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Abstract: Bimetallic (or multimetallic) catalysis has emerged as a powerful tool in modern chemical
synthesis, offering improved reaction control and versatility. This review focuses on the recent
developments in bimetallic sequential catalysis for the synthesis of nitrogen heterocycles, which
are essential building blocks in pharmaceuticals and fine chemicals. The cooperative action of two
(sometimes more) different metal catalysts enables intricate control over reaction pathways, enhancing
the selectivity and efficiency of the synthesis of N-heterocyclic compounds. By activating less
reactive substrates, this multimetal catalytic strategy opens new synthetic possibilities for challenging
compounds. The use of catalytic materials in bimetallic systems reduces waste and improves atom
efficiency, aligning with green chemistry principles. With a diverse range of metal combinations and
reaction conditions, bimetallic catalysis provides access to a broad array of N-heterocyclic compounds
with various functionalities. This paper highlights the significant progress made in the past decade in
this topic, emphasizing the promising potential of bimetallic catalysis in drug discovery and the fine
chemical industries.

Keywords: bimetallic catalysis; multimetallic catalysis; sequential catalysis; N-heterocycles; transition
metals; green chemistry

1. Introduction

Catalysis plays a vital role in modern chemical synthesis, efficiently converting simple
starting materials into valuable complex compounds. Bimetallic catalysis, which involves
two different metal species working together synergistically, has emerged as a power-
ful tool for various chemical reactions [1–4]. Sequential bimetallic catalysis represents a
cutting-edge approach, enabling the synthesis of valuable compounds with higher effi-
ciency, selectivity, and atom economy. It opens new synthetic possibilities for more complex
compounds by activating and transforming substrates that may be unreactive or challeng-
ing for a single-metal catalyst, aligning with green chemistry principles and reducing the
formation of unwanted byproducts [5].

Pioneering studies on transition-metal-catalyzed cross-coupling reactions, such as
Suzuki, Heck, and Negishi reactions, laid the foundation for bimetallic catalysis by demon-
strating selective coupling of different organic fragments [6]. Early investigations into
tandem catalysis, performing consecutive reactions without intermediate isolation, in-
spired the concept of sequential bimetallic catalysis for increased efficiency and shorter
reaction times. The cooperative action of two metal catalysts to activate a substrate show-
cased the potential of combining multiple metals for improved reactivity and selectivity.
Cascade reactions, where bond-forming events occur in a one-pot manner, influenced the
design of sequential bimetallic catalysis, promoting multiple cyclical reactions for complex
molecular synthesis [3,7].
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One particularly promising area of bimetallic catalysis is the synthesis of N-heterocycles,
which are essential building blocks in numerous biologically active compounds and phar-
maceuticals [8]. Traditional synthetic routes for N-heterocycles have some drawbacks, such
as the involvement of multiple steps, harsh conditions, and the generation of significant
waste. Therefore, bimetallic catalysis offers several key advantages in N-heterocycle syn-
thesis. In particular, the use of two different metal catalysts in tandem allows for intricate
control over the reaction pathways, enhancing selectivity and improving yields of the
desired N-heterocyclic products. This is particularly important in complex molecules,
where traditional methods may lead to competing side reactions.

Moreover, bimetallic catalysis facilitates the activation of less reactive substrates, en-
abling the synthesis of N-heterocycles that were previously challenging or unattainable
through monometallic catalysis. This expands the synthetic toolbox, providing access to
a broader range of N-heterocyclic structures. In addition, the efficient use of bimetallic
catalysis reduces waste and increases atomic efficiency, making the process more environ-
mentally friendly and economically viable [3,7]. However, the practical application of dual
catalysis in organic synthesis is still limited by factors such as the compatibility between
catalysts (including ligand exchange, acid–base interactions, and redox processes) and the
matching of reaction kinetics [9].

As the field continues to evolve, this review presents an overview of the recent de-
velopments concerning bimetallic sequential catalysis for the synthesis of N-heterocycles,
which represents a promising avenue in catalysis.

2. Bimetallic Approaches to N,O-Aminals and Related Spiro-N,O-Heterocycles

N,O-aminals are an interesting class of substituted molecules bearing a geminally N,O-
substituted (stereogenic) carbon center and have been recently recognized as an important
class of building blocks in organic synthesis [10]. In the conventional approach, N,O-aminals
are derived either from the corresponding α-amido sulfones via nucleophilic substitution,
replacing the sulfonyl group with an alkoxy moiety [11–15], or from the corresponding
imines by means of nucleophilic addition, introducing an alkoxy group [16–24].

While several methods exist for the synthesis of these compounds, enantioselective
examples are still limited, particularly for the construction of chiral tetrasubstituted carbon
centers [22]. Moreover, some of these methods do come with certain disadvantages, such
as the requirement for harsh reaction conditions, such as the use of strong acids or high
temperatures, which may lead to side reactions or limited substrate compatibility. Addi-
tionally, the formation of unwanted byproducts and the potential for racemization can pose
challenges, particularly in the synthesis of chiral N,O-aminals. Despite these drawbacks,
researchers continue to explore new strategies to overcome these limitations and develop
more sustainable and selective routes for N,O-aminal synthesis, with bimetallic catalysis
showing important potential [25].

Xu and coworkers have been actively developing synthetic processes for fused bicyclic
N,O-aminals and spiro-N,O-aminals. The authors have focused on bimetallic catalysis
under mild conditions, utilizing Au(I) as a catalyst and a metallic Lewis acid as a cocatalyst.
In 2013, the group successfully achieved the synthesis of aromatic and allyl-substituted
fused bicyclic aminals (1) through a Au(I)/Ga(III)-catalyzed [4+2] cycloaddition cascade
reaction, with 13 examples and yields of up to 90% (Scheme 1a) [26]. Subsequently, in
2014, the same group disclosed the synthesis of spiro-N,O-aminals (2) by employing a
Au(I)/La(III)-catalyzed [4+2] cycloaddition bimetallic approach (Scheme 1b) [25]. To pre-
vent inward isomerization of the generated enamide, a fused aromatic ring was introduced
in the same alkyne amine, enabling the reaction with activated electrophiles and yielding
spirocyclic products in 12 examples, with yields of up to 90%. In the same year, Xu’s
group successfully synthesized aromatic and allyl-substituted spiro aminals (3) using a
bimetallic Au(I)/Sc(III)-catalyzed [4+2] cycloaddition process (Scheme 1c) [27]. In this
work, trimethylsilyl (TMS) was employed as a traceless controlling group to stabilize the
derived enamide and inhibit its isomerization, resulting in 14 examples and yields of
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up to 89%. Additionally, in 2016, Xu and coworkers reported the preparation of spiro
heterocycles through a Au(I)/Yb(III)-catalyzed diastereoselective [3+2] cycloaddition be-
tween aziridines and alkynyl substrates (Scheme 1d) [28]. Various N-protecting groups
and aliphatic and aromatic alkynyl substrates were tested, resulting in diverse substituted
spiro-N,O-heterocycles (4), with 16 examples and yields of up to 99%. Furthermore, by
switching from alkynyl alcohols to alkynyl amides, a similar reaction with aziridines af-
forded aromatically substituted spiro-N,N-heterocycles (5), with nine examples and yields
of up to 80%.
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Scheme 1. (a–d) Xu’s contributions to the bimetallic synthesis of fused bicyclic and spiro aminals.

To gain insights into the reactions’ mechanisms (Scheme 2), Xu and coworkers con-
ducted deuteration experiments that showed that the alkynyl substrate undergoes a Au(I)-
catalyzed 5-exo-dig cyclization, affording enamide 6, followed by isomerization into another
enamide (7). Although 7 is more stable, depending on the reaction conditions and the
type or loading of the Lewis acid, either spiro or fused aminals can be afforded by a [4+2]
cycloaddition. Thus, the Lewis acid activates the electrophile and generates the final prod-
uct. When in contact with aziridines, enamide 6 can also undergo a Lewis-acid-catalyzed
[3+2] cycloaddition.
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Scheme 2. A plausible mechanism of the Au/Lewis acid bimetallic synthesis of fused bicyclic and
spiro aminals proposed by Xu’s group.

In 2016, Li and coworkers described an innovative asymmetric cascade reaction be-
tween alkynyl amides (8) and keto esters (9), employing a bimetallic catalytic system of
achiral π-acid Au(I) and a chiral Lewis acid N,N’-dioxide Ni(II) complex (Scheme 3) [29].
This approach enabled the synthesis of spiro aminals (10) with high yields (up to 99%),
excellent enantioselectivity (over 99% ee), and moderate to high diastereoselectivity (19:1
d.r.) under mild reaction conditions. The bimetallic catalytic system facilitated the sequen-
tial activation of the carbonyl and alkyne moieties, with the N,N’-dioxide ligand playing a
crucial role.
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In 2016, another interesting bimetallic relay catalytic system was developed by Xu’s
group, enabling the synthesis of oxazole derivatives from readily available N-(propargyl)-
aryl amides and aldehydes under mild reaction conditions (Scheme 4) [30]. The authors
demonstrated that both Zn(OTf)2 and Sc(OTf)3 catalysts are necessary to achieve the final
product. Control experiments demonstrated that in the absence of Sc(OTf)3, the product
was obtained in a 16% yield, along with the oxazoline intermediate (13) (41%), while in the
absence of Zn(OTf)2, only trace amounts to product were detected. The system consists
of Zn(OTf)2 and Sc(OTf)3, which act as a π acid and a σ acid, respectively. The reaction
proceeds through a cascade of reactions, beginning with an intramolecular 5-exo-dig cy-
clization of alkynyl amide 11 catalyzed by Zn(OTf)2. Simultaneously, Sc(OTf)3 coordinates
with the carbonyl group of the aldehyde (12), promoting the subsequent carbonyl–ene reac-
tion with the oxazoline intermediate (13), yielding the desired oxazole product (14). This
method was straightforward, with considerable atomic economy, possessing the potential
for applications in organic synthesis and medicinal chemistry.
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Scheme 4. General conditions for the preparation of oxazoles using a Zn(II)/Sc(III)-bimetallic
catalyzed approach.

A similar work was reported by Feng’s group in 2018 [31]. In this work, a simi-
lar efficient catalytic asymmetric cyclization reaction (Scheme 5) was conducted using a
bimetallic system that involved an achiral Au(I) catalyst and the same chiral N,N′-dioxide
ligand/Ni(II) catalyst. This reaction also involved the cyclization of alkyl amides or alco-
hols (15) with β,γ-unsaturated α-ketoesters (16), leading to the formation of fused bicyclic
N,O-acetals or O,O-acetals. The researchers employed a 5-endo-dig cyclization process
based on Baldwin’s rules, resulting in a cycloalkene intermediate capable of reacting with
β,γ-unsaturated α-ketoesters to form the desired fused bicyclic products through an in-
verse electron-demand hetero-Diels–Alder (IEDHDA) reaction. The optimal conditions
for the reaction were determined, yielding products with good yields (77–99%) and excel-
lent enantioselectivities (96–99% ee). The reaction tolerated various substrates, including
those with 2-naphthyl and heteroaromatic groups. The substrate scope was expanded to
alkynyl alcohols and alkynyl amines, yielding the desired fused bicyclic N,O-acetals with
excellent yield and enantioselectivity. Based on control experiments, a reaction mechanism
is proposed: initially, the gold catalyst coordinates with the alkynyl substrate (15) to form
a π–gold–alkyne complex (17) and generated the key cyclic intermediate (18) in situ. On
the other hand, chiral Lewis acid Ni(II)/L-PiPr2-activated β,γ-unsaturated α-ketoester (16)
reacts with 18, affording fused bicyclic acetal 19.
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3. Bimetallic Approaches Involving Indole Scaffolds

Indoles and indolines are of great importance in medicinal chemistry, pharmaceuticals,
and natural product synthesis due to their involvement in various biological processes
and their structural significance. Several common methods for synthesizing indoles, in-
cluding Fischer indole synthesis, Bischler–Möhlau indole synthesis, Madelung indole
synthesis, Reissert indole synthesis, and Buchwald–Hartwig amination, have been widely
employed [32]. However, some traditional routes suffer from drawbacks such as harsh
reaction conditions, multistep processes, limited substrate scope, and regioselectivity issues,
which can lead to the formation of unwanted byproducts or the need for expensive catalysts.
Thus, bimetallic catalytic routes that involve the formation of an indole intermediate or
product has emerged as a desirable approach.

The direct formation of pyrrolo [2,3-β]indoles via catalyzed bicycloaddition reactions
is a very attractive yet challenging process. Isocyanides can be inserted either with a Lewis
acid [33] or via transition metal catalysis, undoubtedly with palladium as the most popular
choice [34–36]. In contrast, in 2015, Gao and coworkers explored the preparation of pyrrolo
[2,3-β]indoles using an inexpensive Co(II)-enabled process (Scheme 6) [37]. The authors
demonstrated that the combination of Co(acac)2 and AgOTf promoted a bimetallic relay
catalysis reaction between 2-ethynylanilines (20) and isocyanides (21), allowing access to
new densely functionalized pyrrolo [2,3-β]indoles (22). Overall, 26 examples were reported,
with yields of up to 86%. The authors suggested that the reaction pathway involves a
Co(II)-catalyzed double isocyanide insertion followed by a Ag(I)-catalyzed 1,3-dipolar
cycloaddition. A suitable mechanism for the formation of pyrrolo [2,3-β]indoles can be
described by a ligand exchange, affording intermediate complex 23, which activates the
electrophile isocyanides, a key step in this process. It then undergoes an N–H insertion
to obtain the enyne-imine species (24) detected using GC-MS. Then, a second migratory
insertion affords the 1,3-dipole (25) and regenerates the Co(II) catalyst. The presence of Ag(I)
allows for intramolecular 1,3-dipolar cycloaddition followed by dehydrogenation under air
conditions, which leads to the desired thermodynamically stable pyrrolo [2,3-β]indole (22).
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In 2016, Ramasastry and coworkers published two research works involving indole
synthesis and subsequent transformation through a trimetallic catalytic system. In the first
study, the authors reported a successful three-orthogonal metal relay catalytic system for
the preparation furo [3,4-β] indoles (Scheme 7) [38]. This approach involves sequential
Ag(I)/Bi(III)/Pd(II) trimetallic catalysis, demonstrating its versatility with 10 examples and
yields of up to 57%. The preparation of cyclopenta[β]indoles was also investigated using a
one-pot Ag(I)/Brønsted acid catalysis from 3-(2-aminophenyl)-4-pentenyn-3-ols, although
not involving a multimetallic catalytic approach. The reaction mechanism involved Ag(I)-
catalyzed 5-exo-dig cyclization of substrate 26 to generate intermediate 27, followed by
Bi(III)-catalyzed 1,3-allylic alcohol isomerization, leading to 38. Finally, a Pd(II)-catalyzed
intramolecular etherification through a 5-exo-trig cyclization under oxidative conditions
resulted in the desired furo [3,4-β]indole (29).

In a second work published in 2016, Ramasastry and coworkers presented a similar
one-pot triple-orthogonal metal relay catalysis strategy for the synthesis of 1,3-di- and
1,3,4-trisubstituted β-carbolines, also employing silver, bismuth, and palladium catalysts
in a sequential manner (Scheme 8) [39]. The synthetic pathway included intramolecular
hydroamination, Friedel–Crafts-type dehydrative azidation, and a unique annulation step,
leading to the formation of the pyridine ring. Starting from 30, they achieved indoline
intermediate 31 through a Ag(I)-catalyzed 5-exo-dig cyclization and protodemetalation. A
subsequent Bi(III)-promoted cascade reaction involving 1,3-allylic alcohol isomerization
and nucleophilic azidation led to the formation of azide 32. This intermediate under-
went Pd(II)-mediated aziridine formation, followed by deprotonation, ring opening of the
aziridine, and aromatization, resulting in the desired substituted N-heterocycle (33). This
innovative approach provided access to a diverse range of distinct β-carbolines, offering
new possibilities for the synthesis of these valuable compounds.
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In 2017, Mu and coworkers reported a new and efficient protocol for the preparation of
chlorine-containing 1,2,4-triazolo [1,5-b]pyridazine scaffolds (Scheme 9) [40]. The authors
developed a one-pot oxidative cycloaddition reaction of 3-aminopyridazine derivatives (34)
and nitriles (35) involving cooperative Cu(I) and Zn(II)-catalyzed tandem C-N addition to
achieve intermediate 36 followed by amidine 37. Then, a I2/KI-mediated intramolecular
oxidative N−N bond formation affords the final 1,2,4-triazolo [1,5-b] pyridazine deriva-
tives (38).

In 2017, Wang and coworkers reported the construction of 3-alkylidene isoindolinones.
This was efficiently achieved through a redox-neutral bimetallic Rh(III)/Ag(I) relay catalysis
between N-tosyl benzamides (39) and 2,2-difluorovinyl tosylate (40) (Scheme 10) [41]. The
Rh(III) catalyst facilitates the C−H monofluoroalkylation reaction, while the Ag(I) salt
acts as an activator for the subsequent cyclization step. According to the authors, the
mechanism starts with the Rh(III)-catalyzed C−H activation in N-tosylbenzamide (39),
assisted by the NTs group, generating intermediate 41. The subsequent coordination of 40,
which leads to intermediate 42, underwent a regioselective olefin insertion, followed by an
anticoplanar β-F elimination, resulting in the Z-type monofluoroalkylation product (43)
with notable stereoselectivity. The Ag(I) salt was suggested to act as a π acid, promoting
the activation of the olefin (44) and facilitating the intramolecular cyclization reaction.
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Consequently, the antiaddition to the double bond induced 5-exo cyclization, resulting
in the formation of intermediate 45. The selective attack at the α position of the fluorine
atom was attributed to the low-lying LUMO with a significant coefficient at this position.
Finally, a stereospecific formation of the E-type 3-alkylidene isoindolinone product (46) was
achieved through an anticoplanar β-F elimination process. The methodology described in
this study was used to rapidly synthesize aristolactam BII, a natural product with potential
pharmaceutical applications. The results demonstrate the potential of difluorovinyl tosylate
and Rh(III)/Ag(I) relay catalysis for the efficient synthesis of a variety of biologically active
compounds.
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X. Feng and coworkers reported a highly efficient asymmetric cascade reaction of
alkenyloxindoles with pyridines and diazoacetates via a bimetallic iron(III)/chiral N,N′-
dioxide–scandium(III) complex catalyst [42]. Tetrahydroindolizines were obtained with
good to excellent diastereo- and enantioselectivities.

In 2019, Fan and coworkers published a one-pot cascade reaction strategy to afford
functionalized indolines. This process involves sequential Au(I)-catalyzed intramolecu-
lar hydroamination followed by Ru(II)-catalyzed asymmetric hydrogenation of various
anilino-alkynes (47) (Scheme 11) [43]. This enabled access to chiral indolines (48). Optimal
reaction conditions were determined, and the reactions proceeded smoothly, achieving full
conversions, with high yields (up to 98%) and moderate to excellent enantioselectivities (up
to 97% ee). This work was also extended to chiral 1,2,3,4-tetrahydroquinolines, although
only requiring one ruthenium catalyst and not a bimetallic approach.
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Scheme 11. General conditions for the preparation of asymmetrically substituted indolines using a
Au(I)/Ru(II)-bimetallic catalyzed approach.

Marques and coworkers recently disclosed a novel one-pot bimetallic catalytic ap-
proach for the synthesis of indole derivatives using secondary alcohols and anilines as
starting materials (Scheme 12) [8]. A commercially available nickel catalyst combined with
a simple phosphine was investigated for the dehydrogenation of alcohol (49); a phosphine-
free manganese complex was also synthesized to achieve this oxidation step. Both systems
were studied to obtain the desired ketone (50), which was subsequently converted to an
imine (51) through condensation with an aniline (52), followed by an in situ palladium-
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catalyzed oxidative cyclization. This system achieved several 2-arylindoles (53), with a
three-step synthetic pathway and overall yields of up to 45%. This process had the ad-
vantage of avoiding the isolation of sensitive intermediates and presented a sustainable
pathway for the preparation of functionalized indoles.
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4. Bimetallic Approaches Involving Lactam Scaffolds

β-lactam is the common core structure of clinically used drugs such as penicillin and
cephalosporin and monocyclic antibiotics such as aztreonam [44–47]. The development
of novel methods to access new β-lactams is important for the drug discovery process,
such as the discovery of new antibiotics, which are important with respect to global health
problems. Synthetic methods to construct the β-lactam ring have been developed over the
last century from almost every imaginable set of synthons. However, further innovation
and improvement in the field are necessary, even within each category of well-established
reactions [48]. Despite the variety synthetic methods proposed to date to obtain achiral
or racemic lactams, asymmetric methodologies remain largely limited to chiral auxiliary-
based systems [49]. This review presents two examples of asymmetric bimetallic catalytic
approaches to afford substituted β-lactams.

In 2018, Lee and coworkers developed a novel asymmetric dual-Rh(II)/Pd(0) relay
catalysis method for the synthesis of α-quaternary allylated chiral β-lactams by reacting
N-benzyl α-diazoamides (54) and allyl tert-butyl carbonates (55). (Scheme 13) [50]. The
experiments conducted in this work supported a relay reaction with the formation of β-
lactam intermediate (56) that resulted in the desired α-quaternary allylated chiral β-lactams
(57). Optimization showed that nonhalogenated and nonpolar solvents yielded superior
results compared to halogenated solvents. Different electron-donating and -withdrawing
groups on the phenyl ring were well-tolerated. The position of substituents on the aromatic
ring affected the reaction, with ortho substituents exhibiting reduced reactivity due to steric
hindrance. Heteroaromatic rings and naphthyl rings demonstrated favorable performance.
This method was found to be versatile, with yields of up to 99% and good diastereomeric
ratios (up to >91:1 dr) and enantioselectivities (up to 98% ee). Furthermore, by varying
the allylic substrates, given the widespread availability of the diazo compounds and allyl
carbonates, this asymmetric dual-relay catalysis strategy may be a cornerstone for many
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new reactions exploiting multimetallic transformations of Rh(II) carbenoids and π-allyl
Pd(II) complexes.
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Xu and coworkers successfully disclosed a groundbreaking asymmetric multicompo-
nent reaction: interrupted Kinugasa allylic alkylation (Scheme 14) [51]. This methodology
synergistically merges a copper-catalyzed Kinugasa system with a palladium-catalyzed
allylic alkylation. This remarkable reaction enables the synthesis of α-quaternary chiral
β-lactams from simple and readily available alkynes (58), nitrones (59), and allylic car-
bonates (60), with high yield (up to 87%) and excellent stereoselectivity (up to 96:4 er).
The most plausible mechanism can be initiated with the cycloaddition of Cu(I) acetylide
and nitrones; a pivotal chiral four-membered enolate Cu(I) intermediate (61) is formed.
Simultaneously, the palladium catalyst reacts with the allylic electrophile, resulting in the
creation of an allylic palladium intermediate (62). Subsequent stereo-controlled allylic
substitution between 61 and 62 leads to the desired α-quaternary chiral β-lactams (63),
while concurrently regenerating both the Cu(I) and Pd(0) catalysts. This one-pot approach
is distinguished by a well-programmed reaction sequence, highly efficient formation of
multiple bonds in asymmetric multicomponent reactions, and the construction of medici-
nally important α-quaternary chiral β-lactams, anticipating its utility in the synthesis of
other biologically attractive molecules. Furthermore, in 2023, the same research group
reported a novel bimetallic system, substituting the palladium with an iridium catalyst
capable of accomplishing the synthesis of the same type of compounds [52].
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5. Bimetallic Approaches Involving Triazole and Tetrazole Scaffolds

Triazoles and their derivatives are important N-heterocyclic scaffolds in medicinal
chemistry, presenting significant biological properties, such as antimicrobial, antiviral,
antitubercular, anticancer, antioxidant, and anti-inflammatory activities, among others [53].
The wide range of bioactivity displayed by these N-heterocycles has stimulated the devel-
opment of many synthetic strategies.

C−H activation is a hot topic in all areas of chemistry, and in comparison to the
well-established cross-coupling reactions, it removes the need for prefunctionalization of
both coupling partners [54]. Considering the inferior reactivity of arenes when compared
to aryl halides, their selective and direct arylation remains a challenge. These issues can
be addressed by the presence of directing groups on the arene substrate; however, this
may result in a limited scope, since the directing group strictly facilitates the activation in
the ortho-positioned C–H bond. In this context, in 2014, Cazin and coworkers developed
a process that promotes the construction of C–C bonds through an intermolecular direct
arylation, which eliminated the need for directing groups (Scheme 15) [55]. The scope of
this reaction included the functionalization of N-heterocycles, triazole, and indole rings.
The authors reported a novel Cu/Pd bimetallic catalytic system to promote C−H activation
from arenes or heteroarenes (64) using aryl halides (65). Both Pd and Cu complexes were
composed of imidazole-based ligands (Pd/Cu-NHC), with 20 examples and yields of
up to 98%. The authors performed mechanistic studies that allowed them to propose
a catalytic cycle, first including the formation of the hydroxide [Cu(OH)(NHC)] (66) by
transmetalation involving CsOH. Then, an acid–base reaction promoted the C–H activation
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of the heteroaryl, producing 67 and H2O. The transmetalation between 67 and the Pd(II)
catalyst (68) leads to the regeneration of the Cu(I) catalyst and the Pd(II) intermediate
(69). Finally, product 70 is released after reductive elimination, and the Pd(0) catalyst is
regenerated, completing the catalytic cycle.
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A crucial limitation of the famous click reaction remains the difficulty of obtaining
fully substituted 1,2,3-triazoles from internal alkynes as substrates, owing to the increased
energy barrier and difficulty in regiocontrol, particularly for intermolecular reactions [56].
Nevertheless, in 2015, Xu and coworkers successfully synthesized 1,4,5-trisubstituted 1,2,3-
triazoles by relying on Cu/Pd transmetalation relay catalysis, a modular synthesis method
that afforded trisubstituted triazoles from the reaction between alkynyl substrates (71)
with azides (72) and aryl halides (73) (Scheme 16) [57]. This reaction makes it possible
to freely install three different substituents onto the triazole ring in one step, with a total
of 33 examples and yields of up to 98%. The most plausible mechanism starts with the
cycloaddition of Cu(I) acetylide (74) with azide and generates cuprate−triazole interme-
diate 75. Simultaneously, oxidative addition of aryl halide to Pd(0) catalyst forms the
palladium intermediate (76). The transmetalation reaction between 75 and 76, followed by
reductive elimination, produced the target trisubstituted triazole (77) and regenerated the
Pd(0) catalyst.
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Imidazo [1,2-α]pyridine constitutes a valuable skeleton for a variety of pharmaceu-
ticals [58,59]. Hence, different strategies for the preparation of these scaffolds have been
implemented [60–62]. Although there is already a report bearing a Cu-catalyzed process to
obtain 1,2,3-triazole-fused imidazo [1,2-α]pyridines, it relies on brominated imidazo [1,2-
α]pyridines as substrates [63]. To optimize the atomic economy and environmental aspects
of this process, in 2016, Fan and coworkers reported an efficient one-pot synthesis of 1,2,3-
triazole/quinoline-fused imidazo [1,2-α]pyridines starting from 2-(2-bromophenyl)imidazo
[1,2-α]pyridines (78), alkynes (79), and sodium azide (Scheme 17) [64]. This involved a
cascade one-pot bimetallic Cu/Pd relay-catalyzed process combining azide–alkyne cycload-
dition, C−N coupling, and cross-dehydrogenative C−C coupling. They obtained different
alkynes and 2-(2-bromophenyl)imidazo [1,2-α]pyridines, with a total of 24 examples and
yields of up to 74%. Fan suggested that the mechanism started with a Cu(I)-catalyzed
azide−alkyne cycloaddition to afford intermediate 80. Then, 81 forms as a result of a
copper–hydrogen exchange. C−N coupling between 78 and 81 results in the formation
of key intermediate 82. In the second phase of this cascade process, aromatic pallada-
tion of 82 by a sequence of C−H bond cleavage yields a seven-membered palladacycle
(83). Finally, reductive elimination affords the final 1,2,3-triazole/quinoline-fused imidazo
[1,2-α]pyridine (84), and Pd(0) is re-oxidized into Pd(II) by Cu(II)/atmospheric O2.

In 2018, Sawant and colleagues developed a fast and efficient method to produce
aminotetrazoles (Scheme 18) [65]. The authors used aryl azides (85), isocyanides (86),
and TMSN3 in a sequential Pd(0)/Fe(III)-catalyzed reaction. The process involved a Pd-
catalyzed reaction to generate carbodiimide (87) in situ, which then reacted with TMSN3
in the presence of FeCl3, all in one pot, yielding the respective aminotetrazole (88). This
approach has advantages over traditional methods that use toxic Hg and Pb salts in large
amounts. With the optimized conditions in hand, the authors investigated the reaction’s
versatility, showing various aryl azides with different substituents, including electron-
donating and electron-withdrawing groups, which reacted well with different isocyanides
and TMS-N3 to produce the corresponding 5-amino-1H-tetrazoles. Substituents at all
three positions of the aryl azides were well-tolerated—even ortho substituents that usually



Catalysts 2023, 13, 1268 16 of 27

represent steric hindrances. Alkyl-, cycloalkyl-, and aryl-substituted isocyanides reacted
successfully under the optimized conditions, obtaining 19 examples and yields of up to
90%, although aryl isocyanides with electron-donating groups and aliphatic azides did not
react under the standard conditions.
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6. Bimetallic Approaches Involving Pyridine, Pyrimidine, and Related Scaffolds

Isoquinolinones can be prepared via metal-catalyzed C−H activation [66–68]. How-
ever, this process bears the requirement of internal/external oxidants, and in the case of
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3,4-disubstituted isoquinolinones, poor diastereoselectivity is encountered. To overcome
these limitations, in 2013, Wang and coworkers disclosed the first redox-neutral ReI/MgII-
cocatalyzed [4+2] annulation of benzamides (89) and alkynes (90) via C−H/N−H function-
alization to afford both cis- and trans-3,4-dihydroisoquinolinones (91 and 92, respectively)
in a highly diastereoselective fashion (Scheme 19) [69]. This was achieved by subtle tuning
of reaction conditions, adding further values to this bimetallic catalyst system. Both cis-
and trans-disubstituted scaffolds were formed in a total of 44 examples, with yields of up
90% and isomer ratios of up to 36:1 and 16:1, respectively. Mechanistic experiments were
conducted, which allowed the authors to formulate a plausible reaction mechanism. With
the aid of PhMgBr, via amido-magnesium (93), amido-rhenium (94) is initially formed,
which then undergoes a deprotonative cyclorhenation, affording rhenacycle 95. The en-
suing coordination and insertion of an alkyne gives rise to a seven-membered rhenacycle
(96), which further leads to intermediate 97 upon protonation. Transmetalation results in a
new amido-magnesium intermediate (98), which undergoes an intramolecular nucleophilic
addition/cyclization, generating the cis product or leading to the trans product via inter-
mediate 99. Protonation of these species affords the final products and regenerates the
amido-magnesium (93), ending all Re/Mg bimetallic tandem catalytic cycles.
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Cross-Ullmann couplings are amongst the most common procedures to obtain biaryls.
Nevertheless, a crucial challenge of cross-Ullmann reactions remains the achievement of
selectivity for the heterocoupling product over the homocoupling [70]. Un 2015, Ackerman
and coworkers developed a method to couple aryl halides (100) with aryl triflates (101),
affording heterocoupled bi(hetero)aryls (102) through a Ni/Pd bimetallic catalyzed cross-
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Ullmann coupling (Scheme 20) [71]. The selectivity was envisioned by the orthogonal
reactivity of the two catalysts and the relative stability of the two arylmetal intermediates.
Initially, each catalyst formed less than a 5% yield of the cross-coupled product. However,
a total of 20 examples were described, achieving yields of up to 94%. This new method can
obtain biaryls; heteroaryls; dienes; and, specifically, N-heterocycles by functionalization of
the pyridine ring, affording 2,3′-bipyridine and 2-arylpyridine. The authors suggest that the
mechanism of this cross-Ullmann reaction undergoes a bimetallic approach, where the Ni
catalyst reacts preferentially with aryl bromides to form a transient, reactive intermediate
(103), while the Pd catalyst reacts preferentially with aryl triflates to afford a persistent
intermediate (104). When each of the two catalysts activates only one of the two substrates,
transmetalation occurs from nickel to palladium (105), which affords the final product by
reductive elimination, regenerating the Pd(0) catalyst. A Ni(0) catalyst is reobtained with
the help of a Zn(0) reductant.
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Scheme 20. General conditions and plausible mechanism for the preparation of heterocoupled
bi(hetero)aryls using a Ni(0)/Pd(0)- bimetallic catalyzed approach.

Copper-catalyzed electrophilic cyclization is highly attractive due to its low cost,
easy availability, and high tolerance towards diverse functional groups. Nevertheless,
relatively few synthetic studies have been conducted on Cu-catalyzed three-component
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tandem reactions for the synthesis of polyheterocycles. Moreover, there has been no report
showing the dual behavior of a Cu(I) catalyst, as well as tert-butylamine, for the synthesis
of polyheterocycles. In 2016, Verma’s group reported the synthesis of heterocyclic scaffolds
starting from substrates (106) and alkynyls (107) via Pd(II)/Cu(I)-catalyzed Sonogashira
coupling followed by a Cu(I)-catalyzed 6-endo-dig cyclization, with tert-butylamine (108)
as a nitrogen source (Scheme 21) [72]. Naphthyridines, isoquinolines, and benzothieno-
and benzofuropyridines were prepared, with a total of 33 examples and yields of up to
83%. To provide insights into the mechanism, an array of preliminary control experiments
was performed, revealing the dual role of Cu: to enhance the rate of Sonogashira coupling
and to assist in electrophilic cyclization. The catalytic system involves the formation of
C–C and C–N bonds via Sonogashira coupling and electrophilic cyclization, respectively.
The authors suggest that initially, the ortho-halo aldehyde reacts with terminal alkynes
under Sonogashira coupling conditions, generating the ortho-alkynyl aldehyde intermediate
(109). The latter reacts with tert-butylamine and leads to the formation of imine 110. π-
Complexation between 110 and Cu(I) facilitates the electrophilic cyclization and affords
111. The presence of a tert-butyl group enhances the formation of intermediate 112 by
the elimination of an isobutylene fragment. Finally, protodemetalation yields the desired
cyclized pyridine-containing heterocycle (113).
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using a Cu(I)/Pd(0)-bimetallic catalyzed approach.

The preparation of N-oxides of azacycles via direct C−H activation of arenes remains
a highly underexplored challenge, with only a few reports on the synthesis of N-oxides
of isoquinoline [73,74]. For this reason, in 2016, Li and coworkers prepared quinazoline-
N-oxides 114 by a single-step C−H activation approach via a Rh(III)/Zn(II)-bimetallic
catalyzed process. They selected simple substrates, such as ketoximes (115) and 1,4,2-
dioxazol-5-ones (116) (Scheme 22) [75]. This annulation system proceeded with high
efficiency under mild conditions, with H2O and CO2 as the coproducts, obviating any
need for oxidants. A total of 32 examples of both oximes and dioxazolones was obtained
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in yields of up to 95%. Preliminary mechanistic studies were constructed to gain insight
into the mechanism of this annulation reaction, and the authors concluded that Rh(III)
participated in the C−H activation–amidation of the ketoximes and Zn(II) in the cyclization.
The authors suggested that, first, an active rhodium catalyst (Cp*RhX2, where X = NTf2 or
OAc) is generated from the anion exchange between [RhCp*Cl2]2 and ZnNTf2 or HOAc.
Next, the oxime reagent undergoes a cyclometallation to afford the rhodacyclic intermediate
(117) and an acid via a concerted metalation−deprotonation mechanism. Coordination of
dioxazolone is followed by decarboxylation with CO2 elimination, yielding a nitrenoid
species (118), and subsequent migratory insertion of the Rh-aryl bond produces the amidate
(119). Protonolysis of the latter releases the amidated intermediate (120) and regenerates the
Rh(III) complex. Zn(II) then catalyzes the cyclization and condensation of 120, furnishing
the final quinazoline N-oxide (114).
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In 2021, Zhao and coworkers developed a general ring expansion strategy that en-
ables the efficient and scalable synthesis of diverse N-heterocycles (Scheme 23), such as
3-benzazepinones (121) (up to 90% yield), dihydropyrimidinones (122) (up to 91% yield),
and uracils (123) (up to 98% yield) [76]. The designed concept is based on the use of
synergistic bimetallic catalysis to promote a formal cross-dimerization reaction between
three-membered aza-heterocycles and three- and four-membered ring ketones. The au-
thors presented a novel methodology that combines strain-release-induced oxidative C−C
bond cleavage and C−N bond cleavage, effectively expanding the scope for stereospecific
N-heterocycle synthesis. In this route, the palladium complex serves as the main catalyst
for the reactions, although aluminum and copper, which function as Lewis acids, are also
highlighted as critical components in this pathway. This approach provides a versatile and
reliable method for the synthesis of 3-benzazepinones, dihydropyrimidinones, and uracils,
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showcasing its flexibility and significant potential in the synthesis of complex molecules
through transition-metal-catalyzed formal cross dimerization of cyclic compounds.
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7. Bimetallic Approaches Involving Other N-Heterocyclic Scaffolds

Within the metal-catalyzed C−H functionalization reaction class, direct carbonylation
has attracted considerable attention in recent years due to the prevalent presence of the
carbonyl group in organic molecules. The direct carbonylation of C(sp3)−H bonds has
been demonstrated by transition-metal-catalyzed processes, although mainly relying on the
use of toxic CO gas at high pressure [77–79]. To overcome this limitation, in 2015, Ge and
coworkers described the direct carbonylation of aromatic sp2 and unactivated sp3 C−H
bonds of amides via a Ni/Co bimetallic catalysis with N,N-dimethylformamide (DMF) as
the carbonyl source (Scheme 24) [80]. The reactions were performed under atmospheric
O2, and the substrates were constituted by a bidentate directing group (Q). The authors
provided aryl-substituted phthalimides (124) from aromatic amides (125), achieving yields
of up to 90% under optimized conditions, as well as 3,3′-disubstituted succinimides (126)
from aliphatic amides (127), with yields of up to 81%. Preliminary control experiments
elucidated that both nickel and copper catalysts are required for this process, suggesting
that this reaction is performed via synergistic catalysis. The authors suggested that the
process starts with the coordination of amide 125/127 to Ni(II) via a ligand exchange under
basic conditions, forming complex 128. Then, cyclometalation of 128 occurs via either sp2

or sp3 C−H bond activation to generate intermediate 129, keeping in mind that sp2 C−H
bond cleavage is a reversible step, while sp3 is irreversible. Electrophile 130 is then inserted
into the catalytic cycle, generated in situ from DMF. This results in decarboxylation or
an elimination process via Cu(II)/O2. These intermediates react through a nucleophilic
addition and sequential decarbonylation. The nucleophilic addition of the intermediate
C to the iminium ion intermediate (130) provides 131. Oxidation of the latter followed by
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intramolecular nucleophilic addition gives rise to intermediate 132, which then produces
product 124 or 126 via oxidation by Cu(II) and hydrolysis.

Catalysts 2023, 13, x FOR PEER REVIEW 23 of 28 
 

 

 

Scheme 24. General conditions and plausible mechanism of the preparation of phthalimides and 

3,3′-disubstituted succinimides using a Ni(II)/Cu(I)-bimetallic catalyzed approach. 

The enantioselective coupling of aryl and vinyl nucleophiles with meso-epoxides is 

considered to be highly challenging, with the best results to date resorting to aryl lithium 

reagents and chiral ligands [81,82]. In this context, in 2015, Zhao and Weix reported an 

enantioselective cross-electrophile coupling of aryl halides (133) with meso-epoxides (134) 

to form trans-β-arylcycloalkanols (135) from a novel bimetallic Ni(II)/Ti(III) catalytic sys-

tem (Scheme 25) [83]. The reaction was catalyzed by a combination of (bpy)NiCl2 and a 

chiral titanocene under reducing conditions. Different titanocenes were tested, and the 

one first reported by Cesarotti and coworkers [84] showed the highest yield and enanti-

oselectivity. This enantioselective coupling of aryl, heteroaryl, or vinyl halides with meso-

epoxides (28 examples) also included examples of the functionalization of pyrrolidine 

scaffolds and one example for indole, with yields of up to 94% and enantiomeric excesses 

of up to 91% ee. The authors suggested that the coupling mechanism (Scheme 25) was 

initiated by the enantioselective formation of a β-titanoxy carbon radical from the meso-

epoxide (136), followed by the oxidative addition of a β-titanoxy carbon radical to an ar-

ylnickel(II) intermediate, forming a diorganonickel(III) species (137), and the reductive 

Scheme 24. General conditions and plausible mechanism of the preparation of phthalimides and
3,3′-disubstituted succinimides using a Ni(II)/Cu(I)-bimetallic catalyzed approach.

The enantioselective coupling of aryl and vinyl nucleophiles with meso-epoxides is
considered to be highly challenging, with the best results to date resorting to aryl lithium
reagents and chiral ligands [81,82]. In this context, in 2015, Zhao and Weix reported an
enantioselective cross-electrophile coupling of aryl halides (133) with meso-epoxides (134) to
form trans-β-arylcycloalkanols (135) from a novel bimetallic Ni(II)/Ti(III) catalytic system
(Scheme 25) [83]. The reaction was catalyzed by a combination of (bpy)NiCl2 and a chiral
titanocene under reducing conditions. Different titanocenes were tested, and the one first
reported by Cesarotti and coworkers [84] showed the highest yield and enantioselectivity.
This enantioselective coupling of aryl, heteroaryl, or vinyl halides with meso-epoxides
(28 examples) also included examples of the functionalization of pyrrolidine scaffolds
and one example for indole, with yields of up to 94% and enantiomeric excesses of up to
91% ee. The authors suggested that the coupling mechanism (Scheme 25) was initiated
by the enantioselective formation of a β-titanoxy carbon radical from the meso-epoxide
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(136), followed by the oxidative addition of a β-titanoxy carbon radical to an arylnickel(II)
intermediate, forming a diorganonickel(III) species (137), and the reductive elimination of
the product (135). Finally, the reduction of both catalysts closes the catalytic cycle.
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8. Conclusions

Bimetallic catalysis offers the potential for synergistic effects and dual activation of
reactants, leading to enhanced reactivity and selectivity. By employing two different metal
catalysts in a sequential or concurrent manner, researchers have unlocked new synthetic
pathways and achieved more efficient and selective transformations. In recent years,
bimetallic catalysis has shown promising results in various organic transformations.

The diversity of metal combinations and reaction conditions available in bimetallic
catalysis offers a versatile platform to access a wide array of N-heterocyclic compounds
with diverse functionalities. This benefits not only the pharmaceutical industry, where these
compounds play a crucial role in drug discovery, but also fine chemical industries, where
N-heterocycles serve as important intermediates in the synthesis of various key chemicals.
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