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Simple Summary: Immune checkpoint blockades (ICBs) therapy has produced durable clinical
responses in many cancer types, but only a fraction of patients can benefit from ICB treatment.
Previous studies have reported multiple transcriptomic biomarkers to predict ICB responses and
improve treatment precision in various cancer types. However, a timely and unbiased assessment
of these biomarkers has yet to be conducted due to the lack of large-scale uniformly curated ICB-
treated datasets. To address the needs, we developed ICB-Portal, a comprehensive resource about
ICB including RNA-seq data of 29 datasets from public sources and standardized metadata of
each study through a uniform pre-processing, 48 biomarker scores associated with ICB response,
results of a systematic benchmark analysis evaluating the efficacy, and generalization ability for
each biomarker in various scenarios such as different cancer types, anti-bodies, biopsy time, and
combinatory treatments with other drugs by a standardized bioinformatics workflow and an online
benchmark platform.

Abstract: Immune checkpoint blockades (ICBs) have revolutionized cancer therapy by inducing
durable clinical responses, but only a small percentage of patients can benefit from ICB treatments.
Many studies have established various biomarkers to predict ICB responses. However, different
biomarkers were found with diverse performances in practice, and a timely and unbiased assessment
has yet to be conducted due to the complexity of ICB-related studies and trials. In this study, we
manually curated 29 published datasets with matched transcriptome and clinical data from more
than 1400 patients, and uniformly preprocessed these datasets for further analyses. In addition, we
collected 39 sets of transcriptomic biomarkers, and based on the nature of the corresponding compu-
tational methods, we categorized them into the gene-set-like group (with the self-contained design
and the competitive design, respectively) and the deconvolution-like group. Next, we investigated
the correlations and patterns of these biomarkers and utilized a standardized workflow to systemati-
cally evaluate their performance in predicting ICB responses and survival statuses across different
datasets, cancer types, antibodies, biopsy times, and combinatory treatments. In our benchmark,
most biomarkers showed poor performance in terms of stability and robustness across different
datasets. Two scores (TIDE and CYT) had a competitive performance for ICB response prediction,
and two others (PASS-ON and EIGS_ssGSEA) showed the best association with clinical outcome.
Finally, we developed ICB-Portal to host the datasets, biomarkers, and benchmark results and to
implement the computational methods for researchers to test their custom biomarkers. Our work
provided valuable resources and a one-stop solution to facilitate ICB-related research.
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1. Introduction

Immune checkpoint blockades (ICBs) include monoclonal antibodies that target PD-1,
PD-L1, and CTLA-4, among others. ICB has generated durable responses across many
cancer types [1,2]. However, only a fraction of cancer patients has benefited from ICB. The
clinical outcome to ICB treatment has been reported to be quite inconsistent in different
cancer types, or even in different patients of the same cancer type. The incidence of immune-
related adverse events (irAEs) and the considerable costs present a pressing challenge for
ICB treatment selection [3,4]. Thus, it is critical to develop predictive biomarkers of ICB
response to improve treatment precision. Previous studies have revealed that the genomic
biomarkers are associated with ICB response in various cancer types [5–11], such as tumor
mutation burden (TMB), microsatellite instability (MSI), somatic copy number alterations,
and mutations in genes related to neoantigens, DNA repair, antigen presentation, and
oncogenic pathways [12]. However, genomic factors alone are not sufficient to predict ICB
responses [13]. In contrast, gene expression data can be used to infer the heterogeneous cell
populations and molecular interactions of the tumor microenvironment (TME). Thus, gene
expression data have been widely studied as candidate biomarkers for ICB response.

Over the past years, many transcriptomic biomarkers along with corresponding
computational methods have been reported to predict ICB response. By reviewing these
methods, we generally categorized them as belonging to the gene-set-like group and the
deconvolution-like group. The gene-set-like group often relies on a list of marker genes.
These methods can be further categorized as ones that adapt the self-contained hypothesis
and ones that adapt the competitive hypothesis. The self-contained methods use marker
genes to calculate an overall score that can be further used to distinguish samples, e.g.,
responsive or non-responsive. Such methods do not rely on the non-marker genes in the
transcriptome. The competitive methods calculate an overall score by using the ranks of
marker genes as compared with non-marker genes in the transcriptome, such as single
sample gene set enrichment analysis (ssGSEA). ssGSEA was first successfully implemented
to infer the tumor purity and stromal and immune cell admixture across multiple cancer
types [14]. By far, ssGSEA has been applied in many studies to investigate various biological
processes including ICB response prediction. To incorporate genes with different functions
during the immune therapy treatment, some methods combine scores from multiple sets to
achieve the goal to distinguish samples. The deconvolution-like methods often rely on the
deconvolutional analyses of the whole transcriptome, although some of them also require a
pre-defined set of marker genes.

In this work, we manually curated 29 published datasets where the samples were
treated with various ICB therapies (hereafter named ICB-treated samples). All these
datasets had matched transcriptome data and clinical information for the benchmark task to
evaluate the method performance in predicting ICB response. Furthermore, these datasets
covered different cancer types, antibodies, biopsy times, and combinatory treatments with
other drugs. Thus, they presented a comprehensive resource for future studies. We collected
a total of 39 sets of transcriptomic biomarkers and methods, which generated 48 scoring
systems, and systematically assessed their capability in predicting ICB response, overall
survival (OS), and progression-free survival (PFS) across different datasets including both
the ICB-treated datasets and the Cancer Genomics Atlas (TCGA). Finally, we organized
these results into a database named ICB-Portal and provided an online analysis platform
to allow users to benchmark their own biomarkers of interests in predicting ICB response
(Figure 1). Altogether, these results will strengthen our understanding of fundamental
molecular mechanisms of immunotherapy resistance and facilitate the discovery of novel
therapeutic targets and potential predictors. All datasets, biomarkers, analysis results, and
related resources can be found in ICB-Portal via https://ngdc.cncb.ac.cn/icb (accessed on
1 July 2023).

https://ngdc.cncb.ac.cn/icb
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Figure 1. An overview of the study design. First, we manually curated the most comprehensive
resource, containing 29 published datasets with matched transcriptome data and clinical information
covering more than 1400 patients. In addition, we collected a total of 48 scoring systems from
39 sets of transcriptome biomarkers (top panels). Second, we built the biomarker landscape by
computing the biomarker scores across 29 datasets (middle panels). Third, we utilized a standardized
bioinformatics workflow to systematically evaluate these transcriptomic biomarkers for ICB response,
overall survival (OS), and progression-free survival (PFS) across different datasets, cancer types,
anti-bodies, biopsy times, and combinatory treatments with other drugs (bottom panels). Moreover,
we validated the predictive power of biomarkers for OS by applying the biomarkers in 31 TCGA
non-hematological cancer types. Finally, we provided an online analysis platform to benchmark the
predictive performance of user-provided custom biomarkers on ICB response and the prognostic
ability of OS and PFS based on the ICB-treated dataset contained in our database. ** p < 0.01,
*** p < 0.001, **** p < 0.0001.
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2. Materials and Methods
2.1. ICB Transcriptomic Biomarker and Method Collection

We conducted a systematic literature search and curation of transcriptomic biomarkers
for ICB response. As a result, we collected a total of 39 sets transcriptomic biomarkers for
ICB response prediction that can be generally divided into three categories according to
the calculation methods: (1) the gene-set-like methods using the self-contained hypothesis
which rely on a list of marker genes (n = 23); (2) the gene-set-like methods using the competi-
tive hypothesis such as the ssGSEA-based methods (n = 10) or a permutation-based method
(n = 1); and (3) the deconvolution-like methods (n = 5). In addition, for nine biomarkers
originally used by the first group, i.e., the gene-set-like methods using the self-contained
hypothesis, we further calculated the ssGSEA scores using these gene sets and additionally
constructed 9 new scoring measurements. Thus, we have a total of 48 scoring systems from
39 sets of transcriptome biomarkers for the following benchmark analysis (Table 1). Below
we review each of the methodological details of these methods, respectively.

Table 1. Summary of 48 scores in this study.

Biomarker Score Category Description Tumor Type Effect Antibody Ref.

PD-L1 Self-contained Expr. of PD-L1 Multiple Pos. anti-PD-1
anti-PD-L1 [15,16]

PD-1 Self-contained Expr. of PD-1 Multiple Pos. anti-PD-1 [17]

PD-L2 Self-contained Expr. of PD-L2 Multiple Pos. anti-PD-1 [18]

CX3CL1 Self-contained Expr. of CX3CL1 Multiple Neg. anti-PD-L1 [15]

CTLA-4 Self-contained Expr. of CTLA4 Multiple Pos. anti-PD-L1 [15]

HLA-DRA Self-contained Expr. of HLA-DRA Melanoma Pos. anti-PD-1
anti-PD-L1 [19]

CXCL9 Self-contained Expr. of CXCL9 Melanoma Pos. anti-PD-L1 [20]

HRH1 Self-contained Expr. of HRH1 Melanoma
Lung cancer Neg.

anti-PD-1
anti-PD-L1

anti-CTLA-4
[21]

CYT score Self-contained Avg.expr. of GZMA and PRF1 Multiple Pos. anti-CTLA-4
anti-PD-1 [22]

IFN-gamma score Self-contained Avg.expr. of 6 genes Multiple Pos. anti-PD-1 [23]

EIGS score Self-contained Avg.expr. of 18 genes Multiple Pos. anti-PD-1 [23]

CRMA score Self-contained Avg.expr. of 8 genes Melanoma Neg. anti-CTLA-4 [24]

ESCS score Self-contained Avg.expr. of 8 genes UC Neg. anti-PD-1 [25]

TLS score Self-contained Avg.expr. of 9 genes Melanoma Pos. anti-PD-1
anti-CTLA-4 [26]

Renal-101 score Self-contained Avg.expr. of 26 genes RCC Pos. anti-PD-1
anti-PD-L1 [27]

TIG score Self-contained Weighted sum of 18 genes Multiple Pos. anti-PD-1 [23,28]

Immunophenoscore Self-contained Weighted sum of 162 genes Multiple Pos. anti-CTLA-4
anti-PD-1 [29]

IRG score Self-contained Weighted sum of 11 genes Cervical Cancer Neg.
anti-PD-1

anti-PD-L1
anti-CTLA-4

[30]

MPS score Self-contained Weighted sum of 45 genes Melanoma Neg. anti-PD-1
anti-CTLA-4 [31]

F-TBRS score Self-contained PCA using 19 genes Multiple Neg. anti-PD-L1 [32]

TMEscore Self-contained PCA using 2 GSs Gastric Cancer Pos.
anti-PD-1

anti-PD-L1
anti-CTLA-4

[33]

IMPRES score Self-contained 15 pairwise immune checkpoint genes Melanoma Pos. anti-PD-1
anti-CTLA-4 [34]

TIDE score Self-contained Modeling 2 primary mechanisms of
tumor immune evasion

Melanoma
NSCLC Neg. anti-PD-1

anti-CTLA-4 [35]

TIRP score Self-contained OE of immune resistance program Melanoma Neg. anti-PD-1 [36]

IIS score Competitive Sum NESs of 26 related GSs ccRCC Pos. anti-PD-1 [37]

TIS score Competitive Sum NESs of 8 related GSs ccRCC Pos. anti-PD-1 [37]

PASS-PRE Competitive Weighted sum of NESs of 15 GSs Melanoma Pos. anti-PD-1 [38]

PASS-ON Competitive Weighted sum of NESs of 15 GSs Melanoma Pos. anti-PD-1 [38]

IMS score Competitive Weighted sum of NESs of 27 GSs Gastric Cancer Pos. anti-PD-1
anti-PD-L1 [39]
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Table 1. Cont.

Biomarker Score Category Description Tumor Type Effect Antibody Ref.

IPRES score Competitive Mean NESs of 26 GSs Multiple Neg. anti-PD-1 [13]

MFP Competitive Classification of samples based on NES Multiple Pos.
anti-PD-1

anti-PD-L1
anti-CTLA-4

[40]

APM score Competitive NES of antigen presentation related GS ccRCC Pos. anti-PD-1 [37]

C-ECM score Competitive NES of ECM-related GS Multiple Neg. anti-PD-1 [41]

MIAS score Competitive NES of MHC I related GS Melanoma Pos. anti-PD-1 [42]

IFN-gamma_ssGSEA Competitive NES of related genes Multiple Pos. anti-PD-1 [23]

EIGS_ssGSEA Competitive NES of corresponding GS Multiple Pos. anti-PD-1 [23]

TIG_ssGSEA Competitive NES of corresponding GS Multiple Pos. anti-PD-1 [23]

CRMA_ssGSEA Competitive NES of corresponding GS Melanoma Neg. anti-CTLA-4 [24]

ESCS_ssGSEA Competitive NES of corresponding GS UC Neg. anti-PD-1 [25]

F-TBRS_ssGSEA Competitive NES of corresponding GS Multiple Neg. anti-PD-L1 [32]

IRG_ssGSEA Competitive NES of corresponding GS Cervical Cancer Neg.
anti-PD-1

anti-PD-L1
anti-CTLA-4

[30]

TLS_ssGSEA Competitive NES of corresponding GS Melanoma Pos. anti-PD-1
anti-CTLA-4 [26]

Renal-101_ssGSEA Competitive NES of corresponding GS RCC Pos. anti-PD-1
anti-PD-L1 [27]

CD8T_CIBERSORTx Deconvolution-like Tumor infiltration of CD8 T cells Multiple Pos. anti-PD-1 [43]

CD8T_MCPcounter Deconvolution-like Tumor infiltration of CD8 T cells Multiple Pos. anti-PD-1 [43]

CD8T_xCell Deconvolution-like Tumor infiltration of CD8 T cells Multiple Pos. anti-PD-1 [43]

Immunoscore Deconvolution-like Weighted sum of the fraction levels of
8 cell types Melanoma Pos. anti-PD-1 [44]

EcoTyper Deconvolution-like Carcinoma ecotypes Multiple Pos.
anti-PD-1

anti-PD-L1
anti-CTLA-4

[45]

Abbreviations: PCA: principal component analysis; OE: overall expression; ECM: extracellular matrix; IRG score:
immune-related risk score; IRG_ssGSEA: immune-related risk ssGSEA; EIGS score: expanded immune gene
signature score; EIGS_ssGSEA: expanded immune gene signature ssGSEA; ESCS score: EMT stroma core signature
score; ESCS_ssGSEA: ssGSEA of EMT stroma core signature; Renal-101 score: Renal-101 immune signature score;
Renal-101_ssGSEA: ssGSEA of Renal-101 immune signature; TIG score: T cell-inflamed GEP score; TIG_ssGSEA:
ssGSEA of T cell-inflamed GEP; TIRP score: the immune resistance program score; NSCLC: non-small cell lung
cancer; ccRCC: clear cell renal cell carcinoma; RCC: renal cell carcinoma; UC: urothelial cancer; GS: gene set; Pos.:
positive; Neg.: negative; Expr.: expression; Avg.expr.: average expression.

2.2. The Gene-Set-Like Group Methods with Self-Contained Design

The self-contained methods use the expression of a list of marker genes (ranging from
1 to 162, except TIDE, see below). These marker genes are often determined by using a
priori knowledge or previous studies. There are 23 methods belonging to this group.

Eight methods use a single gene as the marker based on different biological assump-
tions. PD-L1 expression is the first predictive transcriptomic biomarker for the response of
anti-PD-1 immunotherapy [15], although the expression level varies dramatically in differ-
ent cancer types. PD-L1 shows a high co-expression with PD-1 and PD-L2 and therefore,
the three genes (PD-L1, PD-1, and PD-L2) are often used as marker genes for the anti-PD-1
immunotherapy [17,18]. Similarly, other single marker genes used for anti-PD-L1 response
include CTLA-4, CXCL1 [15], and CXCL9 (a marker of tumor-associated macrophages
(TAM) subset) [20]. In addition, the major histocompatibility complex class-I and -II (MHC-
I and MHC-II) have been linked to tumor antigen presentation. Thus, the expression of
HLA-DRA, which is the prototype MHC-II molecule, has been used as a biomarker for pre-
dicting the anti-PD-1 response [19]. Lastly, patients receiving ICB along with antihistamines
have better survival outcome, likely due to the association between histamine receptor H1
(HRH1) with T-cell dysfunction, and thus, the gene HRH1 has also been used as a marker
to predict ICB response [21].

Seven methods used the average expression of multiple marker genes. The immune
cytolytic activity score (CYT score) is used to measure cytotoxic T cells [22] and is computed
as the mean expression of two critical effector molecules that mediate cytolysis, which are
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granzyme A (GZMA) and perforin (PRF1). The IFN-gamma score is calculated using the
expression of six genes related to IFN-γ signaling and T-cell activities [23]. IFN-γ is a critical
cytokine secreted by natural killer (NK) and T cells and can be used to predict the response
to PD-1 blockade [23]. The expanded immune gene signature (EIGS) score [23] is calculated
based on 18 related genes and can be used to predict the ICB response. The CRMA score
is calculated as the geometric mean of the expression levels for 8 anti-CTLA-4 resistance
associated MAGE-A genes (CRMA) [24]. The EMT/Stroma core signature (ESCS) score is
calculated using the mean expression of 8 marker genes that correlate strongly with immune
resistance to PD-1 blockade in urothelial cancer [25]. The tertiary lymphoid structure (TLS)
signature score is calculated using the mean expression of 9 genes and has been used to
predict the clinical outcomes in melanoma patients treated with ICB [46]. Finally, the renal
101 immune signature (Renal-101) score is calculated as the mean expression of 26 genes
involved in innate immune responses, cell trafficking, and inflammation [27].

Four methods used a weighted sum of multiple marker genes. The T cell-inflamed
gene expression profiles (TIG) score is calculated as the weighted sum of the expres-
sion of 18 signature genes [23]. The Immunophenoscore is calculated as the sum of the
weighted average expression of the marker genes from four categories: MHC molecules,
immunomodulators, effector cells, and suppressor cells [29]. The immune-related risk
score (IRG) is calculated as the weighted sum of the expression of 11 immune-related genes
and is predictive of survival and ICB response for patients with cervical cancer [30]. The
melanocytic plasticity signature (MPS) score is calculated using the weighted sum of the
expression of 45 genes. MPS score reflects the extent of differentiation or multipotency of
melanocytic lineage and is predictive of ICB efficacy [31].

The remaining methods implement different forms of computation. The pan-fibroblast
TGF-beta response signature (F-TBRS) and the TMEscore are both calculated using the
principal component analysis (PCA) of the signature genes [32,33]. The immuno-predictive
score (IMPRES) is calculated based on the transcriptomics relationship of 15 pairs of rela-
tionships among 15 immune checkpoint genes [34] and is initially developed as a predictor
of ICB response in melanoma. Thus, IMPRES has a range between 0 and 15. Tumor
immune dysfunction and exclusion (TIDE) is a computational framework to identify the
gene signature related to immune escape and can serve as a biomarker of ICB response [35].

2.3. The Gene-Set-like Group METHODS with Competitive Design

A total of 11 methods can be classified as the gene-set-like methods with competitive
design, including 10 based on ssGSEA and one named the immune resistance program
score (TIRP). Specifically, ssGSEA calculates a normalized enrichment score (NES) by
comparing the ranks of the genes in the signature with other genes in the transcriptome.
ssGSEA adopts the competitive hypothesis design and can be used as a measurement of the
overexpression of a signature gene list. We collected a total of 10 ssGSEA-based methods
from literature. Among them, some used the NES from one single gene set while others
used different forms of combinations of multiple gene sets, e.g., average, sum, or weighted
sum of multiple NES scores.

Three methods used the NES from a single set of genes. The antigen-presenting
machinery (APM) score is defined as the NES of a set of antigen-presentation-related genes,
as such genes have been reported to be associated with ICB response in ccRCC patients [37].
The C-ECM score is defined as the NES of a set of 58 cancer-associated ECM genes (C-ECM),
which is associated with the activity of TGF-beta and the presence of cancer associated
fibroblast (CAFs) [41]. The MHC-I association immunoscore (MIAS) is calculated as the
NES of 100 genes created by a network approach and has been used as a predictor of ICB
response for melanoma patients [42].

Six methods used different forms of combinations of multiple gene sets. The immune
infiltration score (IIS score) and the T cell infiltration score (TIS score) are defined as the
sum of NES scores from multiple signature gene sets, each of which represents differ-
ent processes involved in anti-PD1 immunotherapy [37]. Innate anti-PD-1 resistance, a
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transcriptional signature referred to as the IPRES, consists of genes involved in ECM, cell
adhesion, regulation of mesenchymal transition, angiogenesis, and wound healing and
has been used as a biomarker to improve anti-PD-1 response in multiple tumor types [13].
Immune microenvironment score (IMS) has been developed from six gastric cancer cohorts
and 27 TME cell signatures related to the overall survival status. IMS is calculated as the
weighted sum of ssGSEA NES scores [39]. The pathway-based super signature (PASS)
scores are developed by analyzing the corresponding pre-treatment (PASS-PRE) and on-
treatment (PASS-ON) cohorts [38]. They are calculated as the weighted sum of ssGSEA
NES scores of several related pathways associated with ICB response.

A recent study defined four distinct TME subtypes by unsupervised clustering based
on ssGSEA NES scores of 29 knowledge-based functional gene expression features that
comprehensively described major functional components and immune, stromal, and other
cellular populations. Because this method has been shown to be correlated with ICB
responses [40], we included it in our analyses and referred it as the molecular functional
tumor portrait (MFP) score.

Finally, the TIRP score is defined as the overall expression of genes involved in
malignant cell programs that are associated with T-cell exclusion [36]. It was originally
developed based on single-cell RNA-sequencing data and has been successfully used in
melanoma patients.

Furthermore, we used nine biomarkers (IFN-gamma, EIGS, TIG, CRMA, ESCS, F-
TBRS, IRG, TLS, and Renam-101 signature) from the first class of methods and calculated
ssGSEA as new score systems.

2.4. The Deconvolution-like Methods

The third class of biomarkers is constructed based on the deconvolution type of meth-
ods applied to gene expression matrix (n = 5). By far, the representative deconvolution-like
methods include CIBERSORT, CIBERSORTx, microenvironment cell populations (MCP)-
counter, and xCell [47–50]. These methods implement different matrix decomposition
algorithms to infer the proportions of different cell types from bulk gene expression data.
Thus, many studies use the deconvolutional methods to infer the proportions of immune
cell types to subsequently predict ICB responses.

Previous studies have revealed that the baseline levels of CD8+ T cells is an important
determinant of clinical response to anti-PD-1 [43,51]. Thus, different deconvolution-like
methods have been used to infer the proportion of CD8+ T cells from bulk expression,
such as CD8T_CIBERSORTx [49], CD8T_MCPcounter, and CD8T_xCell. In addition, the
immunoscore was constructed based on the weighted sum of the percentages of 8 immune
subsets derived by using CIBERSORTx and could be used to predict response to anti-PD-1
in melanoma [44].

Lastly, EcoTyper is a machine learning framework for characterizing the cell states
and multicellular communities from expression data. The first step of EcoTyper is applying
CIBERSORTx to deconvolute cell-type specific expression profiles from bulk RNA-seq
data. Second, non-negative matrix factorization (NMF) is used to identify cell states. Third,
EcoTyper identified ten multicellular communities with distinct cell-state co-occurrence
patterns and have been reported to be associated with OS and ICB response [45].

2.5. Benchmark Design

We used the TCGA multi-omics data and ICB-treated data to evaluate the 39 sets
of biomarkers and 48 scoring measurements. Most TCGA samples did not receive ICB
therapies or had no information about ICB treatment. These data were used to assess the
transcriptomic correlations among the biomarkers as well as the relationships between
biomarkers and other biological characteristics, such as the TMB burden and the stroma
and immune scores. The TCGA clinical data were used to evaluate the general perfor-
mance of these scoring systems with the patient survival status without stratifications
by ICB-response. In addition, we collected the ICB-treated datasets, where the included
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samples received at least one type of ICB treatment. These data had well-recorded clinical
outcome from ICB treatment as well as the pre-treatment transcriptome data and thus, are
used to evaluate the performance of the scoring system in distinguishing ICB responders
and nonresponders.

2.6. TCGA Dataset Collection and Benchmark

For TCGA data, we used the 31 non-hematological cancer types including approxi-
mately 8000 samples. We used the R packages TCGAbiolinks to download the mutation
data [52] and Maftools to calculate the TMB burden [53] for each sample. The TCGA RNA-
seq and clinical data were downloaded from Xena [54,55]. Transcripts per million (TPM)
matrix for protein-coding genes was constructed for each cancer type for the following
analyses. For each sample, we used ESTIMATE [14] to calculate an immune score and a
stromal score using the gene expression data. Then, for each of the 39 sets of biomarkers, we
calculated the 48 scores for each sample. We performed 4 types of analyses to investigate
the biomarker characteristics. First, we calculated the Spearman correlation coefficients
(SCC) between any two scoring measurements, excluding the two categorical measure-
ments EcoTyper and MFP. This resulted in a 46×46 correlation matrix that can be used to
explore the correlations and potential duplicated information among these biomarkers and
scores. Second, we calculated SCC between each score and TMB because previous studies
had reported that samples with high TMB tended to respond well to ICB therapies. Third,
we calculated SCC between each score and the immune and stromal scores, respectively, as
both immune and stromal genes were reported to play roles in ICB response. Lastly, we
investigated the functions of the biomarkers for their enriched pathways using the gene set
enrichment analysis (GSEA) and the Reactome pathways [56].

2.7. ICB-Treated Data Collection and Benchmark

Data curation and preprocess. By a systematic search in the literature, we identified a
total of 36 ICB-related studies with transcriptome data (Supplementary Table S1). Among
these datasets, we excluded those that were generated using the NanoString panels [57,58]
because such datasets had limited coverage of biomarker genes. We also excluded those
that were under restricted control [32,59–61]. The remaining data were downloaded from
public databases or the supplementary tables of the original publications. As a result,
a total of 16 studies were retained, covering cancer types such as melanoma, urothelial
cancer (UC), gastric cancer (GC), head and neck squamous cell carcinoma (HNSCC), clear
cell renal cell carcinoma (ccRCC), non-small cell lung cancer (NSCLC), and glioblastoma
(GBM). A total of 29 datasets were retrieved from these 16 studies and pre-processed
uniformly to ensure coherence between the datasets. For each dataset, we kept only the
transcripts of protein-coding genes and quantified their expression levels using TPM or
other normalized metrics as expression units for the following analysis. All benchmark
analyses were performed within each dataset and thus, the batch effect across different
studies had limited impacts on our analyses.

Definition of ICB-responder and ICB-nonresponder. Each of the original studies has
its own way of defining ICB responders and ICB-nonresponders. Some studies used
the Response Evaluation Criteria In Solid Tumors (RECIST) or immune-related RECIST
(irRECIST) criteria [13,32,62–65]. Some studies used PFS for the stratification (e.g., lasting
for 6 months after initiation of immunotherapy) [27,66,67]. Others used the combined
information of the response status and survival information [38,63,68–71]. By reviewing
the published strategies, we chose to use the combinatory strategy and uniformly assessed
the clinical data and stratified patients as below:

ICB-responder: Patients with complete response (CR), partial response (PR), or stable
disease (SD) as well as having PFS greater than 6 months.

ICB-nonresponder: Patients with progressive disease (PD) or SD but with PFS of less
than 6 months.
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After preprocessing, we kept 16 accessible studies including 1492 samples
(Supplementary Table S2). Among them, 1337 samples were obtained before the treat-
ment, which we collapsed into 15 datasets (Supplementary Table S3). Based on the clinical
status (e.g., different biopsy time and treatment), we organized the 408 samples, including
both pre-treatment and on-treatment samples from the same patients or samples with dif-
ferent treatments, as 14 datasets (Supplementary Table S4). In total, we obtained 29 datasets.
All datasets were preprocessed to generate matched clinical data and gene expression
matrix ready for further analyses.

Evaluation using ICB-treated datasets. For each dataset with ICB-responders and ICB-
nonresponders as defined above, we tested the association between each of the 48 scoring
measurements with the ICB status using the one-sided Wilcoxon test (for the 46 continuous
measurements) or Fisher’s Exact test (for the two categorial measurements). For datasets
containing paired pre- and on-treatment samples derived from the same patients, we used
the paired t-test to assess the changes in scores before and after ICB treatment. For the
continuous measurement, we also calculated the AUC value using the R package pROC.
For the datasets with the OS and PFS information, we categorized the patients based on the
continuous scoring systems (using the mean values) or the prediction from the categorical
scoring systems. Next, we conducted the Log-Rank test to compare the survival curves
between the two groups of patients and generated the Kaplan-Meier (KM) plot. Finally, the
Cox proportional hazards model and the forest plot of hazard ratio (HR) were employed to
assess the impact of the biomarker on survival time.

2.8. Statistical Analysis

All statistical analyses were performed in R (v4.1.3). Survival analyses including the
Log-Rank test and Cox regression were conducted using the survival package. The KM plot
and the forest plot were generated by using the survminer package.

2.9. Database and Web Server Construction

Most of the methods can be implemented using standalone tools, whereas some were
made available as online web servers, such as TIDE [35], CIBERSORTx [49], and Eco-
Typer [45]. To facilitate easy access to the comprehensive datasets as well as the methods,
we constructed the database named ICB-Portal (https://ngdc.cncb.ac.cn/icb (accessed on
1 July 2023)). The web server was hosted by a local machine with CentOS 7.9. The backend
service was built with Java Spring Boot (https://spring.io/projects/spring-boot (accessed
on 1 July 2023)) framework and MySQL v8.0 (https://www.mysql.com/ (accessed on
1 July 2023)) as the database engine. The user interface was constructed with React
(https://reactjs.org/ (accessed on 1 July 2023)), Umi (https://umijs.org/ (accessed on
1 July 2023)), and Ant Design (https://ant.design/ (accessed on 1 July 2023)). Highcharts
(https://www.highcharts.com/ (accessed on 1 July 2023)) and PlotyJS (https://plotly.com/
javascript/ (accessed on 1 July 2023)) were used to provide interactive visual charts. Finally,
the online analysis module was implemented by the Rserve (http://www.rforge.net/Rserve/
(accessed on 1 July 2023)) in the backend server.

3. Results
3.1. Classification of Transcriptomic Biomarkers of ICB Response

After literature search and curation, we collected a total of 39 sets of transcriptomic
biomarkers and calculated 48 scoring measurements of ICB response based on three types
of methods: the gene-set-like methods using the self-contained design, the gene-set-like
methods using the competitive design, and the deconvolution-like methods (Table 1).
Among the 48 scoring methods, 46 generated continuous measurements and two generated
categorical measurements (i.e., the MFP and EcoTyper methods).

https://ngdc.cncb.ac.cn/icb
https://spring.io/projects/spring-boot
https://www.mysql.com/
https://reactjs.org/
https://umijs.org/
https://ant.design/
https://www.highcharts.com/
https://plotly.com/javascript/
https://plotly.com/javascript/
http://www.rforge.net/Rserve/
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3.2. The Correlations and Patterns of Transcriptomic Biomarkers

According to the original studies, some scoring systems were initially developed
to indicate beneficial ICB response while some for ICB resistance. Among the 48 scores,
33 were expected to be positively associated with the ICB treatment outcome, i.e., samples
with a high score tended to have benefitting ICB response (hereafter referred as the positive
markers), while the remaining 15 scores were negatively associated (negative markers).

To verify these relationships, we first investigated the correlations among the 46 quantitative
scores using the TCGA samples. We calculated all scores using the ~8000 TCGA samples
from 31 non-hematological cancer types and constructed a 46 × 46 correlation matrix for
the quantitative scores. As shown in Figure 2A, biomarkers that were expected with the
same direction were clustered together roughly as expected, e.g., the positive markers
formed a cluster and the negative markers formed another. The only exception was the
IMPRES score, which had been reported as a positive biomarker but appeared to be closer
to the negative marker cluster. The same trend was observed in the correlation analysis
based on ICB-treated datasets (Figure 2B).

Cancers 2023, 15, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 2. Characteristics of the transcriptomic biomarkers. (A) A heatmap showing the hierarchical 
clustering patterns for 46 biomarker score systems, excluding EcoTyper and MFP, which are cate-
gorical. For any pair of biomarkers, the correlation is calculated using the Spearman correlation 
coefficient using the approximately 8000 samples from 31 TCGA non-hematological cancer types. 
(B) A heatmap showing the hierarchical clustering patterns for 46 biomarker score systems based 
on the 16 ICB-treated datasets. (C) A heatmap displaying the association between biomarkers with 
TMB, the immune score, the stromal score, and the ESTIMATE score using TCGA datasets. (D) 
GSEA plots of the immune system pathway enriched in the positive biomarkers and the extracellu-
lar matrix organization pathway enriched in the negative biomarkers. 

Next, we investigated the relationships between these biomarkers with three ge-
nomic and transcriptomic characteristics: TMB, the stromal score, and the immune score 
[14]. Overall, most of the biomarkers showed low correlations with TMB (mean: 0.11, 
range: −0.26~0.56) (Figure 2C). In addition, most of the positive biomarkers showed higher 
correlations with the immune score (mean: 0.60, range: −0.46~0.89, 30/31 = 96.78% > 0) than 
with the stromal score (mean: 0.36, range: −0.18~0.69, 27/31 = 87.10% > 0). In contrast, neg-
ative biomarkers showed higher correlations with the stromal score (mean: 0.34, range: 
−0.18~0.82, 12/15 = 80% > 0) than with the immune score (mean: 0.19, range: −0.41~0.46，
12/15 = 80% > 0) (Figure 2C). 
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cal clustering patterns for 46 biomarker score systems, excluding EcoTyper and MFP, which are
categorical. For any pair of biomarkers, the correlation is calculated using the Spearman correlation
coefficient using the approximately 8000 samples from 31 TCGA non-hematological cancer types.
(B) A heatmap showing the hierarchical clustering patterns for 46 biomarker score systems based on
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the 16 ICB-treated datasets. (C) A heatmap displaying the association between biomarkers with TMB,
the immune score, the stromal score, and the ESTIMATE score using TCGA datasets. (D) GSEA plots
of the immune system pathway enriched in the positive biomarkers and the extracellular matrix
organization pathway enriched in the negative biomarkers.

Next, we investigated the relationships between these biomarkers with three genomic
and transcriptomic characteristics: TMB, the stromal score, and the immune score [14].
Overall, most of the biomarkers showed low correlations with TMB (mean: 0.11, range:
−0.26~0.56) (Figure 2C). In addition, most of the positive biomarkers showed higher
correlations with the immune score (mean: 0.60, range: −0.46~0.89, 30/31 = 96.78% > 0)
than with the stromal score (mean: 0.36, range: −0.18~0.69, 27/31 = 87.10% > 0). In contrast,
negative biomarkers showed higher correlations with the stromal score (mean: 0.34, range:
−0.18~0.82, 12/15 = 80% > 0) than with the immune score (mean: 0.19, range: −0.41~0.46,
12/15 = 80% > 0) (Figure 2C).

To investigate the overlapping genes and the functional pathways that the compo-
nent genes were enriched, we ranked the genes according to their frequency in either
the positive biomarkers or the negative biomarkers. In this way, genes that were in-
cluded in multiple biomarkers (thus, frequently identified as markers for ICB by multiple
studies) received a high rank. As shown by the GSEA analyses, the genes from the posi-
tive biomarkers were significantly enriched in the immune system pathway (NES = 1.78,
Benjamini-Hochberg Procedure adjusted p-value, or pBH = 0.012), the adaptive immune
system pathway (NES = 2.18, pBH = 0.012) and the cytokine signaling in immune system
pathway (NES = 1.64, pBH = 0.012). Genes from the negative biomarkers were significantly
enriched in the extracellular matrix organization pathway (NES = 4.75, pBH = 0.012), sig-
naling by GPCR pathway (NES = 2.15, pBH = 0.012), and signaling by receptor tyrosine
kinases pathway (NES = 2.38, pBH = 0.012) (Figure 2D). These results implied that at least
two different types of pathways were captured by the transcriptomic biomarkers that had
been reported so far.

3.3. Benchmark of Transcriptomic Biomarkers for ICB Response Prediction

Overview of datasets: We next systematically quantified the predictive performance of
these biomarkers using the ICB-treated datasets for ICB response. The 29 datasets after pre-
processing included 1492 samples from five cancer types, i.e., melanoma (n = 535), NSCLC
(n = 381), UC (n = 374), ccRCC (n = 157), and GC (n = 45). The overall objective response rate
of total patients was 34.2%. Among the 29 datasets, 15 datasets were composed exclusively
of samples taken before the ICB treatment, eight datasets were composed of paired pre- and
on-treatment samples from the same patients, two datasets were designed to explore the
difference between single and combined immunotherapy, and four datasets were designed
to investigate the effects of previous exposure to anti-CTLA-4 before anti-PD1 treatment. In
addition, there were 13 datasets with available OS information and 11 with PFS information.
We named these datasets according to the cancer type, sample size, and the first author of
original publication.

Benchmark using ICB responsive status: Using the 15 datasets that included only
pre-treatment samples (n = 1337), we conducted one-sided statistical tests for each measure-
ment (Wilcoxon test for 46 continuous measurements and Fisher’s Exact test for the two
categorical measurements) to investigate their relationship with ICB response based on the
pre-defined directions, i.e., positive or negative. As shown in Figure 3A, the TIDE and CYT
scores showed the best performance which distinguished responders from nonresponders
in 5 out of 15 datasets. Thirteen scores showed statistical significance in 4 out of 15 datasets
and ten scores in 3 datasets. Lastly, four scores, which were CXCL1, ESCS, IMPRES, and
CD8T_xCell, failed to distinguish the two groups of patients in all 15 datasets. We se-
lected the C-ECM score in the GC_45_Kim dataset to demonstrate the results (Figure 3B,C)
while all benchmark results are available via our website. Notably, for four of the bench-
mark datasets (i.e., ccRCC_124_Braun, ccRCC_32_Miao, Melanoma_19_MGH_PRE, and
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Melanoma_19_Nathanson_PRE), all biomarkers failed to distinguish the patient groups
(Figure 3A), likely due to the tumor heterogeneity and the small sample sizes [38,66,69,72].
In general, the cancer-specific biomarkers have better performance for the same cancer
as they derive from than other cancers. For example, twelve of fifteen melanoma-specific
biomarkers have the top significant p-values in the melanoma datasets except for MPS,
Immunoscore and IMPRES scores. The TIDE score showed significant predictive power
in five datasets, four of which were the same as the cancer types used to construct the
TIDE (Melanoma, NSCLC). However, the CYT score is a general biomarker which showed
significant predictive power in five datasets with more diverse cancer types (Melanoma,
GC, NSCLC, UC).
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Figure 3. Benchmark results of 39 sets of transcriptomic biomarkers for ICB response. (A) A dot
plot displaying the overall benchmark results of 39 biomarker score systems for ICB response. The
color and size of the dots are proportional to the p-values and AUC values from the benchmark
analyses of the corresponding biomarker (column) and the dataset (row), respectively. The bars on
the right represent the counts of significant (p < 0.05) associations for the corresponding score systems.
(B,C) Examples of benchmark results for C-ECM score (Biomarker) in GC_45_Kim (Dataset), which
was highlighted by a red box in panel A. The dots in B represented patients (blue: responders, red:
nonresponders). ** p < 0.01.

Comparison of computational methods: For the nine biomarkers that were originally
calculated using the average or sum of expression of component genes [23–27,30,32], we
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further applied ssGSEA using the same genes to calculate a new score. This allowed
us to investigate the impact of different computation methods. As shown in Figure 4A,
the results generally showed that, for the same gene signature, four new score measure-
ments derived from ssGSEA, including TLS_ssGSEA, TIG_ssGSEA, Renal-101_ssGSEA,
and ESCS_ssGSEA, were more predictive of the ICB response than the original score mea-
surements derived from average or sum. In addition, three new scores (EIGS_ssGSEA,
IFN-gamma_ssGSEA, and CRMA_ssGSEA) showed comparable performance with the
original score and two new scores (IRG_ssGSEA and F-TBRS_ssGSEA) showed poorer
performance than the original scores (Figure 4A). Taken together, ssGSEA was in general
superior to naïve calculation methods of gene signatures. A possible explanation was that
ssGSEA assessed the relative expression changes in a set of genes as compared with the rest
of genes in the transcriptome and thus, was robust to confounding factors such as sample
preparation and technical platforms.
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Figure 4. Comparison of different computational methods, biopsy times, and treatments.
(A) Benchmark results using different calculation methods for ICB response prediction. The color of
each dot is proportional to the p value and the size is proportional to the AUC value from the bench-
mark. (B) Benchmark results for pre- and on-treatment samples (left) and for different treatments
(right) (see main text for details). The analyses were conducted using 46 continuous score systems.
(C) Examples (highlighted by a red box in panel B) of biomarker score changes before and after ICB
treatment (paired t-test) in responders and nonresponders.
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Benchmark using different biopsy groups: Four studies including 83 patients had
paired pre- and on-treatment samples (166 transcriptome) regardless of the type of treat-
ments (e.g., anti-CTLA-1 or anti-PD-1). For these datasets, we stratified the patients as
responders and nonresponders and investigated the changes in the 46 continuous biomarker
scores upon ICB treatments [38,62,63,65,68]. In total, more biomarkers were significantly
changed in responders than in nonresponders (Figure 4B) and positive scores tended to
increase whereas negative scores decrease upon treatment. Specifically, for responders
in each dataset (Gide: n = 22, Riaz: n = 34, Lee: n = 8, MGH: n = 8), 32 scores showed
significant changes before and on ICB treatment (paired t-test, p < 0.05), including 25 scores
upregulated and 7 downregulated (Figure 4B, Supplementary Table S5). In addition, for
nonresponders in each dataset (Gide: n = 10, Riaz: n = 50, Lee: n = 16, MGH: n = 18),
21 scores showed significant changes (paired t-test, p < 0.05; 18 upregulated and 3 down-
regulated) (Figure 4B, Supplementary Table S5). As reported in previous studies, many
immune genes were found activated during ICB treatment [63], likely because of the acti-
vated immune pathways during treatment. Thus, it is expected that biomarkers consisting
of immune related genes would increase upon ICB treatments. In our results, among the
upregulated scores, regardless of responders and nonresponders, the majority of them were
calculated using immune related genes, consistent with previous reports. For example, the
CYT and IFN-gamma scores showed significant upregulation after ICB treatment in both
responders and nonresponders. (Figure 4C). In contrast, the scores that decreased were all
from the negative sets including those related to TME (such as ESCS and TMEscore) and
immune resistance program (such as TIRP, CRMA, and IRG).

Benchmark using different treatment groups: We also evaluated the performance
of the scores using data from three studies that collected samples treated with different
treatments. The Riaz and Liu studies compared samples naïve to anti-CTLA-4 before
anti-PD-1 treatment (hereafter named naïve samples, Riaz: n = 23, Liu: n = 74) with samples
that were derived from exposure to anti-CTLA-4 before anti-PD-1 treatment (exposed, Riaz:
n = 26, Liu: n = 47). Specifically, 29 scores were significantly higher in responder than in
nonresponder using the exposed samples (one-sided Wilcoxon test, p < 0.05), but only one
showed significant difference in the naïve sample group. One possible explanation is that
the higher expression of various immune-related pathways distinguished responders from
nonresponders in previous exposure to anti-CTLA-4 patients but not anti-CTLA-4-naïve
patients [62]. The Gide study compared samples treated with anti-PD-1 monotherapy
(mono, n = 41) and samples treated with combined therapy with both anti-PD-1 and anti-
CTLA-4 (combined, n = 31) [68]. We found 29 scores significantly higher in responder than
in nonresponder in the group treated with the combined therapy, whereas 26 scores were
higher in responder than in nonresponder in the mono therapy group (one-sided Wilcoxon
test p < 0.05) (Figure 4B, Supplementary Table S5). Taken together, these results showed
that these biomarkers are also limited in discriminating responders from nonresponders in
samples treated with monoclonal antibodies.

3.4. Exploration of Biomarkers for Their Prognostic Capability

We evaluated the prognostic capability of the 48 scores using both the ICB-treated
datasets and the TCGA datasets (31 cancer types). In the ICB-treated datasets (Figure 5A),
PASS-ON and EIGS_ssGSEA showed the best performance for both OS and PFS. Figure 5B,C
showed an example of the KM-plot and forest plot using the TLS score in the Gide dataset.
Interestingly, there were a number of biomarkers that have great predictive power for
ICB response but poor prognostic capability for OS and PFS, and vice versa. For example,
TIDE was the best predictive biomarker for ICB response (Figure 3A) but failed to show
significant prognostic value in most datasets (Figure 5A). This is partially because TIDE
mainly contains genes interacting with cytotoxic T lymphocytes (CTL) and these genes
may not be directly associated with survival [35].
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Figure 5. Benchmark of the prognostic capability for the 48 score systems using patient OS and PFS.
(A) The benchmark results of the biomarkers for OS (left box) and PFS (right box). The color of
each dot is proportional to the p value and the size is proportional to the HR value derived from the
benchmark analysis of the corresponding biomarker and the dataset. (B,C) Examples (highlighted by
a red box in panel A) of the detailed benchmark results using the TLS score in the Melanoma_90_Gide
dataset for OS, including the KM plot (B) and the forest plot (C). ** p < 0.01.

In the TCGA datasets, F-TBRS score achieved the best performance (Supplementary
Figure S1). Note that we included only solid tumor samples in TCGA and these samples
may have different levels of fibroblasts and TME. Moreover, as expected, the dataset of skin
cutaneous melanoma (SKCM) has the highest number of biomarkers with significant pre-
dictive power for OS. This is expected because most biomarkers were originally developed
in melanoma cohorts.

3.5. Web Server Construction

To facilitate access of the curated resources and the benchmark results, we developed
the database ICB-Portal, available at https://ngdc.cncb.ac.cn/icb (accessed on 1 July 2023).
All 29 datasets, 48 score systems, corresponding benchmark results, as well as an on-
line implementation of these scores were made available in ICB-Portal, representing
the most comprehensive resource currently in the field of transcriptomic ICB [73,74]
(Supplementary Figure S2). We provided various interactive and friendly ways to ex-
plore the detailed information of the datasets, biomarkers, and the benchmark results
(Supplementary Figure S2A,B). The online analysis platform provides a one-stop solu-

https://ngdc.cncb.ac.cn/icb
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tion for researchers to test their custom biomarkers using the 29 datasets without extra
manual curation and pre-processing (Supplementary Figure S2C). Specifically, the cus-
tom biomarker entered by the user can be a single gene or a gene set. We provide three
calculations when a gene set is submitted, including ssGSEA, average, and sum of all
genes. A job ID is generated for the accessibility of corresponding results after the sub-
mission, and a job is completed within a few minutes in general. Altogether, we believe
this module accelerates the discovery of novel therapeutic targets and potential predictors
for immunotherapy.

4. Discussion

In this study, we collected 29 ICB-treated datasets and 48 scoring systems from 39 sets
of transcriptome biomarkers and conducted a comprehensive benchmark of these biomark-
ers. To the best of our knowledge, these datasets represented the most comprehensive
resource that are publicly available, covering different cancer types, biopsy times, and
treatment scenarios. In our benchmark results, most biomarkers have shown poor per-
formance in terms of stability and robustness across different datasets. Additionally, we
validated the prognostic power of these biomarkers in ICB-treated datasets and TCGA
datasets. Lastly, these curated resources and analysis results were compiled into a website
for convenient browsing and an online benchmark platform was provided for users to
test their custom biomarkers in the 29 datasets for ICB response and association with
clinical outcome. We expect that our webserver, the ICB-Portal, can serve as a comprehen-
sive resource for ICB-related transcriptomics research and a useful tool for identifying or
validating novel biomarkers.

Our work has the following limitations. First, the biomarkers investigated in this
study are primarily based on transcriptomic data. However, there are also genomic features
that can serve as biomarkers for ICB response, such as TMB [6,10,59], mismatch-repaid
deficiency [11], recurrent somatic mutations [12], and aneuploidy [8]. Recent studies have
shown that integration of multi-omics data and demographic and clinical data can be
a more optimized manner to identify critical determinants for immune response [5,75].
Second, the development of new methods and technologies also facilitates the improvement
the biomarker, such as cell type-specific ligand-receptor interactions [76] and the spatial
relationships of cellular components [77]. Third, in addition to these biomarkers established
using tissue samples, several biomarkers have been identified in peripheral blood [78–80],
which were more non-invasive and clinically meaningful. Finally, most of the publicly
available ICB-treated datasets tend to have small sample sizes except for a few large
cohorts, which may make it difficult to reach statistical significance when benchmarking
the biomarker. In the future, when large-scale transcriptome data are released by clinical
trial studies, more comprehensive benchmark can be conducted to warrant the results and
to develop novel biomarkers.

Despite these limitations, our labor-intensive curation and systematic benchmark
analysis can provide important insights into the understanding of ICB response. By
focusing on the transcriptomic biomarkers for ICB response, our analyses highlighted
the urgent need to develop more robust and stable biomarkers across different cancer types,
biopsy times and treatment scenarios. We expect the ICB-Portal will serve as a valuable
reference resource and validation tool for ICB-related research.

5. Conclusions

We curated 29 ICB-treated datasets covering different cancer types, biopsy times,
and treatment scenarios, which represented the most comprehensive resource so far and
39 sets of transcriptomic biomarkers involving 48 scoring systems. Then, we categorized
these methods into three groups: the gene-set-like group with self-contained design, the
gene-set-like group with competitive design, and the deconvolution-like group. Moreover,
a comprehensive benchmark of the scoring systems from various aspects were conducted.
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Finally, we constructed an online service, ICB-portal, which provides a one-stop shop for
ICB-related research.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15164094/s1, Supplementary Figure S1: Evaluation of the
prognostic capability for the 48 score systems using patient OS across TCGA datasets. Supplementary
Figure S2: The web interface of ICB-Portal. (A) A screenshot of the ICB Biomarker Atlas. (B) An
example of the dataset page. C. The interface of the online analysis platform. Supplementary Table S1:
A total manually curated list of 37 existing ICB-treated studies with transcriptome data derived from
manually literature curation. The rows marked in green are the datasets that eventually be used
for the following analysis. Supplementary Table S2: A total of 16 public datasets were obtained
after a uniformly preprocessing, each with the matched clinical data and standardized expression
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