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Simple Summary: This study developed a prediction model for late bladder toxicity in patients
with uterine cervical cancer undergoing radiation therapy. A deep learning (DL) model was trained
on data from 281 patients and compared its performance with a multivariable logistic regression
model. The DL model outperformed the regression model, achieving higher accuracy, recall, F1-
score, and area under the receiver operating characteristic curve. Specifically, based on the feature
importance analysis, the DL model identified the doses for the most exposed 2 cc volume of the
bladder (BD2cc), BD5cc, and ICRU bladder point as high-priority features. Finally, the lightweight
DL model, which was designed to focus on the top five important features, demonstrated superior
predictive capabilities, highlighting its potential in improving patient outcomes and minimizing
treatment-related complications with secured reliability.

Abstract: (1) In this study, we developed a deep learning (DL) model that can be used to predict
late bladder toxicity. (2) We collected data obtained from 281 uterine cervical cancer patients who
underwent definitive radiation therapy. The DL model was trained using 16 features, including
patient, tumor, treatment, and dose parameters, and its performance was compared with that of a
multivariable logistic regression model using the following metrics: accuracy, prediction, recall, F1-
score, and area under the receiver operating characteristic curve (AUROC). In addition, permutation
feature importance was calculated to interpret the DL model for each feature, and the lightweight DL
model was designed to focus on the top five important features. (3) The DL model outperformed
the multivariable logistic regression model on our dataset. It achieved an F1-score of 0.76 and an
AUROC of 0.81, while the corresponding values for the multivariable logistic regression were 0.14
and 0.43, respectively. The DL model identified the doses for the most exposed 2 cc volume of the
bladder (BD2cc) as the most important feature, followed by BD5cc and the ICRU bladder point. In
the case of the lightweight DL model, the F-score and AUROC were 0.90 and 0.91, respectively.
(4) The DL models exhibited superior performance in predicting late bladder toxicity compared with
the statistical method. Through the interpretation of the model, it further emphasized its potential
for improving patient outcomes and minimizing treatment-related complications with a high level
of reliability.

Keywords: uterine cervical cancer; toxicity prediction; deep learning; feature importance; inter-
pretable artificial intelligence
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1. Introduction

Cervical cancer is the third most commonly diagnosed malignancy in women world-
wide, as reported in 2022 [1]. With early detection and advances in treatment, the number of
cervical cancer survivors has increased over the past 40 years. Nevertheless, most patients
with cervical cancer suffer from various morbidities resulting from the disease itself or
from the treatment. Depending on the treatment strategy (surgery, radiotherapy (RT), or
chemotherapy), the morbidities may include symptoms associated with the gastrointestinal
or urinary tract, lymphedema, and sexual dysfunctions.

External beam radiation therapy (EBRT) with concurrent chemotherapy followed
by intracavitary brachytherapy represents the standard treatment for locally advanced
cervical cancers [2,3]. Owing to the very high dose of radiation delivered to the pelvic
area using EBRT and brachytherapy, radiation-induced toxicity in these patients is not
negligible [4]. Among the irradiated pelvic organs, radiation-induced bladder toxicity is
the most commonly observed morbidity in cervical cancer patients who have received
curative radiotherapy, with an incidence of approximately 20% [4]. Although severe
bladder toxicities have become rare with image-guided brachytherapy, they still pose a
considerable risk [5].

Predicting the occurrence of bladder toxicity before treatment is crucial for improving
patients’ long-term health outcomes and quality of life, as it reduces the probability of
treatment-related complications or interruptions. Previous studies have focused on in-
vestigating prognostic factors associated with radiation-induced bladder toxicity. These
studies have examined various dose volumetric parameters, such as the doses for the
most exposed 2 cc volume of the bladder (BD2cc) [5] and the volume receiving a certain
biologically weighted equivalent dose (EQD2) relative to the gross tumor volume (GTV) or
clinical target volume (CTV), such as V51.43Gy [6] and V8.5Gy/w [7].

Statistical methods and deep learning (DL) models have been introduced to predict
the toxic effects of radiation therapy on the gastrointestinal [8–15] and genitourinary sys-
tems [6,7,16–24]. Statistical methods such as univariable or multivariable linear regression,
logistic regression [6,7,10,13,16,17,19], Cox regression [16,17,19,20,22], random forest [11],
support vector machine [15,21,24], genetic algorithms [21], and statistical analysis [8,9,12]
have been used to predict clinical outcomes. In DL methods, convolutional neural networks
(CNN) and multilayer perceptrons (MLP) have been employed to predict radiation-induced
toxicity [14,21].

Related studies that have used predictive models for toxicity in various cancer types
and radiation therapy techniques:

• A machine-learning-based prediction model of fistula formation after interstitial
brachytherapy for locally advanced gynecological malignancies achieved an accuracy
of 0.901 using Support Vector Machine (SVM) [24].

• A feasibility study utilized a deep convolutional neural network (CNN) with transfer
learning to predict rectum toxicity in cervical cancer radiotherapy, achieving an AUC
of 0.89 [14].

• An observational study predicting radiotherapy impact on late bladder toxicity in
prostate cancer patients used univariate logistic regression, achieving an AUC of
0.626 [6].

• Various studies have focused on predicting urinary toxicity in prostate cancer radio-
therapy using different models, such as the international prostate symptoms score
model, logistic and Cox regression, the edited nearest neighbor algorithm together
with the regularized discriminant analysis classifier, and others [16,18,19].

• Predicting late organ-at-risk toxicity after prostate radiation therapy has been explored
using statistical analysis, cox regression, and random forest models [11,22,23].

• In radiotherapy for cervical cancer, radiomics analysis of 3D dose distributions has
been employed to predict toxicity rates, achieving AUCs ranging from 0.57 to 0.89 [13].

The differences between the statistical and DL methods can be described based on
three factors: (i) model complexity, (ii) feature importance, and (iii) model transparency.
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Statistical methods tend to exhibit relatively low complexity, and, compared with DL mod-
els, they operate based on clear governing principles. Statistical methods often demonstrate
relatively low accuracy; however, they offer relatively high model transparency, which
simplifies the interpretation of feature importance. DL models tend to outperform statistical
methods. However, they are more complex [25–27] and considered “black boxes”, which
makes the interpretation of their results very challenging [28]. However, both accuracy
and interpretability must be considered when choosing a method for predicting clinical
outcomes [29–32].

Therefore, in the present study, we propose an interpretable DL model for predicting
late bladder toxicity in patients with cervical cancer who have received definitive radio-
therapy. We compared the performance of the statistical method and the DL model. In
addition to achieving a high level of reliability, we conducted a feature-importance analysis
and validated the performance of a lightweight DL model.

2. Materials and Methods
2.1. Patient Selection

We identified 545 patients with primary uterine cervical cancer who underwent defini-
tive RT with curative intent at our institution between February 2006 and December 2017.
Follow-up evaluations were performed every three months in the first two years, every
four months in the third year, every six months in the fourth and fifth years, and annually
thereafter. In this study, we included patients with more than three years of follow-up after
treatment completion. The radiation-induced bladder toxicity was evaluated during the
regular follow-up visits based on the European Organization for Research and Treatment
of Cancer late radiation toxicity criteria, which represent a structured scoring schema
developed by the Radiation Therapy Oncology Group (RTOG) [33].

In total, 281 patients with cervical cancer were included in this study (Figure 1).
Clinical information regarding the status of the disease and treatment-related complications
was collected retrospectively from patients’ medical records. This study was approved by
the Institutional Review Board (IRB) of the National Cancer Center, Korea: NCC2019-0166.
This study adheres to the tenets of the Helsinki Declaration of 1975. The requirement for
informed consent was waived owing to the retrospective nature of the study.
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Figure 1. Flowchart of the proposed method for late bladder toxicity occurrence prediction using a
deep learning model and feature importance analysis.

2.2. Treatment

The patients received concurrent chemoradiotherapy using either three-dimensional
(3D) conformal EBRT or an intensity-modulated RT technique and high-dose-rate brachyther-
apy. The clinical target volume of EBRT included gross disease, the entire uterus, a margin
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of 2.0 cm around the tumor extent at the level of the vagina, and the entire parametrial
tissue. In addition, regional lymphatics, including the common, internal, and external iliac
nodal regions and the presacral and para-aortic lymph nodes, were considered. Prior to
2008, brachytherapy planning was CT-based; afterwards, MRI-based planning has been
employed [4]. Brachytherapy planning generally followed the recommendations of the Gy-
necologic Group European de Curie Therapie, European Society for Therapeutic Radiology,
and Oncology Working Group [34,35].

The patients received a combination of 45–50 Gy of pelvic EBRT and 30 Gy of high-dose-
rate brachytherapy with daily fractions of 5 Gy over 3 weeks. The biologically equivalent
dose to point A in 2 Gy fractions was previously calculated as approximately 82 Gy for
cervical tumors (α/β = 10) and 91 Gy for normal tissue (α/β = 3) [36]. Concomitant
chemotherapy was administered using a weekly schedule of intravenous cisplatin at 40 mg
per square meter of body surface area.

2.3. Data

We used four groups of the feature set as input data for the statistical analysis and
DL method: (i) “patient” feature group (n = 2), including age and pathology; (ii) “tumor”
feature group (n = 3), including the federation of gynecology and obstetrics (FIGO) stage,
tumor-node-metastasis (TNM) category, and maximum tumor length on axial T2-weighted
magnetic resonance image (MRI); (iii) “treatment” feature group (n = 4), including concur-
rent chemoradiotherapy (CCRT), CCRT regimen, number of CCRT cycles, and adjuvant
chemotherapy; (iv) “dose” feature group with the equieffective dose (EQD2) at 3.0 Gy
(n = 7), including the total dose of external beam radiation therapy (EBRT), the dose de-
livered to 100% of the primary GTV (GTV-D100), International Commission on Radiation
Units and Measurements (ICRU) bladder point (BPICRU), BD0.1cc, BD1.0cc, BD2.0cc, and
BD5.0cc. Features that were not continuous were dummy-coded. All features were de-
liberately collected in accordance with IRB guidelines and based on clinical experience
and relevant literature [5,36–39]. These carefully selected features are known to play a
significant role in influencing local control and survival outcomes in cervical cancer. With
these selections, we aimed to facilitate meaningful comparisons with other studies that
have similar diseases.

Late bladder toxicity was graded according to the scoring schema of the RTOG, with
scores in the range of 0–5. The median durations from the initial start of EBRT to the
occurrence of late toxicity are 37.7 months in the current study population. Owing to the
imbalance of grades, the grade of late bladder toxicity was binarized by considering the
occurrence of late bladder toxicity only. When late bladder toxicity is absent, the occurrence
status is set to 0; otherwise, the occurrence status is set to 1.

2.4. Statistical Method

Patient characteristics were indicated in terms of mean ± standard deviation or median
(min–max) for continuous variables; frequencies and percentage values were used for
categorical variables. Continuous variables were compared using the t-test or Wilcoxon
rank-sum test, whereas categorical variables were compared using the Chi-square or
Fisher’s exact tests. The dataset was randomly divided into two sets containing 199 and
82 cases for training and testing the statistical model, respectively. The ratios for the training
and test sets were 70% and 30%, respectively. A statistical model was built using a training
set with univariable and multivariable logistic regression. A univariable logistic regression
was performed on the input data, considering patient, tumor, treatment, and dose features.
The results of the univariable logistic regression were used as the input for the multivariable
logistic regression. The target was the occurrence of binarized late toxicity. The developed
multivariable logistic regression model was tested using the test dataset. Statistical analyses
were performed using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) and R version
4.2.1 (R Foundation for Statistical Computing, Vienna, Austria). We assumed that statistical
significance is achieved for p-values below 0.05.
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2.5. Deep Learning Model for Permutation Feature Analysis

To implement the DL model by using Pytorch version 1.12.1 (Warsaw, Mazowieckie,
Poland), we used an MLP. MLP is a type of artificial neural network that consists of multiple
layers of nodes with batch normalization and nonlinearity functions such as rectified linear
unit (RELU), leaky RELU, and sigmoid. Each node in one layer is connected to all nodes
in the next layer, forming a fully connected network. The input layer takes the input data,
and the output layer produces the final predictions. The layers between the input and
output layers are called hidden layers. The DL model was built using six hidden layers.
The architecture can be represented mathematically as follows:

h1 = f1(W1x + b1), (1)

h2 = f2(W2h1 + b2), (2)

h3 = f3(W3h2 + b3), (3)

h4 = f4(W4h3 + b4), (4)

h5 = f5(W5h4 + b5), (5)

h6 = f6(W6h5 + b6), (6)

and
y = f7(W7h6 + b7), (7)

where x is the input data, y is the output data, Wi and bi are the weight matrix and bias
vector for the i-th layer, respectively, fi is the activation function for the i-th layer, and hi is
the output of the i-th hidden layer.

As a preprocessing step, 16 features were used as input data, and binarized late
bladder toxicity values were considered the output data. Z-score normalization was
applied to the input data so that the DL model could rapidly converge to the optimal
solution. The normalization parameters (mean and standard deviation) were determined
from the training set.

The standardized input data were passed through an input layer, and output data
were obtained on the output layer. In each hidden layer, except for the last one, batch
normalization and dropout techniques were applied to avoid overfitting the training data.
The probability of a node being zeroed for dropout was set to 0.2. In addition, a leaky ReLU
was adopted as the activation function in the hidden layers to improve model complexity
and performance. A sigmoid function was used as the activation function of the last layer
only. These functions introduce nonlinearity into the model, allowing it to capture complex
relationships within the data. The detailed architecture of the proposed model is presented
in Table 1.

The loss between the ground truth and predicted toxicity occurrence was calculated
using binary cross-entropy as follows:

Binary cross entropy loss = − 1
N ∑N

i=1(yi log(pi) + (1 − yi) log(1 − pi)), (8)

where N represents the total number of samples in the batch, yi represents the true label of
the i-th sample (either 0 or 1), and pi represents the predicted probability (between 0 and 1)
of the i-th sample belonging to the positive class. The DL models were trained to minimize
the loss.
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Table 1. The architecture of the late bladder toxicity prediction model.

Layer Type In
Features

Out
Features Bias Batch

Normalization
Activation
Function

Fully connected layer 16 36 FALSE TRUE * Leaky
ReLU

Fully connected layer 36 72 FALSE TRUE Leaky ReLU
Fully connected layer 72 144 FALSE TRUE Leaky ReLU
Fully connected layer 144 72 FALSE TRUE Leaky ReLU
Fully connected layer 72 36 FALSE TRUE Leaky ReLU
Fully connected layer 36 1 FALSE TRUE Sigmoid

* Leaky ReLU: Leaky rectified linear unit.

To avoid overfitting, the synthetic minority oversampling technique (SMOTE) was
adopted during the training procedure as oversampling technique and augmentation
strategy, which adds random noise to the input data in every training epoch [18]. Moreover,
we employed an adaptive momentum estimation optimizer with a learning rate of 0.005
and a weight decay of 0.0001. To compute the running average of the gradient, β1 and β2
were set to 0.9 and 0.999, respectively [40].

K-fold cross-validation (CV) was employed to ensure the generalizability of the DL
model. The value of k was set to 5, resulting in the training set being divided into five folds.
Furthermore, an early stopping strategy was implemented, where the model achieving
the lowest validation loss during the 500 epochs was saved as the best-performing model.
Each fold yielded independent results as separate models were trained. The final output
data were determined using the voting method, with a threshold of 3 sets to obtain the
ultimate decision.

2.6. Permutation Feature Importance Analysis

The permutation analysis is used to calculate the feature importance of a DL model.
It involves randomly permuting the value of a single feature and evaluating the model’s
performance on the test dataset [41]. The analysis was performed using Scikit-learn ver-
sion 1.0.2.

To measure the importance of each feature, the mean squared error (MSE) is calculated
between the reference dataset and a corrupted dataset, where the value of a single feature
has been randomly permuted. This is compared with the reference MSE, which is the MSE
calculated on the uncorrupted reference dataset.

The variation in model performance resulting from the permutation of a feature is
used to compute the importance of each feature.

ij = s − 1
K ∑K

k=1 sk,j (9)

where i is used to index the features, j represents the total number of features, ij is the
importance of j-th feature, K is the number of repetitions or permutations, S is the reference
MSE, sk,j is the MSE calculated using a corrupted dataset for the k-th repetition, and
1
K ∑K

k=1 sk,j the average MSE over K repetitions for j-th feature.
The value of K was set to 500, indicating that the permutation analysis was repeated

500 times. Finally, the permutation feature importance was calculated by averaging the
feature importance values obtained from DL models trained using different training folds.

2.7. Lightweight Deep Learning Model

In order to develop a lightweight deep learning model, we utilized the importance
values derived from permutation feature analysis and selected the top 5 features as input.
This approach enabled us to focus on the most influential features while reducing the
computational complexity of the model.

When designing the hidden layers, we adhered to the commonly employed standards
of multi-layer perceptron (MLP) models. Specifically, our model was designed with a
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decreasing number of neurons in each hidden layer, starting from the number of input
features and gradually reducing to 5, 4, 3, 2, and finally 1 neuron.

The activation functions, preprocessing steps, loss function, optimization technique,
cross-validation, and final decision-making process of the lightweight deep learning model
remain the same as those of the deep learning model described previously.

2.8. Performance Comparison

To compare the performance of the DL model and multivariable logistic regression,
four metrics were adopted: accuracy (Equation (10)), precision (Equation (11)), recall (Equa-
tion (12)), F1-score (Equation (13)), and the area under the receiver operating characteristic
curve (AUROC) (Equation (14)). To compute these metrics, we counted the number of true
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) in the test
set. Precision is defined as the number of positive predictions (i.e., those that were correctly
identified by the model) expressed as a fraction of the total number of predictions. Recall
indicates the fraction of positive instances that the model could identify. The F1-score is
the harmonic mean of precision and recall. Therefore, a high F1-score indicates that the
model exhibits a good balance between precision and recall. If a model performs well, it
has a high AUROC value (close to 1.0).

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 − score = 2 · Precision · Recall
Precision + Recall

(13)

AUROC =
∫ 1

0
sensitivity(x) · d(1 − specificity(x)) (14)

3. Results
3.1. General Study Characteristics

Patients’ characteristics are summarized in Table 2. No significant differences were
observed between the training and test sets in terms of baseline characteristics, such as
age, pathology, FIGO stage, TNM category, maximum tumor length, CCRT, CCRT regimen,
number of CCRT cycles, adjuvant chemotherapy, and the total dose of EBRT, GTV-D100,
BPICRU, BD0.1cc, BD1.0cc, BD2.0cc, and BD5.0cc.

3.2. Logistic Regression Results

Univariable and multivariable logistic regression analyses were performed to identify
risk predictors for adverse events in the training set (Table 3). Based on the univariable
analysis, no significant features were observed in the features set. The multivariable logistic
regression model returned four features with p < 0.2: CCRT cycle, GTV-D100, BD2.0cc, and
BD5.0cc. The prediction metrics were calculated using a multivariable logistic regression
model on the test data. Multivariable logistic regression achieved accuracy, precision,
recall, F1-score, and AUROC of 0.85, 0.08, 0.5, 0.14, and 0.43, respectively. Although
multivariable logistic regression yielded an accuracy of 0.85, the regression model did not
exhibit acceptable performance on the test dataset.
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Table 2. Baseline patients’ characteristics (n = 281).

Variable Total (N = 281) Training Set
(N = 199) Test Set (N = 82) p-Value

AGE mean ± std 62.1 ±14.0 63.4 ±13.4 61.5 ±14.2 0.2920 (3)

Pathology 1; squamous 224 (79.7%) 63 (76.8%) 161 (80.9%) 0.4708 (1)

2; adenoca 23 (8.2%) 6 (7.3%) 17 (8.5%)
3; adenosquamous 10 (3.6%) 5 (6.1%) 5 (2.5%)
4; Other 24 (8.5%) 8 (9.8%) 16 (8.0%)

FIGO stage 1; Ia1, Ia2, Ib1, Ib2 53 (18.9%) 17 (20.7%) 36 (18.1%) 0.7285 (1)

2; IIa1, IIa2, Iib 161 (57.3%) 44 (53.7%) 117 (58.8%)
3; IIIa, IIIb, Iva, Ivb 67 (23.8%) 21 (25.6%) 46 (23.1%)

TNM stage 1; T1a1, T1a2, T1b1,
T1b2 56 (19.9%) 17 (20.7%) 39 (19.6%) 0.9752 (1)

2; T2a1, T2a2, T2b 184 (65.5%) 53 (64.6%) 131 (65.8%)
3; T3a, T3b, T4 41 (14.6%) 12 (14.6%) 29 (14.6%)

CCRT 0; RT alone 22 (7.8%) 4 (4.9%) 18 (9.0%) 0.2372 (1)

1; CCRT 259 (92.2%) 78 (95.1%) 181 (91.0%)
Concurrent
chemotherapy regimen 1; cisplatin 231 (89.2%) 72 (92.3%) 159 (87.8%) 0.7583 (2)

(CCRT 259 case) 2; 5FU + cisplatin 3 (1.2%) 0 (0.0%) 3 (1.7%)
3; carboplatin 19 (7.3%) 5 (6.4%) 14 (7.7%)
4; other 6 (2.3%) 1 (1.3%) 5 (2.8%)

Number of concurrent
chemotherapy cycle 0; Cycle 3 or less 26 (10.0%) 7 (9.0%) 19 (10.5%) 0.7083 (1)

(CCRT 259 case) 1; Cycle 3 or more 233 (90.0%) 71 (91.0%) 162 (89.5%)
Adjuvant chemotherapy 0; No 260 (92.5%) 79 (96.3%) 181 (91.0%) 0.1185 (1)

1; Yes 21 (7.5%) 3 (3.7%) 18 (9.0%)
Tumor size (cm)
(MRI axial)

median
(min–max) 4.2 (1.3–10) 4.3 (2.3–8.5) 4.2 (1.3–10) 0.6955 (3)

EBRT total dose
EQD2(3) (Gy)

median
(min–max) 48.4 (20–73.1) 48.4 (43.2–68.3) 48.4 (20–73.1) 0.2765 (3)

GTV D100 (cGy) median
(min–max) 570.5 (112.3–1336) 552.4 (194–1187.8) 584.2 (112.3–1336) 0.1644 (3)

BPICRU EQD2(3) (Gy) median
(min–max) 23.5 (0–93.2) 26.9 (0–93.2) 22.5 (0–90.7) 0.1775 (3)

BD0.1cc EQD2(3) (Gy) median
(min–max) 58.3 (12.6–202.4) 59.7 (25–174) 57.6 (12.6–202.4) 0.2659 (3)

BD1cc EQD2(3) (Gy) median
(min–max) 46.1 (10–141.7) 48.9 (20.5–111.1) 45.6 (10–141.7) 0.1906 (3)

BD2cc EQD2(3) (Gy) median
(min–max) 41.3 (6.3–120.5) 43.6 (9.8–97.8) 39.8 (6.3–120.5) 0.2492 (3)

BD5cc EQD2(3) (Gy) median
(min–max) 33.5 (1.3–91.5) 35.2 (3.8–78.9) 33 (1.3–91.5) 0.1944 (3)

(1) Chi-square test. (2) Fisher’s exact test. (3) t-test.

Table 3. Results of univariable and multivariable logistic regression analysis for late bladder toxicity
prediction.

Variable
Univariable Analysis Multivariable Analysis

OR (95% CI) p-Value OR (95% CI) p-Value

AGE 0.997 (0.975–1.019) 0.803
Pathology 1; squamous 1 (ref)

2; adenoca 0.769 (0.238–2.483) 0.661
3; adenosquamous 1.667 (0.270–10.303) 0.583
4; Other 0.357 (0.078–1.634) 0.185

FIGO stage 1; Ia1, Ia2, Ib1, Ib2 1 (ref)
2; IIa1, IIa2, Iib 0.937 (0.406–2.164) 0.879
3; IIIa, IIIb, Iva, Ivb 1.024 (0.388–2.706) 0.962

TNM stage 1; T1a1, T1a2, T1b1, T1b2 1 (ref)
2; T2a1, T2a2, T2b 0.820 (0.375–1.794) 0.620
3; T3a, T3b, T4 0.716 (0.241–2.127) 0.548

CCRT 0; RT alone 1 (ref)
1; CCRT 1.336 (0.42–4.252) 0.624
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Table 3. Cont.

Variable
Univariable Analysis Multivariable Analysis

OR (95% CI) p-Value OR (95% CI) p-Value

Concurrent
chemotherapy regimen 1; cisplatin 1 (ref)

(CCRT 181 case) 2; 5FU + cisplatin 5.066 (0.448–57.267) 0.190
3; carboplatin 0.422 (0.091–1.962) 0.271
4; other 0.633 (0.069–5.821) 0.687

Concurrent
chemotherapy cycle 0; Cycle 3 or less 1 (ref) 1 (ref)

(CCRT 181 case) 1; Cycle 3 or more 0.481 (0.181–1.277) 0.142 0.440
(0.162–1.194) 0.107

Adjuvant chemotherapy 0; No 1 (ref)
1; Yes 1.385 (0.493–3.897) 0.537

Tumor size (cm)
(MRI axial) 1.011 (0.828–1.234) 0.918

EBRT total dose
EQD2(3) (Gy) 1.006 (0.951–1.065) 0.831

GTV D100 (cGy) 1.001 (0.999–1.003) 0.186 1.002
(1.000–1.004) 0.136

BPICRU EQD2(3) (Gy) 1.005 (0.985–1.025) 0.651
BD0.1cc EQD2(3) (Gy) 1.008 (0.995–1.020) 0.232
BD1cc EQD2(3) (Gy) 1.012 (0.993–1.031) 0.213

BD2cc EQD2(3) (Gy) 1.016 (0.996–1.036) 0.114 1.047
(0.939–1.168) 0.406

BD5cc EQD2(3) (Gy) 1.018 (0.993–1.043) 0.163 0.961
(0.841–1.100) 0.566

3.3. Permutation Feature Importance: Permutation Analysis

Permutation feature analysis determines the importance of features by quantifying the
extent to which the performance of a trained model changes when the dataset is permuted
(Equation (7)).

An independent permutation feature importance analysis was conducted on the DL
model, separately for each training fold. To determine the overall feature importance,
the mean and standard deviation of the calculated permutation feature importance were
computed by averaging the importance values across folds. Figure 2 illustrates the mean
and standard deviation of the permutation feature importance for all features.

Our findings reveal that the feature with the highest importance was BD2cc, followed
by BD5cc and BPICRU. Additionally, the features with the highest importance within each
group were age, TNM category, number of CCRT cycles, and BD2cc for the patient, tumor,
treatment, and dose feature groups, respectively.

We identified the top five features with high importance as BD2cc, BD5cc, BPICRU,
TNM category, and tumor size. We made the decision to select tumor size instead of FIGO
stage as a feature, considering the possibility of redundancy between FIGO stage and
TNM category. This decision was based on the scientific rationale that tumor size provides
valuable and distinct information for the prediction model [37].

3.4. Deep Learning Models

The prediction performance of the DL model for late bladder toxicity was evaluated
using the voting method. Table 4 summarizes the prediction performances of the DL
models and the lightweight DL models trained using the five different training folds. The
means and standard deviations of prediction performance for accuracy, precision, recall,
and F1-score differed between the deep learning model and the lightweight deep learning
model. For the deep learning model, the values were as follows: accuracy (0.77 ± 0.06),
precision (0.68 ± 0.10), recall (0.41 ± 0.12), and F1-score (0.49 ± 0.05). On the other hand,
the lightweight deep learning model had different values: accuracy (0.92 ± 0.03), precision
(0.97 ± 0.03), recall (0.86 ± 0.07), and F1-score (0.90 ± 0.04). In the case of the AUROC, the
deep learning model achieved a value of 0.81 ± 0.04, while the lightweight deep learning
model achieved a value of 0.94 ± 0.03 (Figure 3).
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Table 4. Performance comparison for predicting late bladder toxicity of a statistical model and DL
models by five different folds for the test data.

Model Accuracy Precision Recall F1-Score * AUROC

Statistical model 0.85 0.08 0.5 0.14 0.43

Deep learning model: fold 1 0.78 0.62 0.38 0.47 0.76
Deep learning model: fold 2 0.73 0.85 0.35 0.50 0.86
Deep learning model: fold 3 0.76 0.69 0.36 0.47 0.84
Deep learning model: fold 4 0.70 0.69 0.30 0.42 0.83
Deep learning model: fold 5 0.88 0.54 0.64 0.58 0.77

Deep-learning model: voting method (threshold = 3) 0.91 0.85 0.69 0.76 0.81

Leightweight deep learning model: fold 1 0.93 0.99 0.83 0.92 0.93
Leightweight deep learning model: fold 2 0.88 0.94 0.81 0.87 0.88
Leightweight deep learning model: fold 3 0.90 0.99 0.81 0.89 0.90
Leightweight deep learning model: fold 4 0.97 0.94 0.99 0.98 0.97
Leightweight deep learning model: fold 5 0.91 0.98 0.85 0.86 0.89

Deep-learning model: voting method (threshold = 3) 0.93 0.94 0.88 0.90 0.91

* AUROC: area under the receiver operating characteristic curve.

Finally, both the DL model and the lightweight deep learning model were evaluated
using the voting method with a threshold of 3. For the DL model, the evaluation metrics
were as follows: Accuracy (0.91), Precision (0.85), Recall (0.69), F1-score (0.76), and AUROC
(0.81). For the lightweight deep learning model, the evaluation metrics were as follows:
Accuracy (0.93), Precision (0.94), Recall (0.88), F1-score (0.90), and AUROC (0.91).

However, because the AUROC could not be calculated from the labels predicted by
each of the five models, the average of the AUROCs of all the models was considered as
the overall AUROC value.

4. Discussion

This study aimed to (1) compare the ability of multivariable logistic regression and
DL models to identify those patients who, having received radiation therapy, are at risk of
bladder radiation toxicity, and (2) interpret the results of DL models to understand the sig-
nificance of input features. To the best of our knowledge, no previous study has attempted
an interpretation to ensure the reliability of a DL model in predicting the occurrence of late
bladder toxicity.

Several statistical methods and DL models are available for predicting clinical out-
comes, including radiation toxicity. In many instances, DL models can effectively find
near-optimal solutions for nonconvex optimization problems using gradient methods and
nonlinear activation functions. However, statistical methods can also achieve high accu-
racy and reliability in specific cases. Despite the rapid development of DL models and
their relatively high performance, their clinical utility is still a topic of controversy due to
concerns about their reliability, particularly in terms of how clinicians interpret the results
and features.

In this study, we utilized an MLP with relatively low model complexity to enhance
the interpretability of deep learning models. The performance of the MLP relies on the
configuration of the hidden layer, and Muhammad et al. [42] suggested that the optimal
configuration for the hidden layer is three. Furthermore, experimental findings demon-
strated that having fewer than three hidden layers directly impacts the network’s accuracy,
while having more than three hidden layers increases the time complexity without a pro-
portional improvement in accuracy. Determining the appropriate number of neurons in
the hidden layer is still a topic of debate, and the design of the model structure should
be customized to the specific problem and available computational resources while also
considering the general MLP model design standard: a structure in which the number of
neurons in the hidden layer continuously decreases. Therefore, we selected the top five
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important features based on the results of the permutation feature importance analysis and
designed the lightweight DL model, taking into account the general design standard. This
approach not only improves interpretability but also offers advantages associated with the
general design standard of MLP models. For instance, the continuous reduction of neurons
in the hidden layer helps prevent overfitting and allows for efficient learning of complex
patterns while avoiding excessive computational complexity.

Considering the experiment on our dataset, the DL model proved superior compared
with the statistical model. To address the class-imbalance problem in the DL method, we
adopted the SMOTE oversampling technique. Mylona et al. [18] suggested that variations
in oversampling techniques, including SMOTE, increase the prediction performance of
classifiers. Accordingly, our results showed that when SMOTE was not applied to the
training process, the mean and standard deviation of the AUROC value on the test set were
reduced to 0.52 ± 0.13.

The precision and recall of the DL model exhibited a tradeoff relationship depending
on the value of the threshold used for voting, as shown in Figure 4. For the prediction of
radiation-induced bladder toxicity, both precision and recall are crucial metrics for assessing
the performance of a prediction model because they reflect the costs and benefits associated
with false positives and false negatives. High precision is essential to minimize unnecessary
interventions and potential harm for patients who are not at risk. However, a high recall
is necessary to ensure that all patients at risk of developing bladder toxicity are detected
and appropriate measures are taken to mitigate the associated risks. Therefore, achieving
a balance between precision and recall is necessary to optimize the performance of the
prediction model for clinical applications. At a threshold of 3, the precision and recall of
the voting methods are indicated by markers placed inside circles denoted by asterisks.
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Permutation feature importance is a model-agnostic technique that provides a com-
prehensive and computationally efficient assessment of feature importance by considering
feature interactions and avoiding the bias caused by collinear or redundant features. In
this study, permutation feature importance is utilized to calculate the relative importance
of features while also employing a feature reduction technique like principal component
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analysis [42–44]. The importance of permutation features can be sensitive to the choice of
the metric used to evaluate the model‘s performance (see Equation (7)), leading to different
feature rankings. Our findings emphasize the importance of specific features, such as BD2cc,
BD5cc, and BPICRU for the accurate prediction of late bladder toxicity occurrence, which
is also consistent with the prognostic factor for urinary toxicity suggested in previous
studies, such as BD2cc in [5]. Our results provide insights that could facilitate the devel-
opment of more effective and personalized treatment strategies for patients undergoing
radiation therapy.

Our study has certain limitations that need to be considered. Firstly, our analysis
was based solely on structured data (patient and treatment dose features), which may not
fully capture the complexity of bladder toxicity. Recent studies have demonstrated the
potential of more sophisticated DL models that incorporate 3D dose distributions, medical
images, contours, etc. to predict clinical outcomes [45,46]. Radiomics, which involves
extracting quantitative features from medical images, can provide additional information
about tumor characteristics and treatment response. Integrating radiomics data alongside
patient data and dose volumetric parameters has shown improvements in the prediction of
various types of toxicities, with potential enhancements in AUC values ranging from 0.11 to
0.16 [13]. Therefore, in future research, we aim to explore the integration of radiomics data
into our DL models to enhance the prediction of late bladder toxicity. By incorporating this
additional information, we anticipate improved performance and a better understanding
of the underlying factors contributing to toxicity with advanced interpretation techniques.

Secondly, although the DL model outperformed the statistical model in our dataset,
it is important to note that the performance of DL models can vary depending on the
specific dataset and problem domain. Further validation using larger and more diverse
datasets through multi-institutional studies is required to confirm the generalizability of
our findings.

Thirdly, interpreting DL models remains a challenging task, especially concerning
feature importance. Permutation feature analysis is a useful technique for assessing the
importance of features in DL models. However, it should be noted that this method has
limitations. It tends to assign higher importance to continuous variables and can produce
different feature rankings depending on the choice of evaluation metric. Additionally,
applying this technique to 3D input is challenging. While permutation feature analysis
provides valuable insights, it needs to be supplemented with other interpretive techniques
to gain a more comprehensive understanding of the behavior and functional importance of
DL models. Therefore, as a further study, it is necessary to apply various analysis methods,
such as LIME and its variants, input gradient-based methods, CAM and its variants, etc., to
the DL model to ensure the reliability of models with relatively higher performance [47,48].

Furthermore, in order to address the limitation of a small sample size, we established
an extra-validation set consisting of 17 individuals. Utilizing a lightweight DL model,
we conducted predictions for late bladder toxicity. The results revealed an accuracy of
0.81%, a precision of 0.99%, a recall of 0.61%, an F1-score of 0.92, and an AUROC of 0.93.
These performance metrics indicate that the lightweight DL model had limited accuracy
in forecasting late bladder toxicity. While the precision was high, indicating few false
positives, the recall was relatively low, meaning it missed many true positive cases.

It is crucial to exercise caution when interpreting these findings due to the relatively
small size of the extra-validation set. The restricted sample may not adequately encompass
the full range of late bladder toxicity in radiation therapy. For instance, the longest observed
duration of late bladder toxicity in our institution was 107.7 months from the initiation
of external beam radiation therapy (EBRT) to the occurrence of late toxicity. As a result,
the performance metrics on the extra-validation set obtained may not truly reflect the
predictive capabilities of the DL model. Thus, future research should strive to incorporate
a larger patient cohort from multiple institutions to validate and enhance the predictive
capabilities of DL models in accurately anticipating late bladder toxicity.
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Overall, this study contributes to the ongoing discussion on the clinical utility of DL
models in predicting radiation toxicity and emphasizes the importance of interpretability
to enhance the reliability and practical applicability of these models. By addressing the
limitations and conducting further research, we can advance the field and ultimately
improve patient outcomes in radiation therapy.

5. Conclusions

In this study, we compared the performance of logistic regression and DL models for
the prediction of late bladder toxicity in patients with cervical cancer. Logistic regression
did not show acceptable performances, whereas the lightweight DL model achieved an
accuracy of 0.92 ± 0.03 and an AUROC of 0.91 ± 0.03. Moreover, the permutation feature
importance analysis identified BD2cc as the most important feature for risk prediction.
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