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Abstract: This article reports on the recent mining and production status of ruby in Longido, Tan-
zania. Faceted-grade rubies and their matrix from Longido Area, Tanzania, were investigated by
standard gemological testing, including FTIR, UV-VIS, Raman spectra, and LA-ICP-MS. Microscopic
observations revealed dense needle-like and triangular inclusions, distinct growth lines, and color
banding as typical inclusions. In agreement with the Raman results, the transmission FTIR spectrum
confirmed the presence of aluminum hydroxide. The Raman spectra identified associated minerals
and inclusions, including zoisite, parasites, feldspar within the matrix, rutile, and diaspore in the
ruby host. The chemistry analysis revealed a high amount of Cr and relatively low iron as a good
indicator of geographic origin.
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1. Introduction

Rubies are the red variety of corundum, bearing a very high reputation in the gem
trade [1]. The color gemstone trade has benefited from global trade, new mining discoveries,
and new markets. The gemological features of rubies are always fascinating to dealers
and gem collectors. As rubies can be found worldwide, their gemological features and the
mining situation can vary from one place to another. Three commonly encountered rock
matrices contain commercial-quality ruby, i.e., marble, basalt, and amphibolite (Table 1).

The rubies formed in marble along the Himalayan Mountain belt are found in both
the primary and placer deposits [2,3]. Mogok in Burma (“Burma” is the former name of
the state now officially called “Myanmar”) is reputed for producing high-quality rubies
for centuries [4–6], and some of the Mong Hsu rubies were also formed in marble [7].
While the rubies found in Vietnam also show good quality [8–10]. Previous studies also
reported rubies from Ailao Shan in Yunnan Province, China [11,12]. Due to their richness
in Cr and lack of Fe, the marble-hosted rubies usually exhibit a bright hue and strong
red fluorescence.

Alkali basalt rocks are reported to contain ruby and sapphire, where the erupting
magma captures the ruby and sapphire formed in the upper mantle as xenocrysts within
the basalt. The formation model of gem corundum from alkali basalt has been proposed
by previous studies [13,14]. Ruby and sapphire associated with basalt are found in Thai-
land/Cambodia, New South Wales, Australia, and Montana, USA [15–18].
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Table 1. Three commonly encountered rock matrices and their representative sources.

Rock Matrices Source

Marble
Burma (Mogok/Mong Hsu)

Vietnam
China (Ailao Shan, Yunnan Province)

Amphibolite
Mozambique
Madagascar

Tanzania

Basalt-related

Thailand/Cambodia
New South Wales

Australia
Montana, USA

Amphibolite-hosted ruby can be found in Africa, including Mozambique, Madagascar,
and Tanzania [19–24]. Greenland is also reported to produce ruby in the amphibolite hard
rock [25–28].

Ruby from Burma may command a premium on price owing to its long history
and high quality [2,29,30]. It is critical to document the information in the field and the
characteristics of the ruby to disclose the essential information to the public fully and, as a
result, increase their confidence.

Tanzania has been known for producing various gems for decades [31], such as
rubies from Winza and Longido [32,33], sapphires from Umba Valley [34], spinels from
Mahenge [35,36], tsavorite garnet [37,38], alexandrite [39], and tazanite. Cabochon-quality
rubies have been discovered in the Longido area for over half a century. Recently, faceted-
quality materials have been produced in Longido, causing a fever in the gem market in a
short time. Previous studies reported the gemological features of the ruby from Longido,
Tanzania [40–43].

The authors of this research provide first-hand knowledge of the mining region. We
use various testing techniques to examine the gemological characteristics of Longido rubies.
To distinguish the origins, reveal more important information, and increase transparency,
we also compare rubies from Longido, Mozambique, and Burma on a broad scale [43].

2. Geological Background

Geologically, Tanzania is situated on an Archean craton. This granitic center is sur-
rounded by crystalline rocks that get younger and younger. At the same time, the rifted
grabens, coastal plains, and interior basins are made up of Paleozoic to recent sediments
and volcanics. According to Schlüter [44], there is a good representation of rocks from the
Archean, Proterozoic, Paleozoic, Mesozoic, and Cenozoic eras. As previously indicated, the
geological setting’s variety gives rise to an abundance of gemstones.

Several ruby mines have been found in Tanzania, and their gemological features,
such as Winza and Morogoro, were studied by previous literature [33,45]. The Longido
area lies near the border between Tanzania and Kenya, as indicated in Figure 1. Ruby
was discovered in Longido, Tanzania, in 1949 by two English prospectors who lived in
Nairobi, Kenya, searching for minerals and gems in the African wilderness. After weeks
of exhausting searching in this area, one of the prospectors named Tom Blevins came to
an outcrop of weathered green rock and noticed well-formed flat tabular and hexagonal-
shaped deep red ruby crystals laying on the rock. The smaller ones had transparent areas
and were facet grade, while larger ones still in the green rock were opaque but with their
distinctive hexagonal shape and red color, making a striking appearance against the green
host rock they were in. However, earlier accounts of rubies are found in Longido, dating
back a hundred years. Mining was conducted in the late 1950s.
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Figure 1. The illustration of ruby mine distribution in Tanzania. Illustrated by Huixin Zhao.

Large amounts of material were initially found near the surface, but now most mining
requires extensive tunneling. Most Longido rubies are found in green zoisite and dark
amphibolite rocks. Most are nearly opaque and used for beautiful carving material. In fact,
ruby in green zoisite can make an amazingly beautiful and striking carving material, which
skilled carvers can make into carvings where the two opposite colors complement each
other. While only a small portion of the production meets the criteria for transparent facet
grade, these rubies can display a stunning “Pigeon’s Blood” red color if they were cut in
half and three-quarter carat-size faceted stones without requiring heat treatment. However,
it is worth noting that rubies over one carat may appear overly dark.

3. Mining and Production

Large quantities of Longido small “Pigeon’s Blood” red unheated facet-grade ruby
rough entered the Chinese market through Nairobi, Kenya, in late 2017 and early 2018. This
new excitement led Guild to travel to Longido, Tanzania, with Chinese and local contacts
to document the mining activity and material being mined just before the 2018 September
Hong Kong Show (Figure 2a–c).
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Figure 2. (a) In 2018, Guild Field Gemology Team documented ruby mining activity in Longido,
Tanzania. (b) Author Andrew Lucas expressed that getting down to the productive mining zone
elevations and backing up in the tunnels was a strenuous activity. (c) The mine manager gave
a detailed account of the recent mining activity while in the tunnel. (d) The ruby mine tunnels
can require miners to work bent over while mining the hard rock. (e) Human muscle power and
endurance are primarily the forces required to mine in the hard rock ruby mine tunnels of Longido.
(f) Bags of valuable facet-grade ruby rough are sealed and left deep in the mine for security. (g) This
tunnel was less than three months old. Ruby has yet to be found. Photos copyright of Guild Institute
of Gemology.
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The tunnel mine that Guild Field gemologist Andrew Lucas documented had a long
mining history and extended for hundreds of meters. After arriving in Arusha, we drove
to Longido. Africa is such a fantastic place to visit, especially Tanzania. While going to
Longido, we had to stop several times for wild animals to cross. During the visit, Andrew
Lucas interviewed the mine manager about mining in 2017 and 2018. According to him, a
large pocket of tiny and fine-color transparent crystals was discovered in 2017. This led to
large purchases by Chinese buyers and much larger mining activity. In fact, the area near the
mine changed from a few huts to over 1000 homes. Foreign investment also came into the
mine to increase the mining pace and hopefully find more pockets of this quality material.

Mining work is very strenuous. This is the process of mining hard rock tunnels
(Figure 2d–f). Once a pocket is reached, drills and jackhammers are used to remove the
ruby, along with some hand tools. It is difficult to move the tunnel forward through the
hard rock. The larger you make the tunnel, the more time, labor, and expense are involved,
so in some areas, miners have to work bent over while digging in the hard rock. Gases
released from the earth in the tunnel mixed with the fumes from the power tools and dust
in the air, making ventilation at the deeper depths difficult. Two strong miners in their
twenties had to be evacuated due to the fumes while Andrew Lucas was documenting in
the tunnel.

While in the area, Andrew Lucas also visited recently developed ruby mines. The
tunnels were still relatively shallow, and they were still just exploring for ruby. Some
were less than a hundred meters deep (Figure 2g). The valuable pockets found in 2017
increased interest and investment in prospecting for the next tunnel that contained the
yet-undiscovered pocket that would make the miners rich.

4. Materials and Methods

In this study, we used various techniques to characterize both the ruby and its matrix.
Four large wall rocks were selected, and slices were cut and polished from them to analyze
the associated minerals (Figures 3 and 4). A parcel of ruby rough was also investigated;
however, because the surface of the rubies was coarse and unpolished, the internal features
could not be studied. In addition, 39 pieces of faceted rubies were also studied (Figure 5);
the majority of the rubies are highly saturated with bright to deep red tones, weighing from
0.50 ct to 1.00 ct in rough and 0.25 to 1.07 ct in faceted stones.

Refractive indices and birefringence were examined using a reflectometer and a light
source with a near-sodium equivalency at Guild Gem Laboratories. The hydrostatic tech-
nique was used to calculate and determine the specific gravity. A portable dichroscope was
utilized to observe pleochroism. In a dark environment, fluorescence responses were seen
while exposed to conventional long-wave (365 nm) and short-wave (254 nm) U.V. light.
To explore the interior characteristics, we used a typical geological microscope with Leica
lenses and a magnification of up to 80×.

The infrared spectra of rubies were tested by a TENSOR II type Fourier transform
infrared spectrometer (FTIR) from the German Bruker Optics company (Ettlingen, Ger-
many) at Guild Gem Laboratories (Shenzhen, China) at room temperature (23 ◦C). The
light source was near-infrared (NIR), with a scan range of 4000–1500 cm−1, a resolution of
4 cm−1, and a scan frequency of 3.75 kHz. Ninety-three ruby spectra, including 39 faceted
and 54 rough samples, were collected for this investigation.

In this study, we have applied two main testing techniques EDXRF (Energy-Dispersive
X-ray Fluorescence) and LA-ICP-MS (Laser Ablation Inductively Coupled Plasma Mass
Spectrometer) to analyze the trace elements of rubies from Longido, Tanzania. These two
techniques bear both advantages and disadvantages. For example, while EDXRF is very
quick and simple to use on gemstone samples, it can only detect a limited number of
elements. Light elements, such as Be, Li, and Na et al., are beyond the detection range.
However, this method is non-destructive, which makes it possible to perform routine
testing during daily testing in a gem lab. By comparison, it usually takes a professional
expert to practice testing using LA-ICP-MS [46]. This method could detect most elements,
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including light elements, at a higher accuracy level. But the laser applied by this method
would cause a certain amount of destruction and leave a small hole in the sample. Such a
method is destructive, and it should be very carefully operated.
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At the Wuhan Sample Solution Analytical Technology Co., Ltd., in Wuhan, China,
the chemical compositions of associated minerals and the rubies were examined using
laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). A 193 nm
ArF excimer laser ablation system (GeoLasPro) connected to an Agilent 7700 ICP-MS
(Santa Clara, CA, USA) was used for trace element analyses. The laser energy was set at
80 mJ, the laser frequency to 5 Hz, and the spot diameter at 44 µm. The carrier gas was
helium. The core gas flow of the Ar plasma (Ar + He) was supplemented with nitrogen to
increase the detection limit and accuracy [47]. The USGS standards (BCR-2G, BHVO-2G,
and BIR-1G) were utilized as an external standard, and NIST610 was examined for time-
drift correction every six analyses. ICPMSDataCal conducted time-drift correction, time-
selection, integration of background and analytical signals, and quantitative calibration for
trace element analysis [48,49].

The chemical composition studies were also carried out at Guild Gem Lab utilizing a
Ta target with a spot size of 2 mm and an energy-dispersive X-ray fluorescence (ED-XRF)
device of the Spectro Midex type (Kleve, Germany) [50]. Al, Si, K, and Ca were tested using
the RoHS+Bigspot technique at an acceleration voltage of 19 kV and a beam current of
0.30 mA, whereas Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ga, and other elements were tested at 48 kV
and a beam current of 0.60 mA.

5. Results
5.1. Standard Gemological Analysis

In this study, the gemological characteristics of ruby from Longido were typical for
corundum in general and similar to those of African rubies previously observed. Details
on the gemological features of rubies in this study can be found in Table 2 below. The
samples generally exhibit an intense and uniform red color of medium to high saturation,
which is also called “Pigeon’s Blood” in the trade. Unlike the typical semi-transparent
material from Longido, which is fashioned into carving, all the rubies are of very high
transparency and gem-quality for faceted stones. The refractive index value is 1.762–1.770,
with a birefringence of 0.008 and a specific gravity of 4.00, which is consistent with ruby
from other locations. Most samples showed distinct strong fluorescence under long-wave
UV light, and showed nearly inert to weak red under short-wave UV light.

Table 2. The gemological properties of ruby from Longido, Tanzania.

Property Rubies in This Study

Color red, medium to high saturation
Transparency transparent

Quality faceted quality
Pleochroism red, purplish red

Refractive Index no = 1.762, ne = 1.770
Birefringence 0.008
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Table 2. Cont.

Property Rubies in This Study

Specific Gravity 4.00

Spectroscope typical chromium spectrum, wide bands at about 410 nm to
555 nm from Cr3+; luminescence line at 694 nm from Cr3+

Fluorescence L.W. (365 nm): strong red
S.W. (265 nm): nearly inert to weak red

Chemical Fingerprint high Cr concentration, relatively low Fe concentration

Internal features twinning, color banding, needles, triangular platy, dark
granular mineral, and diaspore

5.2. Wall Rock and Crystal Habit

From the perspective of crystal habit, the rough rubies examined in this study pre-
dominantly exhibit subhedral or anhedral shapes. Within the feldspar matrix, well-formed
euhedral hexagonal crystals were seen. The majority of the crystal faces that were visible
on the roughs were basal planes (0001), hexagonal prisms (1010), and rhombohedra (1121).
And some well-formed crystals also existed with the crystal faces mentioned above, mainly
with a platy shape owing to the excessive development of rhombohedra faces. Figures 6–11
depict ruby crystals embedded in the white feldspar, green to dark green zoisite, and
dark-colored amphibole of the wall rocks. The related section on each mineral will go into
further detail.
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MgO 0.002–0.063 0.01 0.0009–0.0010 (0.001) 0.001 14.69 0.05
Al2O3 97.10–98.40 97.88 27.60–27.94 (27.77) 27.77 19.69 32.27
SiO2 0.85–1.57 1.11 55.62–55.91 (55.76) 55.76 41.46 40.57
P2O5 bdl–0.25 0.06 0.11–0.15 (0.13) 0.13 0.06 —
K2O bdl–0.02 0.003 0.0535–0.0538 (0.0536) 0.0536 0.4 —
CaO bdl–0.07 0.02 9.82–9.84 (9.83) 9.83 12.85 24.71
FeO 0.16–0.74 0.48 0.027–0.036 (0.032) 0.032 6.4 1.73

Total 99.574 99.6466 98.82 99.3311
a n = number of measurements. b Minimum and maximum values are given, along with average; bdl = below
detection limit.

Table 4. Ideal and calculated chemical composition of associated minerals in this study.

Associated Mineral Ideal Chemical Compositions Chemical Compositions in This Study

Pargasite NaCa2[(Mg,Fe)4Al](Si6Al2)O22(OH)2 (Na0.85 K0.07□0.08)(Ca1.95Na0.05)(Mg3.10Fe0.75Al0.15)Al1.00(Si5.87Al2.13)O22(OH)2
Zoisite Ca2Al3(SiO4)(Si2O7)O(OH) Ca2(Fe0.41Al2.59) (SiO4)(Si2O7)O(OH)

Paragonite NaAl2(Si3Al)O10(OH)2 Not detected
Labradorite-Andesine Na0:5-0:3Ca0:5-0:7Al1:5-1:7Si2:5-2:3O8 (Na0.53Ca0.47)[Al1.47Si2.53O8]
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Figure 13. The Raman spectrum identifies the rutile (black line) and diaspore (red line) inclusions. Peaks
in the inclusion spectra that are marked with * are from the host ruby. Illustrated by Huixin Zhao.
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5.3.1. Pargasite Amphibole

The Raman spectra accurately identify the deep-colored crystal as pargasite, revealing
characteristic peaks at 651, 227, 166, 379, and 417 cm−1, which are consistent with those
documented in the RRUFF database, as shown in Figure 6. Pargasite is an amphibole
mineral with the ideal chemical formula NaCa2[(Mg; Fe)4Al](Si6Al2)O22(OH)2 (Table 4).
As shown in Figure 8, the pargasite crystals within the matrix exhibit a deep green body
color and sub-prismatic crystal habit. The dark tone of the body color may be attributed to
the high iron content. The presence of pargasite is a good indicator that the Longido ruby
formed in an amphibole-hosted deposit, which is similar to those found in Mozambique.

5.3.2. Zoisite

Zoisite is mainly formed together with pargasite as granular grains in the matrix,
which is identified by the Raman spectra with characteristic peaks at 490 and 926 cm−1

(Figure 6). The previous production material was of cabochon quality, and ruby and zoisite
compositions are usually fashioned as carvings to show ruby and green colors. So, it is not
surprising to find zoisite with the new production ruby. Chemical analysis revealed that
these green-associated minerals contain high levels of iron, up to 1.73% by weight, which
may explain why the rubies contain less iron and exhibit a brighter color and stronger red
fluorescence. Details can be found in Section 6.

5.3.3. Labradorite Feldspar

Ruby crystals were discovered near white minerals and some greenish-blue minerals.
The Raman spectra identify these white minerals as labradorite, with peaks at 509 and
480 cm−1, which is consistent with RRUFF.info. Labradorite is one member of the plagio-
clase series in the feldspar group. Labradorite exhibits distinct interference colors composed
of blue and green when viewed under reflecting light. Furthermore, perfect cleavages were
also observed, which agrees with the mineralogical property of labradorite (Figure 10).

5.3.4. Paragonite Mica

The green particles fit in the gap between ruby and labradorite, and they are identified
as paragonite by Raman spectra, showing district peaks at 269, 398, and 315 cm−1, consistent
with that from RRUFF.info. Paragonite belongs to the mica group, with an ideal chemical
composition of NaAl2(Si3Al)O10(OH)2. Paragonite is an uncommon mineral, and it could be
found in large amounts, such as in low- to medium-grade metamorphic schists and phyllite,
in muscovite-biotite gneisses, quartz veins, fine-grained sediments, and glaucophane-
bearing rocks [51]. This study discovered paragonite minerals with a green color and silky
luster within the feldspar matrix. It is very important to point out that all these green
paragonites are only found in the reaction zoning between ruby and feldspar (Figure 11).

The source of Cr during the formation of ruby is still unclear. It is hypothesized that
paragonite might have played a role in bringing Cr into the formation system of corundum,
contributing to the red color. Further study is needed to decode the origin of Cr.

5.4. Associated Minerals and Inclusions
5.4.1. Rutile

As a common guest, rutile inclusions have been found in rubies from many locations,
such as Burma, Mozambique, and Sri Lanka, as well as rubies from Longido, in this study.
The Raman spectra confirmed the identity as rutile with feature peaks of 607 cm−1 (Figure 7).
Rutile is an oxide mineral composed of Ti and O. Such mineral inclusions usually scatter
in Longido ruby in the form of platy and short needles (Figure 12). The distinct visual
appearance may facilitate the determination of the origin, which will be further explained
in Section 6.
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5.4.2. Diaspore

Diaspore is a hydro-aluminum oxide commonly seen in corundum. They are typi-
cally distributed on a submicroscopic scale and are inaccessible to the naked eye or even
high magnification under microscopic examination. However, in this study, we discov-
ered a transparent colorless subhedral crystal near the girdle of one faceted ruby sample
(Figure 13), which is confirmed as a diaspore by Raman spectrum peaks at 448, 332, and
155 cm−1, which agrees with RRUFF (Figure 6). Additionally, the FTIR spectrum also
proves the existence of boehmite within the ruby host. Another mineral species of hydro-
aluminum oxide found in corundum is boehmite.

5.4.3. Growth Structures

Sharp and straight growth lines in a hexagonal pattern were usually observed in the
majority of samples in this study. Within the growth structures, clouds were composed of
numerous minute particles and triangular platy rutile (Figure 14). Even though star rubies
have been reported from Longido infrequently, the condensed concentration of clouds and
growth lines may lay the groundwork for the birth of an asterism effect in the cabochon stone.
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Figure 14. Straight and hexagonal growth structures (a) were commonly observed in these Tanzania
rubies, usually accompanied by minute cloudy inclusions and platy rutile (b). Photomicrographs by
Yizhi Zhao. Field of widths: (a) 3.04 mm and (b) 6.20 mm.

5.4.4. Fluid Inclusions

Fluid inclusions were found in only a few of the samples studied, as illustrated
in Figure 15. These fluids were mainly composed of CO2 in the healed fractures. The
general absence of fluid inclusions may be helpful in contributing to the high clarity and
transparency of the material. Meanwhile, the well-formed and untouched shape of the
fluids may be a clue to the absence of heat as well.
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5.5. FTIR Spectrum

FTIR tests all the cut stones, and the transmission spectra mainly show peaks around
2000–3500 cm−1. FTIR spectra confirmed the existence of aluminum hydroxide minerals
with peaks at 3083, 2121, and 1992 cm−1, a common inclusion found in ruby, usually as
proof of the absence of heating. The FTIR features of ruby from Longido can be summarized
as follows, as illustrated in Figure 16:

a. A flat line without any noticeable peak;
b. A small peak at 3309 cm−1;
c. Distinct peaks 3311 and 3083 cm−1 followed two small peaks at 2121 and 1992 cm−1.
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By comparison, the FTIR spectrum features reported by a previous study of ruby from
Winza differ from those of these Longido samples [33]. While the Winza rubies exhibit
prominent kaolinite-related peaks at 3695, 3670, 3650, and 3620 cm−1 and a distinct peak at
3160 cm−1 [33,52], neither of these features has been observed in the ruby from Longido in
this study.

5.6. UV-Vis Spectrum

The UV-vis spectrum was carried on the faceted samples, and the polarizer can deter-
mine the c-axis of the samples. As demonstrated in Figure 17, the UV-Vis-NIR spectroscopy
of one ruby sample was collected and oriented in two directions: perpendicular to the
c-axis (⊥c) and parallel to the c-axis (//c). The Cr3+-related absorption showed bands up
to 450 nm, between 520 and 585 nm, and sharp lines at 475 and 694 nm; faint lines were
sometimes seen at 659 and 668 nm. Moreover, a narrow band was observed at 675 nm for
the extraordinary ray (e-ray) but not the ordinary ray (o-ray). No prominent Fe-related
peaks are present, suggesting a low Fe content level [53].
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Figure 17. Polarized UV-Vis spectrum of ruby from Longido, Tanzania, showing a broad absorption
band centered at 550 nm, with a series of Cr-related peaks at 659, 669, and 694 nm in both ordinary
ray (red line) and extraordinary ray (blue line) and one more peak at 675 nm in extraordinary ray.

5.7. Chemical Composition

Elements like Fe, Cr, Ti, Ga, and others may enter the crystalline structure of corundum
and take the place of Al as well as be a part of the corundum structure because of their
similarities to Al. The diversity and concentration of these replacing cations are closely
related to the surrounding environment of corundum. Trace elements may be highly
beneficial to distinct rubies from different locales since ruby can develop in a variety
of geological environments and occurrences, such as marble in Burma, amphibole in
Mozambique, and basalt in Thailand and Cambodia.

The LA-ICP-MS testing revealed the trace elements within the rubies from Longido,
Tanzania, as listed in Table 5. The Ti content is at a low level, ranging from 3.64 to 94.54 ppm
with an average of 32.14 ppm, and the same situation applies to V, which has a range of
5.58 to 12.47 ppm and an average value as low as 8.83 ppm. Cr is very prominent, starting
at 6319 ppm and reaching a peak value of 17,957.6 ppm, while Fe is at a medium to a low
level compared with others, falling in the range of 1014.34 to 2817.72 ppm, averaging at
1711.89 ppm. The Longido ruby is poor in Ga, with an average value of 28.55 ppm.

Table 5. The main trace elements of rubies from Longido, Tanzania, in this study, tested by LA-ICP-MS.

Trace Element Ti V Cr Fe Ga

Range (ppm) 3.64–94.54 5.58–12.47 6319.47–17,057.60 1014.34–2817.72 23.48–37.51
X (ppm) a 32.14 8.83 9962.72 1711.89 28.55
S (ppm) b 15.69 1.68 1983.57 355.08 3.66

CV c 48.82% 19.06% 19.91% 20.74% 12.81%
a X = average. b S = standard deviation. c CV = coefficient of variation.

Furthermore, the values of the coefficients of variation of these five elements also
suggest the element distribution uniformity of the ruby. As V, Cr, Fe, and Ga fluctuate at
low levels, giving a CV value between 12.81% and 20.74, the Ti is distributed very unevenly
in the ruby host and has a CV value of 48.82%. Such big differences in the CV value imply
that the distribution behavior of the trace elements within ruby hosts differs from one to
another. Caution is advised when using insufficient data to analyze and make a statement
when the elemental distribution fluctuates tremendously.
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6. Discussion
6.1. Rutile

Rutile is a type of titanium oxide mineral that can be found in rubies of various origins,
and they may exhibit different shapes and various combinations, which could serve as a
way to facilitate origin determination. For example, rutile in Burmese ruby generally shows
short needles, and they are usually concentrated in a condensed way, causing a somehow
cloudy appearance (Figure 18). The abundant rutile needles, with proper orientation, may
give rise to asterism, and Burma is well-known for producing high-quality star rubies. By
comparison, the Mozambique ruby contains rutile that is usually coarse and concentrated
relatively sparsely (Figure 19), which also helps explain why asterism is less common in the
Mozambique ruby. As shown in Figure 20, the short prismatic form and triangle platy of
rutile can be a hallmark of the Longido origin because they are not as long as those found
in Mozambique and can be slightly larger than those found in Burmese rubies.
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fluorescence under long wave U.V. light (365 nm). Photos by Yizhi Zhao. 

Figure 18. (a,b) Sharp and short needles, aligned with the structure of their ruby host, are classic in-
ternal features of unheated rubies from Mogok, Burma. Field of widths: (a) 1.12 mm and (b) 3.66 mm.
(c) Iridescent rutile needles in a densely zoned cloud paint a classic portrait of the interior of a natural
Mozambique ruby. Field of width: 2.20 mm. (d) Platy and acicular inclusions shine when illuminated
with oblique fiber optic light in a natural Mozambique ruby. Field of width: 0.66 mm. (e,f) In this
study, rutile was found in ruby from Longido, Tanzania, with a short triangle platy shape. Field of
widths: (e) 3.10 mm and (f) 3.43 mm. Photomicrographs by Yizhi Zhao.
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6.2. Fluorescence

Fluorescence is an important gemological property of gemstones, especially in rubies.
Because of the Cr content, ruby may exhibit red fluorescence with varying saturations and
strengths. Iron is believed to prohibit such behavior. All the rubies, both faceted and rough,
showed moderate to strong red fluorescence under a long-wave UV (Figure 19), while
being nearly inert to weakly red under a short-wave UV. As a comparison, rubies from
Mozambique and Burma were observed, as well as synthetic counterparts grown by the
flame fusion method.

When these rubies are exposed to invisible ultraviolet (U.V.) rays, they all exhibit even
fluorescence in both long-wave and short-wave U.V., and the color seen is red. In all cases,
the strength of these rubies’ reactions to long-wave UV was stronger than that to short-
wave UV (Figure 20). Four rubies from different origins (from left to right: Mozambique,
Tanzania, Burma, Synthetic) displayed various strength of red fluorescence. The U.V.
imaging revealed a different fluorescent appearance of these samples, which showed that
the intensity of rubies of Burmese origin and synthetic ones was distinctly stronger. In
contrast, African ruby presented a much weaker fluorescence, and Mozambique ruby
appeared to have the faintest fluorescence.

From the EDXRF data, as listed in Table 6, the Fe concentration was considered
to explain the different fluorescent appearances of these samples. Mozambique ruby
is enriched in Fe, which will suppress the luminous intensity. Rubies from Burma and
synthetic ones are characterized by an extremely low amount of Fe, which may induce
a strong reaction under UV rays. Longido ruby, on the other hand, has the highest Cr
content (around 8300 ppm) and the intermediate Fe content (around 1200 ppm), resulting
in a moderate fluorescence intensity. The Cr/Fe ratios were further proposed, which
are presented in Table 6, to explore the relationship between element concentration and
fluorescence. It was indicated that the sample with the lowest Cr/Fe ratio, which was
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down to around 0.2, showed the faintest fluorescence in this experiment, as illustrated in
Figure 21.

Table 6. The Fe and Cr contents (ppmw) of ruby from various sources tested by EDXRF, including
Longido, Tanzania, Mozambique, Burma, and Flame fusion method.

Test Point Number Origin Fe Cr Cr/Fe

Moz-1 Mozambique 5330 1077 0.2
Moz-2 Mozambique 5246 1056 0.2
Moz-3 Mozambique 4997 974 0.19

On Average 5191 1036 0.2
Tan-1 Longido, Tanzania 1278 8588 6.72
Tan-2 Longido, Tanzania 1252 8361 6.68
Tan-3 Longido, Tanzania 1262 8308 6.58

On Average 1264 8419 6.66
Bur-1 Mogok, Burma 49 1643 33.33
Bur-2 Mogok, Burma 52 2547 49.08
Bur-1 Mogok, Burma 51 2578 50.16

On Average 51 2256 44.35
Syn-1 Flame Grown method 42 3233 77.72
Syn-1 Flame Grown method 46 3271 70.95
Syn-1 Flame Grown method 38 3197 85.25

On Average 42 3234 77.48
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In conclusion, the different amounts of Cr and Fe and the Cr/Fe ratio enable us to ex-
plain the different fluorescent appearances of rubies, and they can further help discriminate
rubies from various sources with different Cr and Fe contents to a degree.

6.3. Trace Elements

The trace elements have been proven to be a powerful tool to determine the origin
of ruby, especially when the stones are very clean and their visual appearance shows
very little difference [30]. Several elements could be useful, including V, Cr, Ga, Ti, and
Fe. As mentioned above, the similarities between these elements and Al allow them to
enter the crystalline structure of corundum. However, the ambient environment where
ruby is formed may contain these elements at different levels. Hence, the trace element
contents and their relative ratio can be an indicator for origin determination. Taking



Crystals 2024, 14, 383 19 of 23

Burmese, Mozambique, and Longido rubies, for example, the Fe and Cr content can
clearly differentiate these three origins (Figure 22). The Fe-free marble-hosted ruby from
Burma can be clearly separated from the other two. However, several overlaps still exist
between Longido and Mozambique since they both belong to the African continent and are
influenced by similar geology events and substance supplies.
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Figure 22. Plotting of Fe and Cr to show the difference in rubies from Mozambique, Burma, and
Longido Tanzania in this study.

Furthermore, the extremely high Cr content not only gives rise to the attractive color,
of which most can reach the criteria of “Pigeon’s Blood”, as known in the gem trade.
Meanwhile, the oversaturation of Cr absorbs too much of the visible light and prohibits
reflecting more light back, resulting in more extinction dark tone in the finished cut stone.
Such features prohibit the stone from cutting into large sizes with nice colors of bright
tones. As shown in Figure 23, the three-carat stone on the left shows deep red, while the
one-carat-size stone exhibits vivid red by contrast.
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Figure 23. Two faceted rubies from Longido are compared with different sizes. The high chromium
content may prohibit the stone from reflecting more light back, resulting in more extinction and lower
tone, especially when the stone is cut into a big size. Photo by Yizhi Zhao.
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7. Conclusions

Rubies from Longido, Tanzania, are found with wall rock composed mainly of feldspar,
mica, zoisite, and amphibole. The high transparency and clarity enable the stones to be
faceted instead of carved or cut as cabochons. The presence of boehmite may be a strong
proof of the absence of heating. High chromium and low iron make the color more saturated
in red, which is a useful parameter to differentiate them from Burmese and Mozambique
rubies. Ongoing studies of the new Mozambique ruby production by FURA Gems, which
exhibits high fluorescence, will aim to elucidate the chemical composition of the material in
comparison to rubies from Tanzanian and other African ruby sources, including pre-existing
ones in Mozambique.

Tanzania is well known for producing high-quality rubies in Winza. Now that Winza
is not as active as before, the new production of ruby from the Longido area may further
enhance the Tanzanian market share (Figure 24). The relatively large production allows
the cutters to perform more interesting and new cutting styles and shapes, giving design-
ers more options. The new production may provide better-quality material for jewelry,
especially for small-size rubies. However, the sustainability and stability of supply are still
unknown and remain to be seen. Historically, the predominant quality of Longido material
has been suitable for carving and for cutting as cabochons. With regard to the material
from the pocket productions of 2017 and 2018, a small portion of high-quality facet-grade
material has been seen in the market. While those productions have created a lot of interest
and investment, the mining for facet-grade material in the hard rock in Longido is much
more difficult than the alluvial mining in Mozambique.
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tian Jewelry Ltd. Co. (Shanghai, China). 
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the right one weighs 1.07 ct (from Longido). Photo by Yizhi Zhao. Courtesy of Mr. Kenny Yi from
Xiangtian Jewelry Ltd. Co. (Shanghai, China).



Crystals 2024, 14, 383 21 of 23

Author Contributions: Conceptualization, K.L.; Data curation, X.S., T.H. and Y.Z.; Formal analysis,
Y.G. and A.C.L.; Funding acquisition, M.H.; Investigation, D.Z. and K.L.; Methodology, Y.G., A.C.L.,
X.S. and M.L.; Project administration, M.H.; Resources, Y.G.; Software, Y.G., X.S., T.H. and D.F.;
Supervision, Y.G., M.H. and D.F.; Validation, D.Z. and X.J.; Visualization, X.S.; Writing—original
draft, Y.G.; Writing—review and editing, Y.G., A.C.L., X.S. and M.L. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the National Science and Technology Infrastructure—The
National Infrastructure of Mineral, Rock and Fossil Resources for Science and Technology (http:
//www.nimrf.net.cn, accessed on 25 December 2021), and the Program of the Data Integration
and Standardization in the Geological Science and Technology from MOST, China, grant number
2013FY110900-3.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: Chengsi Wang and Yungui Liu, from China University of Geoscience (Wuhan)
are thanked for their help during the Raman and LA-ICP-MS testing. Kenny Yi from Xiangtian
Jewelry in Shenzhen is thanked for sharing his seasoned experience in the gem trade. Yizhi Zhao is
also thanked for the photography.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Shor, R. Auction Houses: A Powerful Market Influence on Major Diamonds and Colored Gemstones. Gems Gemol. 2013, 49, 2–15.

[CrossRef]
2. Garnier, V.; Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Dubessy, J.; Banks, D.; Vinh, H.Q.; Lhomme, T.; Maluski, H.; Pecher, A.;

et al. Marble- hosted ruby deposits from Central and Southeast Asia: Towards a new genetic model. Ore Geol. Rev. 2008, 34,
169–191. [CrossRef]

3. Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Groat, L.; Fagan, J. The geology and genesis of gem corundum deposits. In Geology of
Gem Deposits, 2nd ed.; Groat, L.A., Ed.; Short Course Series; Mineralogical Association of Canada: Québec, QC, Canada, 2014;
Volume 44, pp. 29–112.

4. Garnier, V.; Maluski, H.; Giuliani, G.; Ohnenstetter, D.; Schwarz, D. Ar-Ar and U-Pb ages of marble-hosted ruby deposits from
central and southeast Asia. Can. J. Earth Sci. 2003, 43, 509–532. [CrossRef]

5. Zaw, K.; Sutherland, L.; Yui, T.F.; Meffre, S.; Thu, K. Vanadium-rich ruby and sapphire within Mogok Gemfield, Myanmar:
Implications for gem color and genesis. Miner. Depos. 2014, 50, 25–39. [CrossRef]

6. Searle, M.P.; Morley, C.K.; Waters, D.J.; Gardiner, N.J.; Htun, U.K.; Nu, T.T.; Robb, L. Chapter 12 Tectonic and metamorphic
evolution of the Mogok Metamorphic and Jade Mines belts and ophiolitic terranes of Burma (Myanmar). Geol. Soc. Lond. Mem.
2017, 48, 261–293. [CrossRef]

7. Peretti, A.; Schmetzer, K.; Bernhardt, H.J.; Mouawad, F. Rubies from Mong Hsu. Gems Gemol. 1995, 31, 2–26.
8. Long, P.V.; Vinh, H.Q.; Nghia, N.X. Inclusions in Vietnamese Quy Chau ruby and their origin. Aust. Gemmol. 2004, 22, 67–71.
9. Long, P.V.; Vinh, H.Q.; Garnier, V.; Giuliani, G.; Ohnenstetter, D. Marble-hosted ruby from Vietnam. Can. Gemmol. 2004, 25, 83–95.
10. Long, P.V.; Vinh, H.Q.; Garnier, V.; Giuliani, G.; Ohnenstetter, D.; Lhomme, T.; Schwarz, D.; Fallick, A.; Dubessy, J.; Trinh, P.T.

Gem corundum deposits in Vietnam. J. Gemmol. 2004, 29, 129–147. [CrossRef]
11. Huang, W.; Ni, P.; Shui, T.; Pan, J.; Fan, M.; Yang, Y.; Chi, Z.; Ding, J. Trace Element Geochemistry and Mineral Inclusions

Constraints on the Petrogenesis of a Marble–Hosted Ruby Deposit in Yunnan Province, China. Can. Mineral. 2021, 59, 381–408.
[CrossRef]

12. Huang, W.; Ni, P.; Zhou, J.; Shui, T.; Ding, J.; Zhu, R.; Cai, Y.; Fan, M. Discovery of Disulfane (H2S2) in Fluid Inclusions in Rubies
from Yuanjiang, China, and Its Implications. Crystals 2021, 11, 1305. [CrossRef]

13. Levinson, A.A.; Cook, F.A. Gem Corundum in Alkali Basalt: Origin and Occurrence. Gems Gemol. 1994, 30, 253–262.
14. Lin Sutherland, F.; Hoskin, P.W.O.; Fanning, C.M.; Coenraads, R.R. Models of corundum origin from alkali basaltic terrains: A

reappraisal. Contrib. Mineral. Petrol. 1998, 133, 356–372. [CrossRef]
15. Sutherland, F.L.; Coenraads, R.R. An unusual ruby-sapphire-sapphirine-spinel assemblage from the Tertiary Barrington Volcanic

province, New South Wales, Australia. Mineral. Mag. 1996, 60, 623–638. [CrossRef]
16. Yui, T.F.; Zaw, K.; Limtrakun, P. Oxygen isotope composition of the Denchai sapphire, Thailand: A clue to its enigmatic origin.

Lithos 2003, 67, 153–161. [CrossRef]
17. Saminpanya, S.; Sutherland, F.L. Different origins of Thai area sapphire and ruby, derived from mineral inclusions and co-existing

minerals. Eur. J. Mineral. 2011, 23, 683–694. [CrossRef]
18. Palke, A.C.; Wong, J.; Verdel, C.; Avila, J.N. A common origin for Thai/Cambodian rubies and blue and violet sapphires from

Yogo Gulch, Montana, U.S.A.? Am. Mineral. 2018, 103, 469–479. [CrossRef]
19. Chapin, M.; Pardieu, V.; Lucas, A. Mozambique: A Ruby Discovery for the 21st Century. Gems Gemol. 2015, 51, 44–54.

http://www.nimrf.net.cn
http://www.nimrf.net.cn
https://doi.org/10.5741/GEMS.49.1.2
https://doi.org/10.1016/j.oregeorev.2008.03.003
https://doi.org/10.1139/e06-005
https://doi.org/10.1007/s00126-014-0545-0
https://doi.org/10.1144/M48.12
https://doi.org/10.15506/JoG.2004.29.3.129
https://doi.org/10.3749/canmin.2000054
https://doi.org/10.3390/cryst11111305
https://doi.org/10.1007/s004100050458
https://doi.org/10.1180/minmag.1996.060.401.08
https://doi.org/10.1016/S0024-4937(02)00268-2
https://doi.org/10.1127/0935-1221/2011/0023-2123
https://doi.org/10.2138/am-2018-6164


Crystals 2024, 14, 383 22 of 23

20. Sorokina, E.S.; Rösel, D.; Häger, T.; Mertz-Kraus, R.; Saul, J.M. LA-ICP-MS U–Pb dating of rutile inclusions within corundum
(ruby and sapphire): New constraints on the formation of corundum deposits along the Mozambique belt. Miner. Depos. 2017, 52,
641–649. [CrossRef]

21. Vertriest, W.; Saeseaw, S. A Decade of Ruby from Mozambique: A Review. Gems Gemol. 2019, 55, 162–183. [CrossRef]
22. Mercier, A.; Rakotondrazafy, M.; Ravolomiandrinarivo, B. Ruby mineralization in southwest Madagascar. Gondwana Res. 1999, 2,

433–438. [CrossRef]
23. Cartier, L.E. Ruby and sapphire from Marosely, Madagascar. J. Gemmol. 2009, 31, 171–179. [CrossRef]
24. Goff, E.L.; Deschamps, Y.; Guerrot, C. Tectonic implications of new single zircon Pb–Pb evaporation data in the Lossogonoi and

Longido ruby-districts, Mozambican metamorphic Belt of north-eastern Tanzania. C. R. Geosci. 2010, 342, 36–45. [CrossRef]
25. Smith, C.P.; Fagan, A.J.; Clark, B. Ruby and Pink Sapphire from Aappaluttoq, Greenland. J. Gemmol. 2016, 35, 294–306. [CrossRef]
26. Yakymchuk, C.; Szilas, K. Corundum formation by metasomatic reactions in Archean metapelite, SW Greenland: Exploration

vectors for ruby deposits within high-grade greenstone belts. Geosci. Front. 2018, 9, 727–749. [CrossRef]
27. Keulen, N.; Thomsen, T.B.; Schumacher, J.C.; Poulsen, M.D.; Kalvig, P.; Vennemann, T.; Salimi, R. Formation, origin, and

geographic typing of corundum (ruby and pink sapphire) from the Fiskenæsset complex, Greenland. Lithos 2020, 366, 105536.
[CrossRef]

28. Pignatelli, I.; Morlot, C.; Giuliani, G.; Pardieu, V. The ‘Star of David’ Pattern and Presence of Macro-steps on Ruby and Sapphire
Crystals from Aappaluttoq, Greenland. J. Gemmol. 2022, 38, 364–375. [CrossRef]

29. Giuliani, G.; Groat, L.A. Geology of Corundum and Emerald Gem Deposits: A Review. Gems Gemol. 2019, 55, 464–489. [CrossRef]
30. Palke, A.C.; Saeseaw, S.; Renfro, N.D.; Sun, Z.; McClure, S.F. Geographic Origin Determination of Ruby. Gems Gemol. 2019, 55,

480–613. [CrossRef]
31. Dirlam, D.M.; Misiorowski, E.B.; Tozer, R.; Stark, K.B.; Bassett, A.M. Gem wealth of Tanzania. Gems Gemol. 1992, 28, 80–102.
32. Hanni, H.A.; Schmetzer, K. New rubies from the Morogoro area, Tanzania. Gems Gemol. 1991, 27, 156–167.
33. Schwarz, D.; Pardieu, V.; Saul, J.; Schmetzer, K.; Laurs, B.; Giuliani, G.; Klemm, L.; Malsy, A.; Erel, E.; Hauzenberger, C.; et al.

Rubies and Sapphires from Winza, Central Tanzania. Gems Gemol. 2008, 44, 322–347. [CrossRef]
34. Hanni, H. On corundum from Umba Valley, Tanzania. J. Gemmol. 1987, 20, 278–284. [CrossRef]
35. Chankhantha, C.; Kidkhunthod, P.; Amphon, R.; Shen, A.H. Gemological and XANES Investigations Of Pink Spinel From

Mahenge, Tanzania. In Proceedings of the 3rd International Conference on Radiation and Emission in Materials (ICREM), Chiang
Mai, Thailand, 15–18 December 2020.

36. Chankhantha, C.; Amphon, R.; Rehman, H.; Shen, A. Characterisation of Pink-to-Red Spinel from Four Important Localities. J.
Gemmol. 2020, 37, 393–403. [CrossRef]

37. Feneyrol, J.; Giuliani, G.; Demaiffe, D.; Ohnenstetter, D.; Fallick, A.E.; Dubessy, J.; Martelat, J.; Rakotondrazafy, A.F.; Omito,
E.; Ichangi, D.; et al. Age and Origin of the Tsavorite and Tanzanite Mineralizing Fluids in the Neoproterozoic Mozambique
Metamorphic Belt. Can. Mineral. 2017, 55, 763–786. [CrossRef]

38. Pohl, W.L. The Tsavorite (Gem Quality Vanadium Grossularite) Minerogenetic System in East Africa. In The Structural Geology
Contribution to the Africa-Eurasia Geology: Basement and Reservoir Structure, Ore Mineralization and Tectonic Modelling. CAJG 2018.
Advances in Science, Technology & Innovation; Springer: Cham, Switzerland, 2019.

39. Schmetzer, K.; Malsy, A.-K. Alexandrite and color-change chrysoberyl from the Lake Manyara alexandrite-emerald deposit in
northern Tanzania. J. Gemmol. 2011, 32, 179–209. [CrossRef]

40. Leelawatanasuk, T.; Susawee, N.; Bupparenoo, P. Characteristics of Faceted-Quality Ruby from Longido, Tanzania. Bull. Earth Sci.
Thail. 2021, 10, 1–7.

41. Kongsomart, B.; Vertriest, W.; Weeramonkhonlert, V. Preliminary Observations on Facet-Grade Ruby from Longido, Tanzania.
Gems Gemol. 2017, 53, 472–473.

42. Sumritvanicha, N.; Sripoonjan, T.; Wanthanachaisaeng, B. Indication of Low-Temperature Heat Treatment: The Case Study of
Ruby from Longido, Tanzania. In Proceedings of the 43rd Congress on Science and Technology of Thailand (STT 43), Bangkok,
Thailand, 17–19 October 2017.

43. Gao, Y.J.; Lucas, A.; Sun, X.Y.; Ju, D. Gemological Study of Rubies from Longido, Tanzania. In Proceedings of the 2021 International
Jewelry Academic Exchange Conference, Guangzhou, China, 19 November 2021; pp. 70–75.

44. Schlüter, T. Geological Atlas of Africa. In With Notes on Stratigraphy, Tectonics, Economic Geology, Geohazards and Geosites of Each
Country; Springer: Berlin/Heidelberg, Germany, 2006; pp. 226–231.

45. Balmer, W.; Hauzenberger, C.; Fritz, H.; Sutthirat, C. Marble-hosted ruby deposits of the Morogoro Region, Tanzania. J. Afr. Earth
Sci. 2017, 134, 626–643. [CrossRef]

46. Abduriyim, A.; Kitawaki, H. Applications of Laser Ablation—Inductively Coupled Plasma—Mass Spectrometry (LA-ICP-MS) to
Gemology. Gems Gemol. 2006, 42, 98–118. [CrossRef]

47. Hu, Z.C.; Gao, S.; Liu, Y.S.; Hu, S.H.; Chen, H.H.; Yuan, H.L. Signal enhancement in laser ablation ICP-MS by addition of nitrogen
in the central channel gas. J. Anal. At. Spectrom. 2008, 23, 1093–1101. [CrossRef]

48. Liu, Y.S.; Hu, Z.C.; Gao, S.; Gunther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous
minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [CrossRef]

https://doi.org/10.1007/s00126-017-0732-x
https://doi.org/10.5741/GEMS.55.2.162
https://doi.org/10.1016/S1342-937X(05)70281-1
https://doi.org/10.15506/JoG.2009.31.5.171
https://doi.org/10.1016/j.crte.2009.10.003
https://doi.org/10.15506/JoG.2016.35.4.294
https://doi.org/10.1016/j.gsf.2017.07.008
https://doi.org/10.1016/j.lithos.2020.105536
https://doi.org/10.15506/JoG.2022.38.4.364
https://doi.org/10.5741/GEMS.55.4.464
https://doi.org/10.5741/GEMS.55.4.580
https://doi.org/10.5741/GEMS.44.4.322
https://doi.org/10.15506/JoG.1987.20.5.278
https://doi.org/10.15506/JoG.2020.37.4.393
https://doi.org/10.3749/canmin.1600085
https://doi.org/10.15506/JoG.2011.32.5.179
https://doi.org/10.1016/j.jafrearsci.2017.07.026
https://doi.org/10.5741/GEMS.42.2.98
https://doi.org/10.1039/b804760j
https://doi.org/10.1016/j.chemgeo.2008.08.004


Crystals 2024, 14, 383 23 of 23

49. Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite
interactions in the Trans-North China orogen: U\Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J.
Petrol. 2010, 51, 537–571. [CrossRef]

50. Gao, Y.; Lin, M.; Li, X.; Sun, X. Trace elements and big data application to gemology by x-ray fluorescence. In Artificial Intelligence
and Spectroscopic Techniques for Gemology Applications; IOP Publishing: Bristol, UK, 2022. [CrossRef]

51. Anthony, J.W. Handbook of Mineralogy: Silica, Silicates; Mineral Data Pub, 1995.
52. Beran, A.; Rossman, G.R. OH in naturally occurring corundum. Eur. J. Mineral. 2006, 18, 441–447. [CrossRef]
53. Dubinsky, E.V.; Stone-Sundberg, J.; Emmett, J.L. A Quantitative Description of the Causes of Color in Corundum. Gems Gemol.

2020, 56, 2–28. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/petrology/egp082
https://doi.org/10.1088/978-0-7503-3927-8ch5
https://doi.org/10.1127/0935-1221/2006/0018-0441
https://doi.org/10.5741/GEMS.56.1.2

	Introduction 
	Geological Background 
	Mining and Production 
	Materials and Methods 
	Results 
	Standard Gemological Analysis 
	Wall Rock and Crystal Habit 
	Associated Minerals 
	Pargasite Amphibole 
	Zoisite 
	Labradorite Feldspar 
	Paragonite Mica 

	Associated Minerals and Inclusions 
	Rutile 
	Diaspore 
	Growth Structures 
	Fluid Inclusions 

	FTIR Spectrum 
	UV-Vis Spectrum 
	Chemical Composition 

	Discussion 
	Rutile 
	Fluorescence 
	Trace Elements 

	Conclusions 
	References

