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Abstract: Near-monodispersed micrometer-sized polystyrene (PS) particles carrying amidino and
carboxyl groups on their surfaces were synthesized by soap-free emulsion polymerization using an
amphoteric free radical initiator. The resulting amphoteric PS particles were characterized in terms of
diameter, morphology, disperibility in aqueous media and surface charge using scanning electron
microscopy (SEM), optical microscopy (OM), sedimentation rate and electrophoretic measurements.
At pH 2.0, where the amidino groups are protonated (positively charged), and at pH 11.0, where
the carboxyl groups are deprotonated (negatively charged), the PS particles were well dispersed in
aqueous media via electrostatic repulsion. At pH 4.8, where the surface charges are neutral, the PS
particles were weakly aggregated. Furthermore, it was confirmed that the PS particles can function
as a pH-sensitive foam stabilizer: foamability and foam stability were higher at pH 2.0 and 4.8,
where the PS particles can be adsorbed to the air–water interface, and lower at pH 11.0, where the PS
particles tend to disperse in bulk aqueous medium. SEM and OM studies indicated that hexagonally
close-packed arrays of PS particles were formed on the bubble surfaces and moiré patterns were
observed on the dried foams. Moreover, the fragments of dried foams showed iridescent character
under white light.
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1. Introduction

Solid particles are known to be adsorbed to the air–water interface to stabilize aqueous foams [1–5].
Foams stabilized with inorganic particles (e.g., silica [6,7], alumina [8] and graphene [9]) have been
studied for a long time, and these days those stabilized with organic particles, including synthetic
polymer particles [10–14] and natural particles (e.g., aquatic hyphomycete spores [15] and bacterial
cells [16]) have started to gain interest. The synthetic polymer particles with specific surface chemistries
can be designed using various functional monomers, initiators and colloidal stabilizers and by post
surface modifications, which makes them attractive foam stabilizers. Thanks to this advantage, recently,
there has been increasing interest in polymer particle-stabilized foams whose foamability, foam stability
and microstructures can be controlled by external stimulus [17–19]. Understanding the foamation
and defoamation phenomena could greatly contribute to develop food and ore floatation science and
industry, where the particle-stabilized foams play crucial roles. By now, particles carrying pH-responsive
acidic or basic functional groups have been utilized to prepare pH-sensitive aqueous foams. It has been
demonstrated that polystyrene (PS) particles carrying poly[2 -(dimethylamino)ethyl methacrylate] [20],
poly[2-(diethylamino)ethyl methacrylate] (PDEA) [21–23], poly(4-vinylpyrridine) [24] or poly(acrylic
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acid) [25] colloidal stabilizer on their surfaces can work as the pH-responsive particulate bubble
stabilizer: the foams with high foamability and stability are prepared at pHs where the colloidal
stabilizers are hydrophobic, and unstable/no foams are obtained at pHs where the colloidal stabilizers
are highly hydrophilic. The polymer particles studied as a pH-sensitive foam stabilizer until now
carry a single kind of pH-responsive functional groups with single pKa values. Considering that the
particle-stabilized foams are used at various pHs and in order to widen the application range of the
foams, it is important to study on foams stabilized with polymer particles carrying functional groups
with multiple pKa values.

In the present study, first, we synthesized near-monodispersed micrometer-sized PS particles
carrying amphoteric groups on their surfaces by soap-free emulsion polymerization using
2,2′-azobis[N-(2-carboxyethyl)-2-methylpropionamidine] tetrahydrate (ACMPA) as a free-radical
initiator. Then, the effects of pH of aqueous media, where the particles were dispersed, on foamability
and foam stability were investigated. The naked eye, and optical microscopy (OM) and scanning electron
microscopy (SEM) were utilized to characterize the foamability, foam stability and their microstructures.

2. Materials and Methods

Free radical soap-free emulsion polymerization of styrene using ACMPA was conducted to
synthesize PS particles carrying amidino and carboxyl groups (ACMPA-PS particles), referring to
the method previously reported [26–29]. Briefly, styrene (10 g, Sigma-Aldrich, St Louis, MO, USA)
and ACMPA (0.5 g, Wako Pure Chemical Industries, Ltd., Osaka, Japan) were mixed with aqueous
medium (100 g, pH 10 adjusted using NaOH aqueous solution) for 10 min, and then the mixture
was heated to 60 ◦C with magnetic stirring. The polymerization was conducted for 24 h under a
nitrogen atmosphere. Successive centrifugation-redispersion cycles were used to purify the dispersion,
with each supernatant being decanted and replaced with deionized water using a centrifuge (Hitachi
CF16RX II type centrifuge with a Hitachi T15A 36 rotor, Tokyo, Japan). Particle size distribution was
obtained by a Malvern Mastersizer 2000 instrument equipped with a small volume Hydro 2000SM
sample dispersion unit. Zeta potentials were estimated from the electrophoretic mobility, measured at
various pHs using a Malvern Zetasizer Nano ZS with a MPT-2 Autotitrator. Aqueous dispersions of
the PS particles with pH of 2.0, 4.8 and 11.1 were shaken 100 times for 30 s with an amplitude of 30 cm
by hand. Dispersibility of the PS particles and morphology and size of the bubbles were studied in a
wet state by OM (Motic BA200, Shimadzu, Kyoto, Japan). Morphology and size of the PS particles
and the bubble microstructures were examined in a dry state by SEM (VE-8800 instrument, Keyence,
Osaka, Japan). The contact angle of the PS particles at the air–water interface was evaluated by direct
observation after superglue vapor treatment [30–34].

3. Results and Discussion

3.1. Synthesis and Characterization of Amphoteric Polystyrene (PS) Particles

Free radical soap-free emulsion polymerization of styrene using ACMPA successfully led to
production of the PS particles carrying amidino and carboxyl groups [26–29]. The ACMPA initiator
carries both amidino and carboxyl groups, whose pKa values are 3.6 and 9.8, respectively, and these
polar functional groups are expected to appear on the particle surfaces [29,35]. The free radical
soap-free emulsion polymerization has a benefit to be able to synthesize near-monodispersed particles
with clean surfaces without molecular-level small surfactant. Six sedimentation/redispersion cycles
using deionized water (pH not controlled) were conducted to remove NaOH, the initiator and its
by-products in continuous polymerization medium. The PS particles were characterized in detail
regarding their size, zeta potential and dispersibility using OM, SEM, and laser diffraction particle
size analysis and electrophoretic mobility measurement. OM studies of aqueous dispersions after the
polymerization indicated production of colloidally stable PS particles with no flocs. Polar amidino
and carboxyl groups arising from the ACMPA should confer colloidal stability. The volume-average
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diameter was determined to be 1.1 ± 0.2 µm by laser diffraction particle size analysis. SEM observation
indicated the production of spherical PS particles with the number-average particle diameter (Dn) of
1.0 ± 0.1 µm (n = 100) (Figure S1, Supplementary Materials).

Dispersibility of the PS particles was studied at pH 2.0, 4.8 and 11.0 using OM (Figure 1b–d).
At pH 2.0 and 11.0, colloidally stable particles were observed, whereas a few micrometer-sized flocs
were observed in addition to colloidally stable particles at pH 4.8. Zeta potential measurements were
conducted as a function of pH to verify the pH-sensitive surface charging nature of the PS particles
(Figure 1a). The isoelectric point was determined to be 4.6, which was similar with the value reported
by Nagao et al. [29]. The PS particle surface was positively charged due to protonation of the amidino
groups on the particle surface, which were originated from the ACMPA initiator, below pH 4.6. The
zeta potential was +48 ±1 mV at pH 2.0 and decreased with an increase of pH. Above pH 4.6, the zeta
potentials were negative and showed a drop at ca. pH = 9, which is near the pKa value of carboxyl
groups of the ACMPA, due to deprotonation of the carboxyl groups on the particle surfaces. There is a
possibility that the negative charges also originated from a hydroxide anion adsorbed on the particle
surfaces [36,37]. The zeta potential results confirmed that surface charge density on the PS particles, in
other words the surface hydrophilicity–hydrophobicity balance, can be tuned by pH.
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Sediment height (Hs) as a function of time was investigated using 5.0 wt % aqueous dispersions
at pH 2.0, 4.8 and 11.1 (Figure S2, Supplementary Materials). The PS particles sediment a little bit
faster at pH 4.8, where the particles were weakly flocculated, than those at pH 2.0 and 11.1, where the
particles are in a colloidally stable state. Based on the sedimentation rates (− dHs

dt ), the particle sizes
were calculated using the equations shown below [32,38].

V0(d) = −
dHs

dt
1 + Kφ/(1−φ)3

1−φ
(1)

and

V0(d) =
∆ρgd2

18η
(2)

where V0(d) is the rate of sedimentation at infinite dilution, K is 4.6, φ is the particle volume fraction in
the dispersion (0.0476), ∆ρ is the density difference between aqueous phase and the PS particle (0.05 ×
106 g m−3), g is the gravitational acceleration (9.8 m s−2), d is the particle diameter, and η is the viscosity
of aqueous phase (1.01 g m−1 s−1). The particle diameter was estimated to be 1.46 µm at pH 4.8, which
was a little bit larger than those estimated at pH 2.0 (1.40 µm) and pH 11.1 (1.27 µm). From this result,
the formation of PS particle flocs at pH 4.8 can be confirmed. It was surprising that the PS particles did
not form large aggregates near the isoelectric point. The reason is unclear, but solvated PS hairy layers
might be formed on the particle surface due to polar polymer end groups, which could work as a steric
stabilizer [39]. The Hs values determined 1 month after start of sedimentation experiment were 2.5, 3.2
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and 2.0 mm at pH 2.0, 4.8 and 11.1, respectively. At pH 2.0 and 11.1, the PS particles sediment in an
individually dispersed state and form a closely-packed structure. On the other hand, the PS particles
formed sediment containing water voids generated due to flocculated particles [32].

3.2. Foams Stabilized with Amphoteric PS Particles

Foamability and foam stability are known to depend on surface hydrophilic-hydrophobic balance
of the particles [2–5]. The heights of foam layers, which were formed on the upper part of aqueous
dispersion of the particles due to creaming, were measured at 25 ◦C using a ruler after hand shaking
the aqueous particle dispersions (5.0 wt %, 3.0 mL, pH 2.0, 4.8 and 11.1) and air in a 13.5 mL glass vial
with a screw cap to evaluate foamability and foam stability (Figure 2a).
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Figure 2. (a) Temporal change of foam height observed for the foams prepared at pH 2 (•), pH 4.8 (�),
pH 11.1 (N). (b,c) Optical micrographs of bubbles stabilized with ACMPA-PS particles prepared at
(b) pH 2.0 and (c) 4.8. Insets of (b,c) show the bubbles between glass substrates after the application of
pressure. An inset of (b,c) shows the bubbles after the application of pressure between glass substrates.

The pH of the dispersions were adjusted using aqueous solutions of either HCl or NaOH. When
the planar aqueous dispersion–air surface appeared, the foam height was defined to be 0 mm. At
pH 2.0 and 4.8, the foam layers were stable for over 16 days. At pH 4.8, the surface charge of the PS
particles are neutral and the hydrophobic PS particles could be adsorbed to the air–water interface to
stabilize the foams. The PS particles with positive surface charge at pH 2.0 could be electrostatically
adsorbed to the anionic air–water interface [40] and worked as a foam stabilizer. The foamability
at pH 2.0 was a little bit lower than that at pH 4.8, which could be due to higher barrier for the PS
particles carrying positive surface charges to approach the air–water interface due to image charge
effect [41–44]. It is noteworthy that the PS particles with higher zeta potential (ca. +50 mV) can be
adsorbed to the air–water interface to stabilize aqueous foams and the PS particles carrying PDEA
colloidal stabilizer [21–23] with lower zeta potential (ca. +30 mV) cannot. There are two possible
factors for preventing adsorption of the cationic PS particles carrying PDEA colloidal stabilizer. (1)
Higher repulsion between the particles and the air–water interface due to higher image charge effect
compared to the amphoteric PS particles synthesized in this study. The PDEA colloidal stabilizer could
carry a larger amount of positive charges on the particles. (2) The entropic effect of the PDEA colloidal
stabilizer on the PS particle surfaces. The entropies of the PDEA colloidal stabilizer (in other words,
the number of possible conformations of the PDEA colloidal stabilizer) decrease if the PS particles
carrying PDEA hairs become close to the air–water interface, which is unfavorable from the aspect
of the Gibbs free energy. The height of the foam layer gradually decreased until day 16 because of
water drainage at pH 2.0 and 4.8. On the other hand, at pH 11.1 the planar aqueous dispersion-air
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interface appeared just after preparation and the foam layer height was determined to be 0 cm. In the
basic condition, the PS particle surfaces are negatively charged and electrostatic repulsion between the
air–water interface and the particles avoid the adsorption of the particles to the interface.

The foams consisted of bubbles and their shapes at pH 2.0 and 4.8 were near- and non-spherical,
which was revealed by the OM studies, and aspect ratios were in the range between 1.01 and 1.38
(Figure 2b,c). Heywood diameters of the bubbles were estimated to be 219 ± 148 µm and 218 ± 167 µm,
respectively. After the application of light pressure on the wet bubbles on the slide glass, the bubbles
were ruptured and the inner air came out, which strongly indicates the air bubbles were coated by the
PS particles (Figure 2b,c insets).

SEM studies were conducted on the foams prepared from aqueous dispersions with pH 2.0 and
4.8 after removal of free PS particles by washing with deionized water to characterize microstructure of
the foams (Figure 3). After drying the continuous water phase overnight at ambient temperature from
the aqueous foams, solid foams which kept a three-dimensional structure were obtained (Figure 3a,e).
Polydisperse bubbles agglomerated and were deformed due to capillary force without coalescence
during/after drying. On the top surface of these dried foams, almost perfect hexagonal-close-packed
arrays of the PS particles were observed as reported previously (Figure 3b,f) [11,12]. SEM studies on
the dried foam ruptured using a razor blade confirmed the formation of PS particle array bilayers
(Figure 3c,g). These particle bilayers should be formed by the contact of bubbles during water drainage
from the drying foams, which strongly indicates that the PS particles were adsorbed to the wet bubble
surfaces as a monolayer (Figure 4). Based on the mechanism, bilayer junctions were formed from three
bubbles. Some PS particle monolayers were also observed, which should be the top layer of the dried
bubble, which face to the air phase (Figure 3d,h). Similar results were reported previously [12]. It is
noteworthy that flocculated PS particles were hardly observed on the bubble surfaces at pH 4.8, where
the PS particles tend to form flocs. There is a possibility that weakly flocculated PS particles might
detach from the bubble surfaces due to water flow generated during the evaporation of water and the
particles directly adsorbed at the air–water interface could remain on the bubble surfaces.
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cross-section SEM images of the foams after deliberate rupture using a razor blade.
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at (a) pH 2.0 and (b) pH 4.8 after rupturing using a razor blade. (c) Scheme illustrating formation of
bilayers of ACMPA-PS particles array via drying.

The position of the PS particles at air-water interface was visualized to estimate the contact angles
θ (Figure 5) using superglue method [30]. Ethyl 2-cyanoacrylate vapor was introduced to particle
monolayer at the air–water interface, which was prepared by autonomous adsorption of the particles
via gentle magnetic stirring (Supporting Information). An anionic polymerization at the air–water
interface led to the formation of poly(ethyl 2-cyanoacrylate) (PECA) film which trapped the particles at
their equilibrium position at the interface. Spherical cap array of the PS particles was observed on the
air phase-exposed side of the film and spherical PS particle array was observed on the water-exposed
side, which was revealed by SEM studies. The contact angles θ of the PS particles measured through
the aqueous phase were estimated to be 56◦ and 41◦ at pH 2.0 and 4.8, using the average diameters of
spherical caps and particles [45]. The θ values were estimated to be less than 90◦, which indicates that
aqueous bubbles were preferably formed rather than liquid marbles [2–5]. Adsorption energies of the
PS particle at the air-water interface (∆G) can be estimated to be 2.88 × 106 and 9.30 × 105 kBT at pH 2.0
and 4.8 using the calculated θ values based on Equation (3) [46]:

∆G = −γawπa2(1− cosθ)2 (3)

where γaw is the surface tension of water, a is the particle radius and kB is the Boltzmann constant and
T is temperature.

Dried foams were easily broken into small fragments using the razor blade. Due to the PS
particle array bilayer, moiré patterns were formed, which could be observed on the crushed dried
foams by OM (Figure 6a). The moiré patterns are known to be formed when regular two-dimensional
geometric patterns are overlapped with each other [47,48], and here this optical phenomenon occurred
by overlapping the two-dimensional highly ordered arrays of hexagonally packed PS particles formed
on the bubble surfaces. This optical effect has been observed previously for the particle array
bilayer [11,12,49–51]. The moiré patterns observed in this study can be simulated by superimposing
two identical images of PS particle arrays (the upper image is made semi-transparent) using Microsoft
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PowerPoint 2013 software. As Figure 6b indicates, the similar moiré patterns with those observed
in the OM studies can be produced in an artificial manner by rotating the two images some degrees
with respect to each other within the same plane. Furthermore, it is noteworthy that the foam
fragments showed an iridescent character under white light and sunlight (Figure 7a,b and Figure S3,
Supplementary Materials). Generally, structural color can be observed from colloidal particle arrays
consisting of near-monodispersed submicrometer-sized particles [52–56], whose sizes are comparable
to the visible light wavelength. Structural colors have been also observed from the micrometer-sized
particle arrays [57,58] and the structural color generation mechanism should be the same with that of
the foam fragments consisting of micrometer-sized particles, although the clear mechanism is under
a veil.
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Figure 6. (a) Moiré patterns produced by ACMPA-PS particle bilayers as observed by optical
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image after rotation of the semi-transparent image through angles of 15, 40 and 50◦ relative to the
non-transparent image.
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Figure 7. Digital photographs of ACMPA-PS particle-stabilized foam fragments prepared at pH 2.0
viewed under (a,c,e) white light and (b) sunlight. The fragments were dispersed in ethanol (c) before
and (e) after annealing with toluene vapor for 15 min. SEM images of foam fragments (d) before and
(f) after the annealing with toluene vapor.

The colloidal array structure of foam fragments could be stabilized via exposure to toluene
vapor for 15 min by partially fusing particles with each other (Figure 7d,f). The toluene-treated foam
fragments were dispersed in ethanol in their form, resulting in ethanol that was iridescent under strong
white light (Figure 7e). On the other hand, the dried foam fragments without toluene treatment were
redispersed in ethanol to be a turbid milky-white dispersion (Figure 7c).

4. Conclusions

Monodispersed and micrometer-sized amphoteric PS particles carrying amidino and carboxyl
groups on their surfaces were successfully synthesized by soap-free emulsion polymerization. It has
been demonstrated that the PS particles with cationic and neutral surface charges at pH 2.0 and 4.8
could be adsorbed to the air–water interface to stabilize aqueous foams and those with negative charges
at pH 11.1 tend to disperse in aqueous medium resulting in low foamability. The PS particles formed
colloidal arrays on the bubble surfaces at pH 2.0 and 4.8, and the dried foams showed moiré patterns
due to the formation of particle array bilayers. Moreover, the fragments of dried foams showed an
iridescent character under white light. The pH-dependent formation of aqueous foams/bubbles using
the polymer particles studied in this study should help in understanding the stability of foams/bubbles
utilized in industry including food, textile, petroleum, cosmetic, pharmaceutical and personal care
product sections [2,59–62].
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and (b) sunlight.
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