and AV5.

Table 2. Ultimate tensile stress and strain and elastic modulus for A and B systems.

Elastic Modulus
[MPa]

Ultimate Strain
[mm/mm]

Ultimate Stress
[Mpa]

A 2704 ± 5 0.028 ± 0.002 68.3 ± 0.7
AV5 2596 ± 8 0.027 ± 0.003 61.5 ± 0.6

The viscoelastic behaviour of polymers with temperatures up to 180 ◦C is reported
in Figure 5. DMA experiments were conducted within the linear viscoelastic deformation
range to determine the Tg and elastic modulus of the cross-linked samples. In this case,
with the addition of zinc acetate, no significant variation is observed in the Tg.

The introduction of the Zn2+ catalyst results in a slight increase in the storage modulus
compared to system A. Similarly, the dissipation capacity, measured by the loss modulus
(E′′), also shows an increase with the addition of zinc acetate.

Improvements of 17% and 29% are found for the storage modulus (E′) and E′′, respec-
tively. As a result, the loss factor also increases by 10%.

At a higher temperature of 170 ◦C, the loss moduli of the vitrimeric system significantly
increase compared to the non-vitrimeric system (Table 3). This indicates the higher mobility
of the polymer at high temperatures induced by the catalyst.

The improvement in the viscoelastic behaviour of the vitrimeric polymer is reflected
in the composite. Sample CF-AV5 shows a higher storage modulus at room temperature
compared to CF-A. Most importantly, the effect of zinc acetate on molecular mobility is also
shown at high temperatures for the composite. Indeed, at 170 ◦C, the dissipation capacity
of the vitrimeric composite is improved.
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Table 3. Results of DMA analysis at 35 ◦C and 170 ◦C.

@35 ◦C @170 ◦C

Tg, DMA E′ E′′ tan δ E′ E′′ tan δ

[◦C] [Mpa] [Mpa] [-] [Mpa] [Mpa] [-]

A 105.6 ± 1.1 1899 22.1 0.0116 5.14 0.02 0.0459
AV5 108.8 ± 0.9 2221 28.5 0.0128 12.08 1.43 0.1180
CF-A 123.6 ± 0.8 10,717 166.5 0.0155 649.4 6.33 0.0097

CF-AV5 115.3 ± 1.2 11,210 111.2 0.0099 762.6 33.46 0.0439

3.3. Isothermal Creep Test

Creep experiments provide explicit and reliable evidence of the vitrimeric behaviour
of the resin, which involves thermoreversible rearrangements of cross-linking when a
constant load is applied. For each step, samples are isothermally held for five minutes, and
then a constant stress of 0.1 MPa (for A and AV5) and 10 Mpa (for CF-AV5) was applied for
45 min.

As anticipated, the sample with the non-vitrimeric formulation (A) exhibited stable
behaviour. It showed a negligible increase in strain at higher temperatures, demonstrating
typical thermosetting behaviour. Even at temperatures exceeding the Tg, no molecular flow
was observed.

In contrast, the vitrimeric formulations displayed a significant increase in strain under
a constant load at elevated temperatures above Tg. The presence of metallic ions, such as
zinc acetate, acted as strong catalysts for the ester interchange reaction, leading to noticeable
creep in samples subjected to tensile loads at various temperatures, as depicted in Figure 6.
The influence of the zinc acetate content was also observed, with a significant molecular
flow occurring at temperatures above 170 ◦C, which represents the topological freezing
transition temperature (Tv).

3.4. Fracture Behaviour

The force–displacement curves of SENB tests conducted on standard and vitrimeric
epoxy resins are reported in Figure 7. The mechanical response of the specimens was linear
and elastic up to fracture.
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The test setup is shown in Figure 7. The Plane-Strain Fracture Toughness, GQ, in units
of kJ/m2, which represents the resistance of a material to fracture in a neutral environment
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in the presence of a sharp crack under severe tensile constraint, is calculated according to
Equation (3):

GQ =
U

B·W·φ (3)

where U (kJ) is the corrected energy, B (mm) is the thickness, W (mm) is the width, and φ is
the energy calibration factor.

Therefore, the fracture toughness of the polymer has been computed according to
ASTM D5045 (Equation (3)). Two main parameters describe the fracture toughness of
a material: K1C, the critical stress intensity factor, and the fracture toughness GQ. The
K1C

, value, which is the energy necessary to separate two surfaces during the fracture
propagation, is obtained by the peak load of the sample before breaking, while GQ is
calculated as the area beneath the load–displacement curve. The results of the SENB
experiments are reported in Table 4; epoxy resin A showed a fracture toughness GQ equal
to 3.13 J/m2, which slightly reduces in the case of vitrimeric resin to 2.85 J/m2.

Table 4. Fracture toughness results for SENB tests.

Description
GQ,

[kJ/m2]
KIc,

[Mpa
√

m]

A 3.13 ± 0.7 2.24 ± 0.3
AV5 2.85 ± 0.8 2.01 ± 0.4

The load–displacement curves of DCB tests, of which the testing configuration is
reported in Figure 8, are depicted in Figure 9a. The curves show the relation between the
applied load and displacement for the vitrimeric carbon fibre composite and the standard
systems. Initially, the two systems behave equally. In the case of the vitrimeric system,
the initiation of crack growth occurs prematurely compared to the non-vitrimeric epoxy
system. Also, a noticeable difference in the crack propagation pattern is shown: the crack
growth is much smoother than the reference sample, meaning that the fracture propagation
is slower and more controlled.
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The mode I fracture toughness, calculated according to Equation (1), is reported in
Figure 9b as a function of crack length. The load curves show a linear increase with a similar
gradient until the crack starts to propagate, which indicates a similar elastic coefficient of
all laminates. Laminates with the standard matrix gained a higher load than the epoxy
vitrimer CFRP, suggesting a better interface adhesion between epoxy and carbon fibres.

The first value of GIc (on initiation) indicates the energy required for the initial crack
extension and is defined as the point of the sudden decrease in load. The increase in GIc
with the crack length is mainly due to the fibre bridging that happens on the fracture
surface and is indicated as GIc upon propagation [37].
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Vitrimeric composites showed lower values of both GIc on initiation and propagation
compared to the non-vitrimeric epoxy. The higher value of GIc is consistent with the re-
ported results of fracture toughness for the bulk standard and vitrimeric systems. However,
the crack propagation of the vitrimeric system is much higher in the vitrimeric composite.

A slight reduction in the Mode II fracture toughness (GIIC, Equation (2)) is found in
the case of the vitrimeric composite, being 463 J/m2 in the case of non-vitrimeric composite
and 459 J/m2 in the case of vitrimeric composite. Figure 10 shows the load–displacement
curves for standard and vitrimeric carbon fibre reinforced systems. Table 5 summarises the
fracture toughness results of the Mode I and Mode II tests.
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Table 5. Fracture toughness Mode I and Mode II.

Description GIc, initiation
[J/m2]

GIc, propagation
[J/m2]

GIIc
[J/m2]

CF-A 352 ± 22 574 ± 30 463 ± 35
CF-AV5 158 ± 10 184 ± 15 459 ± 16
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4. Discussion
4.1. Epoxy Vitrimer Structure and Its Effect on the Dynamic Properties

In the associative bond exchange reaction, the overall crosslink density remains con-
stant; the crosslinks are broken only when new ones are created without resulting in a
loss of crosslinks at the previous position [38]. The copolymerisation between epoxy and
anhydride in the presence of 960-1 is the main reaction during the curing process of the
base system. The anhydride rings (TMPHA) are opened by the hydroxyl present within
the accelerator to form carboxylic groups, which react with the epoxy groups forming an
ester and a new hydroxyl which contribute to the formation of further esters and lead to a
polymer chain including polyester. Here, the copolymerisation of epoxy and anhydride-
forming ester bonds is dominant, and the effects of secondary reactions should not be
considered. A crosslinked network structure containing a large number of ester bonds was
formed by the curing reaction of anhydride and epoxy groups [29,39,40].

Infrared Spectroscopy (FT-IR) (Frontier MIR/NIR Perkin-Elmer spectrometer, Waltham,
MA, USA) was adopted to investigate the presence of the typical ester peaks. Spectra were
acquired on both sides of the samples. A spectral window range, corresponding to the
remarkable peaks of epoxy resin [41], from 650 cm−1 to 4000 cm−1 was adopted. Figure 11
shows the FT-IR spectra of the standard and vitrimeric epoxy resins.
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Figure 11. FT-IR spectra of A and AV5 systems. Orange and green boxes highlight the –OH groups
and ester groups signals.

The spectra exhibit a peak at ≈3500 cm−1 due to the presence of the free hydroxyl
group, which relies on the reaction between the carboxylic acid and epoxy ring promoting
the esterification. The availability of –OH groups facilitates transesterification in the case
of the AV5 system where metal catalysts (Zn2+) have been provided within the network.
Furthermore, the spectra also exhibit strong absorption peaks in the 1650–1800 cm−1 and
1000–1250 regions, corresponding to the ester groups containing one C=O bond and two
C–O bonds. These results indicate that the DGEBA epoxy group opened to crosslink with
the curing agent (acid anhydrides, MHTPA) and formed an ester-bond-based crosslinked
network, which is the base for the transesterification exchange reaction. The peak at
1732 cm−1 represents the carbonyl stretch, and for saturated esters in general these peaks
fall from 1755 to 1735 [42]. The second peak, labelled at 1235 cm−1, is from the stretching
of the C–O bond to the left of the ester oxygen, which is attached to the carbonyl carbon,
and involves the stretching of the alpha carbon-carbonyl carbon C–C bond. The third peak
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at 1100 depends on the second C–O bond in the ester, which is the one on the right of the
bond. For statured esters in general, the O–C–C stretch is present from 1100–1030 cm−1.

The presence of an ester group makes the crosslinked network a little more flexible,
therefore the fracture toughness of the epoxy system is enhanced with respect to a conven-
tional amine-cured epoxy, while the polyesters induce a plasticising effect. In fact, based on
the results of the SENB tests, as reported in Table 4, the KIC was 2.24 MPa

√
m for the bare

epoxy/anhydride resin which is very high compared to amine-cured epoxies [43].
The preparation of cross-linked systems featuring semi-flexible molecular structures

facilitates topological interchange reactions. The reactivity of interchange linkages and
thermomechanical properties could be balanced by modifying the amount of catalyst in
the formulation [27]. The transesterification reaction is activated by the presence of Zn2+

ions at temperatures beyond the vitrimeric temperature (Tv), leading to a topological
rearrangement. The ester bond exchange can then be activated at high temperatures (above
a topology freezing temperature, Tv) when a transesterification catalyst (Zn2+, in the current
case) is administered into the crosslinked network (Figure 12).
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that the exchange reaction does preserve the average functionality of crosslinks, and depolymerization
in the intermediate step is not required.

The presence of Zn(Ac)2 catalyst affects the thermal behaviour of epoxy vitrimers; the
DSC thermograms of the uncured samples have shown a reduction in the Tg of the vit-
rimeric resins compared to the standard epoxy system. Additionally, the reaction enthalpy
increases when the zinc acetate content is added to the system.

The Tg obtained from DMA analyses is higher than those from DSC, primarily due to
the delayed response during temperature scanning in the DMA test caused by the larger
sample size [44].

The tanδ of vitrimeric systems at 170 ◦C is significantly higher than the corresponding
conventional formulations. It increases with the increasing temperature, resembling the
typical behaviour of thermoplastic polymers [45].

By observing the strain rate (dε/dt), defined as the slope of the strain versus time in
the last 5 min of the creep test, the modified systems (AV5 and CF-AV5) clearly show a
strong increase in the strain rate with respect to the conventional system which should not
flow (Figure 6). Therefore, the addition of the catalyst induces a molecular flow; indeed, the
strain rate increases as the temperature increases due to the mobility of polymeric chains
promoted by the transesterification reactions.

To assess the vitrimer-like nature of epoxy and investigate the flow at high temper-
atures, creep tests have been performed and analysed using a theoretical model. Several
theoretical models are available to analyse the experimental creep curves. In this study,
the Burger model has been implemented, which combines the Maxwell and Kelvin–Voigt
elements [46]. According to Burger’s model, the total strain in the creep is the result of in-
stantaneous deformation and the deformation at primary and secondary stages (Figure 13).
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The amount of total strain is given by Equation (4):

ε(t) = εi + εy (4)

where ε(t) is the total strain obtained during the creep test at a particular time t, εi is the
instantaneous deformation, and εy is the delay elastic deformation of the Kelvin–Voigt
element. The Equation (4) can be rewritten as:

ε(t) =
σ0

E1
+

σ0

E2

(
1− exp(t

−E2

η2
)

)
+

σ0

η1
t (5)

where σ0 is the applied stress; E1 represents the modulus of longitudinal elasticity at the
initial deformation which can be recovered once the stress is removed (Maxwell spring);
the constant η1 is the coefficient of dynamic viscosity, and identifies the constant rate of
stationary creep; E2 is the stiffness of the amorphous chain/retardant elasticity and is
represented by the spring in the Kelvin–Voigt unit; and η2 is the viscosity of the Kelvin–
Voigt unit and the ratio between η2/E2 is the retardation time (τ). To determine the values
of the parameters (E1, E2, η1, and η2), curve fitting of the experimental creep curves with
Burger’s model was performed.

Figures 14 and 15 report the fitting parameters for the creep curves in the case of
A-system, its vitrimeric modification, and the carbon-fibre-reinforced samples at different
temperatures (70 ◦C, 120 ◦C,170 ◦C, 195 ◦C). The temperature was chosen according to the
different regimes: glassy (below Tg), viscoelastic solid (above Tg, below Tv), and liquid
viscoelastic (above Tv).

The elastic modulus E1 (Figure 14a) decreases with increasing temperature due to the
molecular rearrangement. Unlike the standard epoxy system (A), the vitrimeric systems
(AV5 and CF-AV5), above Tv, exhibit a further reduction in the elastic modulus resembling
the thermoplastic-like behaviour. The carbon fibre reinforcement only affects the values of
the elastic modulus without modifying the viscoelastic behaviour.

Starting from 170 ◦C, the vitrimeric epoxy becomes less stiff and the polymer starts to
flow, resulting in a progressive decrease in the elastic modulus.
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η1 represents the irrecoverable part of the creep deformation, and it indicates the
residual strain left in the material. Like E1, this parameter decreases with the temperature
until the Tg, due to the greater mobility of the molecular chains (Figure 14b). In the case of A
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systems, it remains constant with increasing temperature due to the thermosetting nature of
the material. In the case of vitrimeric system AV5 and its composite (CF-AV5), η1 decreases
with the temperature, while the standard epoxy achieves a constant value due to the absence
of flow. The presence of the zinc catalyst enables flow (low η1 parameter) and increases at
a higher temperature; above Tv, the raising of the exchange reaction (transesterification)
induces further molecular flow. The presence of carbon fibre reinforcement inhibits the flow,
as shown in Figure 14b. As observed, the CF-AV5 system shows a higher η1 value, which
reproduces a system able to recover the applied strain. Even increasing the temperature
leads to a system being unable to gain irreversible deformation. Only above the Tv has a
slight decrease in flow parameter been observed.

The parameters E2 (Figure 15a) and the η2 (Figure 15b) represent the retardancy
elasticity and viscosity, respectively, and are associated with the stiffness and viscous
flow of amorphous polymer chains. A similar dependency of the retardancy elasticity
and viscosity on the temperature has been observed for both the neat vitrimer and the
reinforced one. Below the glass transition (T < Tg), both parameters decrease due to the
greater energy absorbed by the active polymer chains, and the viscous slippage of the
molecules becomes easier to achieve. In the temperature range between the glass transition
and vitrimeric temperatures (Tg < T < Tv), the E2 and η2 increase with the temperature
due to the more significant orientation of polymer chains along the creep loading direction,
which results in an orientational hardening. Above the vitrimeric temperature (T > Tv),
a further reduction in retardancy parameters is observed only in the case of vitrimeric
systems (AV5 and CF-AV5) due to the molecular flow induced by the transesterification
reaction [47].

4.2. Influence of Reinforcement on the Repairability of CFRP Vitrimers

Previous analysis showed that the CF reinforcement limited the ability of the system
to flow. An investigation of the reparability of delamination has been carried out on
previously tested ENF samples. Fracture surfaces have been stacked and the healing has
been set via a hot press and compression moulded at 20 bar and 220 ◦C for 1 h (see inset in
Figure 16). The healing conditions have been chosen according to previous experience on
the neat vitrimer.
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Figure 16. Comparison of healed ENF sample vs. pristine one.

Even if the samples, macroscopically, looked perfectly joined, the mechanical strength
of the specimen is not satisfactory. The load–displacement curves (Figure 16) showed that
the healed sample recovered its initial stiffness (see magnification inset within Figure 16),
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since the curve perfectly reproduces the first run. Nevertheless, the sample reproduced
an extremely brittle behaviour with a sudden failure at a load 50 times lower than the
pristine strength. A rationale for the latter behaviour could be the detained flux, which is
congruent with the creep analysis where CF-AV5 reproduced a high viscosity coefficient (η1,
see Figure 14), indicating a system unable to achieve irreversible deformation. Therefore,
the resin flow is limited by the fibres requiring a different strategy to promote the healing
of the system.

4.3. Use of Vitrimer as Adhesive Layer: Reassembly of Lap Shear Joints

The potential of using epoxy vitrimer materials as the recoverable adhesive was also
demonstrated in this work. The AV5 vitrimer was employed as an adhesive layer between
two CFRP adherends in a single lap shear configuration (Figure 17) and cured. The lap
shear strength (LSS, MPa) of the joints was calculated as the ratio between the maximum
load (Fmax, N) and the total overlap area (ALSS, mm2), as given by Equation (6):

LSS =
Fmax

ALSS
(6)
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(b) AV5-002. The letter A and B indicates the two adherends of the joint, respectively.

The results obtained are reported in Table 6. Unlike the traditional epoxy adhesive,
the AV5 system is designed on a bond-exchangeable crosslinked network structure, and
the joint should be restored by a proper thermomechanical stimulus. According to the
previously described procedure for the bare vitrimer, the two substrates (cohesive failure)
were successfully re-bonded together by heating at 200 ◦C (above the Tv) for 1 h by keeping
the contact using a constant load. The restored joints were tested again by following the
same test procedure in order to assess the healing capability.
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Table 6. Results of LSS tests conducted using AV5 as hot melt adhesive.

Description LSS
[MPa]

Healing Efficiency
[%]

AV5_001 2.31 -
AV5_001_Healed 1.94 84%

AV5_002 2.41 -
AV5_002_Healed 1.48 61%

The efficiency of the LSS healed joints is defined as the percent of recovered strength
according to the Equation (7):

η [%] =
Phealed

Ppristine
·100 (7)

The average recovery of the joints is 84% of the pristine.
It is worth noting that, in some cases (i.e., sample AV5-002), the healing efficiency was

significantly lower (61%). In that case, by analysing the fracture surface (inset in Figure 17b),
the flow generated during the healing process led the resin to squeeze out from the joint,
contributing to the formation of a misalignment between substrates and resulting in a
reduced LSS value.

5. Conclusions

The role of reinforcement on fibre-reinforced composites made using epoxy vitrimers
is crucial for assessing the capability of the system to be repaired or to be re-used. Here,
we investigated the healing efficiency of epoxy vitrimer composites based on the trans-
esterification reaction made by adding a metallic catalyst (zinc ions) within the covalent
network.

The formulated resin is characterised by a stoichiometric epoxy-to-acyl group ratio
in order to have enough free hydroxyl groups available for esterification. This result
was also confirmed through the FT-IR analysis; the addition of the zinc ions made the
system prone to transesterification and activated a flow with a proper thermal stimulus.
The thermomechanical results and creep test demonstrated that the catalyst induces the
vitrimeric behaviour.

The presence of the reinforcement inhibited the ability of the system to flow; the
analysis of the creep data showed that the topological freezing regime is extended to higher
temperatures with respect to the bare polymer, resulting in a system unable to efficiently
recover the failure. The fracture mechanics performances of carbon fibre composites made
using the vitrimer have been assessed by investigating the Double Cantilever and End
Notched tests, showing a drop of the Mode I fracture toughness and a slight reduction for
Mode II with respect to the conventional epoxy system (no catalyst).

The repairability of the vitrimeric CFRP has been investigated by attempting to recover
the delaminated samples and by further testing. The results were not satisfactory.

The vitrimer has been employed as a structural adhesive layer between CFRP ad-
herends. The broken samples were then resorted using a previously defined procedure and
tested again. The potential use of the vitrimeric resin as a re-bondable adhesive has been
investigated by LSS. The efficiency of the healed sample reached 84%.
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