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Abstract: Managing Multi-Processor Systems-on-Chip (MPSoCs) is becoming increasingly complex as
demands for advanced capabilities rise. This complexity is due to the involvement of more processing
elements and resources, leading to a higher degree of heterogeneity throughout the system. Over time,
management schemes have evolved from simple to autonomous systems with continuous control
and monitoring of various parameters such as power distribution, thermal events, fault tolerance,
and system security. Autonomous management integrates self-awareness into the system, making it
aware of its environment, behavior, and objectives. Self-Aware Cyber-Physical Systems-on-Chip (SA-
CPSoCs) have emerged as a concept to achieve highly autonomous management. Communication
infrastructure is also vital to SoCs, and Software-Defined Networks-on-Chip (SDNoCs) can serve
as a base structure for self-aware systems-on-chip. This paper presents a survey of the evolution
of MPSoC management over the last two decades, categorizing research works according to their
objectives and improvements. It also discusses the characteristics and properties of SA-CPSoCs and
explains why SDNoCs are crucial for these systems.

Keywords: multi-processor system-on-chip; MPSoC management; self-awareness; self-aware
cyber-physical systems-on-chip; software-defined networks-on-chip; survey

1. Introduction

As technology advances, the need for adequate system management becomes increas-
ingly important. This is especially true in the case of Multi-Processor Systems-on-Chip
(MPSoCs), where the number of processing elements must increase to keep up with market
demands. The Internet of Things [1,2], artificial intelligence, and cloud-based digital sys-
tems [3,4] are just a few examples of technologies that have driven this need. However, each
application has specific requirements, making MPSoC management a complex challenge.
Adding more processing and communication resources leads to energy consumption, tem-
perature variations, and vulnerability to different failures. Some platforms, such as the
Kalray MPPA-256 [5], the Adapteva Epiphany [6], and the Sunway [7], address these issues
through distributed, scalable, and heterogeneous systems. While these chips have been
successful in the industry, they lack the organizational management structure necessary for
migration to more powerful systems, such as a self-aware system-on-chip.

Managing an MPSoC can be challenging due to the ever-increasing demand for en-
hanced capabilities and the dynamic nature of new and upcoming applications. Expanding
the capabilities of an MPSoC involves increasing the resources, components, and metrics
it has to control, either in number or complexity. Therefore, an efficient management ap-
proach is necessary to handle functionality aspects at various levels. This includes physical
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elements like processing elements, memories, ports, communication, monitoring infrastruc-
tures, and nonphysical factors like process tasks, utilization time, data, and bandwidth.

This situation highlights the need for an efficient administration that can manage
various aspects in a coordinated manner to achieve the system’s objectives. As a result,
the management of an MPSoC should contemplate the implementation of optimization
engines, i.e., control and supervision techniques and/or protocols aimed to ensure an
efficient performance.

Managing the communication infrastructure of an MPSoC is critical to its overall
performance. One area of significant research is the interconnection of multiple processing
elements through Network-on-Chip (NoC). The NoC infrastructure involves routers that
connect processing components, providing excellent scalability to MPSoCs [8]. However,
with the diversity of applications and heterogeneity of new systems, the communication
infrastructure must efficiently handle dynamic patterns and workloads. Poor management
of NoC can lead to significant problems, such as congestion, thermal hot spots, deficient
performance, and missing deadlines, so network management is essential. It should control
resources such as routers, interfaces, buffers, links, packets, transmission rates, and waiting
times. The system’s active supervision requires efficient implementation and control of
optimization engines at various network layers.

When analyzing global system administration, it is also important to consider network
administration due to their mutual interconnectedness; a network process is not inde-
pendent of an application process. However, the architecture and abstraction capacity of
MPSoCs allow for separate analyses of different management types while still incorporating
dynamic adaptability, intelligence, and proactivity. Ignoring communication infrastructure
in global management can lead to poor performance and high energy consumption [9]. In-
telligent management involves monitoring and configuring control functionalities through
various services [2,9]. As such, researchers have studied techniques and tools to achieve
flexibility, reconfigurability, and adaptability at runtime.

Several management schemes proposed involve novel concepts like cognitive networks,
self-aware systems, and Software-Defined Network-on-Chip (SDNoC) systems [2,10–14].
Each scheme has different structures, approaches, scopes, and optimization objectives. How-
ever, there is a research gap in this context, as no generalized modular framework is available.
To address this gap, a software-based management framework is required to offer services
for reuse and facilitate the development of robust embedded systems.

In this paper, we surveyed the literature on the management of MPSoC and its po-
tential for future development. Over the past two decades, we have compiled research
that specifically focuses on the management of MPSoCs. The proposed schemes have been
classified based on their architecture, approach, objectives, and improvements. Our taxon-
omy highlights the most researched management areas and identifies those that require
more attention to help overcome challenges posed by new technologies. Furthermore, we
discuss the concepts of self-awareness and cyber-physical systems and their relevance to
MPSoCs. Lastly, we emphasize the importance of network management and its impact on
overall system management. We also suggest that the concept of SDNoC could potentially
be advantageous in meeting the demanding requirements of new and future MPSoCs.

The rest of the paper is organized as follows: In Section 2, we provide an overview
of MPSoC management, including its concept, characteristics, and various management
approaches and organizations described in the literature. We also propose a classification
based on important issues that have influenced the development of MPSoCs. Section 3
classifies and analyzes different research works on proposed management schemes and
their optimization objectives. We classify NoC-related works according to their main
optimization metric and the most common improvement areas of NoC management. We
also classify works with specific awareness, or that implemented self-x properties (focusing
on adding different characteristics to the system to manage and perform processes without
third-party intervention). Section 4 discusses the evolution and development of self-
awareness and cyber-physical systems and their relationship, integration, and challenges
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in MPSoCs. The end of this section explains how a structured SDNoC architecture can help
develop Self-Aware Cyber-Physical Systems-on-Chip (SA-CPSoC) through network-based
system management. Finally, in Section 5, we conclude our work. Figure 1 shows the
general paper structure from Section 2.

Figure 1. General paper structure.

2. MPSoC Management

When designing an MPSoC, it is essential to manage all the interconnected processing
elements within the system. With hundreds or thousands of elements, network manage-
ment becomes a critical issue. While some platforms on the market offer solutions, they still
require an organizational management structure capable of hosting features to monitor and
control parameters within a system, aware of its state, environmental interactions, behavior,
and goals. These parameters include, for example, power distribution, thermal events,
fault events, security attacks, link bandwidth, routing, or traffic distribution. The following
subsections present different management approaches, organizations, and issues addressed
in the MPSoC research.

2.1. System Management

Efficient system management of an MPSoC is crucial for its overall functionality and
performance. It involves optimizing processes required by applications, utilizing both
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hardware and software resources available in the system. These resources are complex and
varied, with different levels of abstraction, including processing elements, specific process
tasks, communication infrastructure, and others. Properly managing these resources
involves controlling various actions like task mapping, scheduling, migration, element
mapping, data distribution, and memory access [15,16].

To improve MPSoC performance, system management implements techniques and
optimization engines, ranging from simple actions like turning an element off and on to
complex algorithms and properties that enable self-awareness. Researchers in this area
focus on specific problems like power and temperature management, QoS management,
or network management to improve system management schemes [17,18].

Network Management

Managing the network within an MPSoC environment is crucial. Network manage-
ment involves gathering information from the communication infrastructure, analyzing it,
and taking corrective or preventive measures. It is a complex task to manage a network
of hundreds or thousands of processing elements, and it becomes even more challenging
when there is a need for runtime adaptability to handle a modern system’s workload vari-
ability. The NoC paradigm helps differentiate between computational and communication
problems. However, proper network management is essential to prevent the NoC from
becoming the bottleneck of system performance [2]. Hence, network management requires
new control strategies that enable multiple processing elements to interact appropriately,
access system resources, manage processes that require shared resources, and adapt to the
environment’s variability at runtime.

The network management schemes depend on the type of communication infrastructure
used, such as point-to-point links (P2P), interconnection buses, interconnection crossbar
switches, or NoCs to interconnect the processing elements of an MPSoC. NoC is one of the most
widely accepted MPSoC interconnection architectures. It uses traditional router and packet
switch network concepts at the intrachip level. NoC architecture outperforms its counterparts
in many aspects, especially regarding flexibility, scalability, and energy efficiency [8].

2.2. Management Approaches

Management can implement different strategies using hardware, software, or both,
depending on objectives, optimization protocols, and processes.

2.2.1. Hardware-Focused

Hardware-focused management schemes aim to introduce hardware elements with
minimal or no use of software. These elements may include specialized monitoring agents
or other dynamic management components. Hardware-focused systems are typically faster
than software-based systems, as they can perform multiple tasks in parallel [19]. This
approach automates management processes such as path switching, where processing
speed is more favorable than the overhead that software-based implementations may
introduce. However, implementing hardware-focused schemes can also lead to critical
problems, such as increased area consumption, incompatibility caused by the addition of
control lines, and the need for redesigning that may require longer development times [10].
Thus, the designer’s community aims to minimize hardware overhead by focusing its
research efforts on developing effective hardware elements with minimal area consumption.

2.2.2. Software-Focused

The implementation of software-based management systems is designed to optimize
processes using software routines. This can be achieved by adding pure software agents
or making adjustments at the operating system (OS) level. Although this approach adds
communication and computation overhead, there are certain management processes where
these overheads are unavoidable, such as congestion and flow control, which require soft-
ware routines and the exchange of control messages [10]. Additionally, using silicon logic
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gates is generally cheaper than wires, and the development of software implementations
usually involves less effort and time.

2.2.3. Hardware and Software Focused

A management scheme can have a specific focus on either hardware or software, each
with its own set of advantages and disadvantages. Hardware-focused strategies tend to
be faster, but the ever-changing technological systems requirements are also faster than
the time it takes to develop hardware. On the other hand, software-focused schemes
tend to be slower, but they have the advantage of being faster to implement. Due to the
challenges posed by new MPSoCs, many research papers have implemented management
schemes that combine both approaches to leverage the benefits of each system. These
papers establish management protocols where the congested parts performing automated
tasks use a hardware approach, while the software-based approach is used for parts that
require constant changes. By building the management scheme protocols offline and re-
configuring them at runtime, software allows for systems with dynamic requirements to
be optimized [20]. This is especially important given the dynamism, flexibility, and harsh
requirements of new MPSoCs, which drive changes in embedded systems. Therefore, stud-
ies have combined software- and hardware-focused implementations to achieve different
optimization objectives with low overheads in new MPSoCs [21,22].

2.3. Management Organization

System management is carried out differently depending on the control assignment
of the management entity/entities. How management is organized significantly impacts
important characteristics such as scalability and ease of implementation. Centralized,
distributed, or hierarchical management schemes are commonly used in this context.

2.3.1. Centralized

In centralized management, a central entity is responsible for overseeing the entire
managed system. It executes various control functions and optimization engines from a
central location. Generally speaking, centralized management offers several advantages,
such as deadlock avoidance due to the network overview, greater fairness in resource
utilization between elements, greater simplicity of data forwarding entities, reduction in
network overhead, and ease of obtaining performance metrics [23]. However, its most
crucial disadvantage is the scalability problem, and its use is limited to small MPSoCs [24].
Centralized management can also reduce the system’s long-term reliability since the con-
stant demands of attention to different actions, such as mapping or event monitoring, make
it susceptible to failures [24,25].

2.3.2. Distributed

Distributed management aims to overcome centralized management’s bottleneck and
scalability problems [14]. To achieve this, the managed system is spatially or logically
partitioned, i.e., the MPSoC can be divided into different regions (clusters), each with its
management entity, or there can be one management entity per application. This strategy
helps improve the system’s reliability and QoS by lightening the burden on manager
entities. However, distributed managers also bring drawbacks, such as access to input and
output devices that remain centralized entities, the control and allocation of cluster sizes,
or the number of applications running on an MPSoC [24].

2.3.3. Hierarchical

In the management field, the architecture can be centralized or distributed and may
include a hierarchical organization. This organization categorizes the elements of the archi-
tecture into different operational levels and defines a hierarchy for each level. Elements
at each level only communicate with those above or below their class. This hierarchical
structure provides autonomy to various entities, thus enhancing their independence charac-
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teristics within the system. Hierarchical management schemes are designed to help manage
ultra-large-scale MPSoCs [18,26].

2.4. Constantly Addressed Issues

In the design and development of MPSoCs, some aspects of their evolution must be
considered. These include the constantly growing scalability issues, the runtime adapt-
ability required by the new systems, and the paradigm changes in architectures that this
demands. This approach opens the door to new challenges, such as adding self-adaptation
and intelligence to future MPSoCs.

2.4.1. Scalability

A key feature that current and future MPSoCs must offer is high scalability. With the in-
creasing demand for higher performance and other new application requirements, the trend
for embedded systems is to add more processing elements. However, providing high scal-
ability can become a significant challenge for MPSoCs when talking about hundreds or
thousands of processing elements. Therefore, it is necessary to consider adequate manage-
ment of the MPSoC resources to ensure scalability [15], together with a layered architecture
that isolates different problems to be solved independently [2].

High scalability comes with other requirements, such as power, temperature, and relia-
bility, which become even more significant challenges for designers. In addition, incorporat-
ing intelligence in conjunction with online adaptation demands architectural improvements
in new and future MPSoCs. Thus, when talking about a system with self-adaptability,
scalability significantly impacts operational efficiency and can make the system objectives
more straightforward to achieve [27]. Several investigations aim to increase or ensure
scalability in MPSoCs. Network management is a highly investigated topic because it can
become a system performance bottleneck. The recent paradigm of SDNoCs showed good
scalability and network resource management. These characteristics of SDNoCs are due to
their flexibility, reliability, and dynamic adaptability [2,4,9].

2.4.2. Runtime Management

Today’s systems need to be flexible and adaptable to the constant changes that the
dynamic behavior of new applications demands. In addition, they must provide the
highest possible efficiency by taking care of the performance metrics that the application
requirements dictate. Several investigations have developed schemes that allow on-the-fly
dynamic management, whose objective is to provide optimization engines capable of online
adapting to dynamic changes in the environment, such as varying workloads. As a result,
this type of runtime-managed system has become one of the most important and crowded
research areas [20]. One of the challenges for new systems is appropriately managing the
available resources to perform proactive optimization, such as monitoring infrastructures,
triggering events, decision making, learning algorithms, etc. Systems must perform these
actions while making the appropriate trade-offs to meet the various requirements. All these
actions involve the supervision of different adjustable parameters that modify the system
behavior, so they must be performed at runtime to achieve optimizations according to the
environment [28].

When the adaptability in MPSoC began to be studied, most research contemplated that
events coming from external entities, such as the application layer or even a human operator,
triggered the adaptation actions. However, current and future MPSoCs require the system
to identify these events and initiate the adaptation processes, leading to self-adaptation [29].

2.4.3. Architecture

While some research papers rely on traditional architectures in which they implement
their proposed management of various resources, others have presented new ideas at the
architectural level to improve the overall or point performance of an MPSoC. Within the
diversity of research papers, some focus on making modifications at the hardware level only,
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and others at the software level only, but most concentrate on implementing innovations
that involve hardware and software. Likewise, the new dynamic requirements and the high
scalability of emerging MPSoCs demand architectural improvements at different levels.
One of the most significant is related to the NoC intercommunication infrastructure. Thus,
the system’s architecture must contemplate new management, control, and supervision
schemes to meet the new expectations [30].

2.5. Evolution of MPSoC Management

MPSoC management aims to create highly dynamic environments where the constant
variation of application processes demands versatile handling of hardware resources and
task coordination. As the number of processing elements incorporated within an MPSoC
increases, there is a need for resource management and supervision with more outstanding
capabilities [30] to handle the higher power and temperature density [27], as an example.
These new paradigms challenge MPSoC management, requiring different goals regarding
management subdivisions such as energy, power, temperature, system reliability, QoS,
security, network, etc.

Recent research into Self-Aware Cyber-Physical Systems-on-Chip (SA-CPSoCs) has
demonstrated that they can solve the challenges of new and future MPSoC developments.
The SA-CPSoC paradigm incorporates critical features such as self-aware, self-adaptive,
learning, and reasoning capabilities within an infrastructure that enables excellent monitor-
ing and actuation capabilities over the physical and virtual environment.

Network resources management is a fundamental part of any system, and it can be
a determining factor for the optimal management of the entire system. In this context,
the hierarchical layered architecture paradigm of Software-Defined Networks-on-Chip
(SDNoCs) can be a component that helps in developing and evolving MPSoCs towards
SA-CPSoCs through network-based system management. Figure 2 shows this evolution
based on the new fundamental requirements of MPSoCs and the critical features of the
possible solution represented by SA-CPSoCs.

!"#$
%&'()*+,-.')/-01

%&'0//2-1.
3-4(/-,(+5)2)16(

$7)'(+60,701(1/8+601/'02
!(4').,(1/)/-01
%)89+,)77-1.

%)89+,-.')/-01
%)89+*:72-6)/-01

!)/)+)66(88+601/'02
;'0:7<9(=
>16'=7/-01

?//)69+)@0-*)16(
A0:/-1.+-,7'0@(,(1/
B022-8-01+)@0-*)16(

B01.(8/-01+601/'02
B01/(1/-01+601/'02

C)/&+8()'6&+601/'02

D(/E0'9+5)8(*+8=8/(,+,)1).(,(1/

!"#$%&'()&*+$%,'-

,'('.$,$(*

/"0&,'('.$,$(*

D(/E0'9+,)1).(,(1/

F)'*E)'(+)1*+804/E)'(+

'(80:'6(8

1$-2'32-2*4&,'('.$,$(*

5'*'&'--"6'*2"(

,'('.$,$(*

GGG

7"(2*"%83'9$)

2(:%'9*%;6*;%$

1;(8*2,$&')'<*2=$

0$-:8'#'%$($99

$!D0B

$(24<)*)7/-@(

++++H01-/0'-1.
++++H0*(2-1.

++++?1)2=8-8
++++A(70'/-1.

3()'1-1.+)5-2-/=

F-(')'6&-6)2

A(6014-.:')52(>(*$--2.$(*&'()&<%"'6*2=$

D(E+HC$0B

'(I:-'(,(1/8

H)1).(,(1/+)6/-018

40'+9(=+05J(6/-@(8

0$6;%2*4&,'('.$,$(*
GGG

C088-52(+802:/-01K

$?<BC$0B

!+4926'-&$(=2%"(,$(*

>(:"%,'*2"(&<%"6$992(.

06'-'3-$

3)=('(*+)'6&-/(6/:'(+I:)2-4-6)/-01

?$4&:$'*;%$9

$/)/-6 !=1),-6
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network-based system management.
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2.6. Summary

Modern MPSoCs present a range of new challenges for designers striving to maximize
their capabilities. One of the key requirements for these systems is to add runtime adapt-
ability while being self-aware of their state, environment, behavior, and goals. To meet
these challenges, it is essential to have a management and control layer dispersed across
several abstraction levels that can act according to the system’s needs, leveraging the most
suitable management characteristics regarding approach, organization, and implementa-
tion status. Table 1 provides a classification of some of the most relevant research of the
past two decades that focused on management issues related to MPSoCs and addressed
the constantly evolving problems in this field. Although achieving greater scalability has
always been one of the objectives of MPSoCs, a physical limit has been reached. Thus,
it is necessary to use the available resources more efficiently and optimally based on the
system’s requirements at any given time. Based on Table 1, about 65% of the research
focused on adding runtime capabilities to enable the system to handle constraints and
dynamism. While most of these research papers still preferred centralized schemes, there
has been an increase in developments with hierarchically distributed management schemes
since 2010.

These challenges have led to the design and development of new proposals for ar-
chitectural improvements. Therefore, overall system management that actively involves
monitoring and control strategies of the communication infrastructure may be the right
path towards highly scalable MPSoCs with self-aware and self-adaptive capabilities.
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Table 1. Classification of management research papers of the last twenty years.

Organization Focus

Centralized Distributed Hierarchical Hardware Software Hardware & Software

A
tt

en
da

bl
e

Is
su

e

Scalability [9,23,31–41] [4,9,15,24,31,38,42–55] [18,27,31,43,45,56,57]
[2,15,32,37,38,47,51,53] [34,39,53,58] [24,31,42,45,47,59]

[15,37,38,40,49,54]
[18,27,43,57,60]

[2,33,41,48,51,55,61,62]

Runtime
Management

[25,31,63–71]
[11,17,21,35,38,72–98]

[24,31,42,43,69,99–104]
[26,30,46,47,84,105–107]
[29,38,51,55,89,108–111]

[14,15,53,94,112–114]

[31,65,69,101,115,116]
[26,30,43,73,117,118]

[28,38,47,51,53,93,108]
[11,15,97,113,114,119]

[65,73,103,120]
[88,110,121]

[10,53]

[16,31,59,63,64,122–125]
[24,26,42,74,75,77,78,116]
[47,81,84,85,117,126–129]

[15,38,91,98,108,109,112–114]

[25,43,66,68,69,100–102]
[17,72,76,79,104,105,107]
[28,30,55,82,83,86,87,92]

[20,21,51,93,97,111,119,130]

Architectural
Improvement

[68,73,131–133]
[17,33,80,82,83]

[1,87,93,134,135]
[21,40,97,98,136]

[99–101,131,137,138]
[22,43,45,105,107,139]
[52,53,55,113,140,141]

[18,101,115,132,133,137]
[22,28,43,45,73,138]
[53,93,97,113,119]

[58,73,142]
[121,139,140]

[1,53,141]

[16,125,131]
[45,143]

[40,98,113]

[18,19,100,101,132,133,137]
[17,22,43,68,105,107,144]
[28,33,55,82,83,87,134]

[12,21,61,93,97,119]
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3. MPSoCs Management Objectives and Improvements

Over the last twenty years, research papers have been primarily focused on developing
and implementing techniques and procedures to improve specific optimization metrics.
However, the MPSoC management is evolving towards making the system capable of simul-
taneously fulfilling multiple optimization objectives, paying special attention to network
processes. In this context, some researchers have been working on developing “awareness”
by adding monitoring and actuation capabilities to solve specific issues within the MPSoC
environment. While these works were not a complete conception of “self-awareness” within
MPSoCs, they serve as a crucial motivational precedent. These papers showcased systems
with specific awareness to assist certain processes and improve optimization metrics. In this
section, we present an analysis and classification of the optimization metrics that have been
most worked on to improve the MPSoCs management. We discuss the concept of an NoC
and its management and its important role in the performance of an MPSoC. We show a
classification of the improvements made to the NoC environment to address the different
optimization metrics of MPSoCs. Finally, we also present a classification of different specific
awareness that have been worked on in MPSoCs.

3.1. MPSoCs Management Optimizaton Metrics

Several optimization metrics need to be considered to evaluate the performance of
an MPSoC. In this paper, we considered the optimization metrics that have become more
popular in the last twenty years, according to the literature. The most common metrics
we focused on were power efficiency, temperature, fault tolerance, latency, throughput,
security, QoS, execution time, and area.

• Power efficiency: One of the most relevant and researched aspects in the last decades
is the energy consumption of embedded systems. The technological demands of new
platforms have led to the integration of multiple processing elements within the same
chip since they provide a level of parallelism that allows solving of the performance
requirements of increasingly complex applications [145]. An NoC typically inter-
connects an MPSoC, which consumes a significant portion of the system power, so
power consumption has become a crucial performance metric when designing [2].
An increase in specific parameters is required to meet more strict performance re-
quirements, for example, higher operating frequencies. These demanding conditions
and the workload variability of new systems increment power consumption and heat
dissipation. Therefore, efficient management of these aspects has become vital in
modern designs, especially in battery-operated mobile systems.

• Thermal: The on-chip temperature control of modern MPSoCs has become crucial
because of its short- and long-term implications. These implications are related to
high-temperature variations, which could severely affect the system’s reliability and
performance [146]. These thermal conditions are especially detrimental to more
temperature-sensitive systems such as optical NoCs [147]. Since conventional on-chip
cooling is unavailable due to cost and space constraints, researchers are developing
techniques to manage the temperature of SoCs. These management schemes also
help to increase the tolerance to permanent failures, extending the lifespan of the
components since the temperature is one of the leading agents that accelerates the
aging effects of the SoCs [86]. Furthermore, these management techniques must be
robust enough to deal with the space and time temperature distribution that the
complexity of the new system NoC imposes [148].

• Fault tolerance: An MPSoC is subject to different failures affecting processing and
communication links. System reliability is affected by the faults that the system may
incur, so many researchers have designed architectures and management schemes to
anticipate and avoid certain types of failures. The types of failures identified within
systems-on-chip, especially in new MPSoCs, fall into three main categories: transient,
permanent, and intermittent faults [149]. These failures are caused by effects such as
soft (cosmic) errors, crosstalk, electromagnetic interference (EMI), intersymbol interfer-
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ence, noise, electromigration, and aging of materials [150,151]. Transient faults have
a random behavior occurring in one or several execution cycles, while permanent
are due to wholly damaged components that cause logic faults or operation delays.
Intermittent faults have repetitive behavior and occur in the same place [149]. Several
MPSoCs include spare structures to tolerate some of these failures, leveraging the in-
creased number of processing elements. However, the increased number of processing
elements sets new challenges, which makes combining management schemes with
runtime system monitoring and actuation necessary to add fault tolerance.

• Latency: Communication latency within networks is defined as the time it takes for
a packet to go through the network from the source node to the destination node,
measured in clock cycles [2]. Latency can also denote the time it takes for some
process to be performed from start to finish. For example, path-finding latency refers
to the time it takes for the system to define communication paths in a circuit-switched
scheme [14].

• Throughput: In a communication network, throughput is the packet rate delivered
by the network, measured in bits per clock cycle. This metric is based on the count
of packets reaching their destination within a given time interval for each source–
destination link pair. Throughput is also defined as the maximum load the physical
network can handle. Current MPSoCs demand higher requirements for applications
running task parallelism with intensive information exchanges [86]. Thus, the system
must offer throughput guarantees to meet the deadlines incurred by demanding
applications [115]. Resource management focused on controlling certain variables,
such as congestion or network traffic, can significantly benefit this performance metric.

• Security: Security has taken an important role in recent years within the MPSoC
environment. New paradigms, such as IoT, seek the massive integration of devices
sharing resources, making them more vulnerable to malicious attacks. Most MPSoCs
are interconnected by NoCs that have access to all system resources and information,
so most attacks are aimed at corrupting the NoCs through malicious software. This
malicious software degrades the overall performance of the system and its services,
breaches sensitive information, and can even cause failures in its components, such as
routers or switches. For this reason, researchers are developing various management
schemes to manage particular resources more efficiently. These schemes include the
use of private keys and agreements, runtime monitoring of network traffic, and dy-
namic adaptability of the system to provide support against the most common attacks
such as [37] denial of service attacks (DoS attacks), distributed time attacks (DTA),
spoofing, tampering, repudiation, information disclosure, or privilege elevation.

• QoS: Quality of service encompasses a series of specific requirements linked to optimiz-
ing particular metrics for a given expected performance. Therefore, QoS is related to
providing certain guarantees for specific requirements such as reliability, bandwidth,
or latency in scenarios involving restrictions and limitations [150].

• Execution time: Many applications require performing several subprocesses simulta-
neously within an MPSoC interconnected by an NoC. The execution time and energy
efficiency of these subprocesses are vital for real-time applications and various do-
mains. The execution time of these subprocesses depends on the general state of the
system, the critical subprocess, the available resources, and their management [40,85].
Resource management can directly influence the execution time of various applica-
tions. A way to achieve this is by employing self-awareness and monitoring-based
frameworks to add adaptability to the system [66,85]. Another method can be mi-
grating tasks to contiguous processing elements [127], or managing shared data in
memory (Scratchpad-memory) [40].

• Area: The need to increase the capabilities of MPSoCs leads their components to
occupy more space. However, the technological trend is to develop more power-
ful, smaller devices. Thus, a critical research and development objective is to keep
area consumption as low as possible. Some research papers have proposed manage-
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ment schemes that include energy consumption, throughput, latency, and scalability
thinking in area consumption.

Table 2 classifies the management research papers from the past two decades based on
their optimization metrics. The table shows the metrics in order of research paper count,
from the highest to the lowest, from left to right. At the end of Table 2, two additional
columns are presented to highlight the research trend focus. The first identifies an NoC-
based approach that recognizes papers that have addressed network-related topics, while
the second identifies a self-awareness approach that recognizes papers that have mentioned
some self-related properties explicitly (self-x properties).

After analyzing Table 2, we examined different time periods to identify the research
trends related to the number of papers on metrics and design paradigms within the MPSoCs.
Our study considered all research in recent years, narrowing the range from the last twenty
years to the last five years in five-year intervals. The results are presented in Table 3.

According to our study, power and temperature are the main concerns with the highest
percentage of research papers, even though works aimed at improving characteristics and
solving related problems have slightly decreased over the years. The research trend for
managing other metrics in MPSoCs has had its ups and downs but remains a reference for
research in the field. For example, metrics such as fault tolerance have been trending almost
entirely upward since they are closely related to overall system reliability and performance,
or security, which has also gained importance due to the increased vulnerability of new
systems to potential attacks.

On another note, NoC-focused research accounted for more than 50% of the papers
analyzed, highlighting the importance of this paradigm as a communication infrastructure
for MPSoCs. For this reason, various metrics appearing in our classification are closely
related to NoC issues. One of these NoC-related metrics is throughput, which has declined,
but it is still a major issue as NoC capacity remains a crucial issue. Latency is another
NoC-related metric that has remained a research topic due to new application system
requirements that demand specific deadlines for information exchange capacity within
the NoC.

Finally, a research topic that has become relevant in the MPSoCs field is self-x prop-
erties. The upward research trend in self-x features, with almost 50% of research papers
investigating these features in the last five years, reflects the need for systems to become self-
aware. Research topics associated with this trend focus on adding different characteristics
to the system to manage and perform processes without third-party intervention.

In the following subsections, we discuss the importance of NoC management in
MPSoCs and present a classification of those research papers that specifically present
improvements in NoC management. We also present a classification of those research
papers that introduce specific awareness incorporating some self-x properties.

3.1.1. NoC Management Improvements in MPSoCs

An NoC is a packet-switching network using routers to interconnect the processing
elements inside an MPSoC, as shown in Figure 3. It is a conjunction of micronetworks
enabling communication between the processing elements, each including a network inter-
face. The network management implicit in an NoC is fundamental to ensuring efficient
and reliable performance of the communication infrastructure of an MPSoC. NoCs archi-
tecture adds parallelism to the information flow [29], which, in conjunction with multiple
processing elements, allows MPSoCs to run various types of applications [9]. This makes
the control and management of resources, such as task allocation and coordination of the
communication infrastructure, critical to the performance and power consumption of the
system. Although the NoC paradigm allows its functionality to be widely scalable and flex-
ible, adding simplicity and modularity to the MPSoC design by decoupling communication
and computation [2,23], it is also true that it faces significant challenges with the shrinking
trends of its components, especially in terms of reliability and power consumption [27].
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Table 2. Classification of management research papers according to their optimization objective or improvement.

Year
Management Goal or Improvement

Power Efficiency Thermal Latency Fault-Tolerance Throughput Security QoS Execution Time Area NoC Focused Self-x Properties

2001 [152] [152]

2003 [122] [122] [153] [153] [153]

2004 [60] [60,99] [60,131] [99,131]

2005 [100,154] [64] [63] [63] [100]

2006 [123] [56] [56] [56]

2007 [155,156] [124,155] [66] [137] [115] [115] [66] [66] [66,115,137,156] [115,137]

2008 [16,58,157] [59] [19] [158] [19,58,158]

2009 [67,159] [67] [160] [160] [67]

2010 [161,162] [31,125,161] [71] [25,101] [125,161,162] [71,161,162] [25,31,71,101]

2011 [70,103] [70,103] [116,163] [69] [163] [102,116,138] [102,116,163] [70]

2012 [43] [142] [73] [72] [142] [43,73,142] [43,72]

2013 [75,164] [165,166] [104,164,166] [74] [74,164–166] [164] [24,74,76] [165] [76,104,164–166] [74,75]

2014 [167] [167] [167] [167]

2015 [79,106] [77,79,143] [106,168,169] [26,120,168,169] [78,168] [79] [78,170] [77,106,143,168–170] [26,78,79,120]

2016 [22,44,82,127,171] [22,126] [82,172] [57] [107] [45,139] [81,127] [44] [22,44,45,82,107,139,172] [57,107]

2017 [32,34,46,86,118,173] [86] [32–34,118,140] [30,34,117]
[86,121,134] [34,86,118] [34,84] [86] [85] [33,174] [32–34,121,134]

[140,173,174] [30,85,117,121]

2018 [4,92,175–177]
[89,90] [89,92,147,176] [4,87,176,177] [47,48,177–179] [4] [1,88] [87,91,92] [108] [1,4,87,89,176]

[91,147,179]
[1,4,89,177,178]

[91]

2019 [38,40,51,52,180]
[9] [146,181] [29,49,50,180,182] [141,183] [180] [37,39,110,135] [29,109] [40,53] [9]

[37,50,141,146,180]
[9,39,52,110,135,181]

[49,182,183]

[38,50,51,109,146]
[29,181]

2020 [136,184–187]
[20,114,145,188]

[96,112,145,187,189]
[20,148] [10,14,55,95,190] [14,96,113,119,149] [10,148,188,189] [21,94,149] [14] [188,191] [21,94,95,149,191]

[10,14,148,185,188–190]
[21,94,119,136,191]

[14,113,148]

2021 [11,54,98,192] [98,193] [54,192,194] [15,195] [54] [41,196] [197] [41,54,192–196] [11,15,195,197]

2022 [128,198,199] [111] [61] [128] [198] [61,128,199] [198] [61,111,128,198,199] [61,111,128,198]

2023 [129,130,200] [129,201] [62] [130,202] [62,201] [62,129,130,201,202]
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Table 3. Analysis of research trends according to Table 2.

Management Goal
or Improvement

Last 20 Years Last 15 Years Last 10 Years Last 5 Years

TrendNumber of
Papers Percentage Number of

Papers Percentage Number of
Papers Percentage Number of

Papers Percentage

Power effieciency 66 37.93% 55 36.67% 46 38.02% 25 37.88%

Thermal 42 24.14% 34 22.67% 25 20.66% 14 21.21%

Latency 40 22.99% 37 24.67% 29 23.97% 15 22.73%

Fault-Tolerance 35 20.11% 33 22.00% 28 23.14% 12 18.18%

Throughput 28 16.09% 22 14.67% 13 10.74% 6 9.09%

Security 16 9.20% 16 10.67% 16 13.22% 10 15.15%

QoS 15 8.62% 13 8.67% 9 7.44% 4 6.06%

Execution time 15 8.62% 14 9.33% 11 9.09% 5 7.58%

Area 9 5.17% 8 5.33% 7 5.79% 4 6.06%

NoC Focused 97 55.75% 85 56.67% 70 57.85% 40 60.61%

Self-x properties 58 33.33% 55 36.67% 45 37.19% 28 42.42%

Note: The percentage of each metric considers the total number of related papers within the specified time range.
There are research papers related to more than one metric.

NoCs adopt many of the concepts of traditional networks, so their management is
based on a conventional network architecture consisting of three main planes: data transmis-
sion, control, and management. Basically, the control plane integrates the decision-making
processes regarding the exchange of information between processing and storage elements
based on established protocols, i.e., it controls the functionality of data transmission plane
entities such as routers, switches, and interfaces. On the other hand, the management
plane allows monitoring and configuring of the control functionality through software
services [2].

NoC has become the communication infrastructure of choice for MPSoCs due to the
capabilities and advantages it offers. In this context, the NoC management has been gaining
importance in recent years, as shown in Table 2. NoC-related research papers are focused on
improving one or more of the NoC management features like routing algorithm, network
topology, buffer utilization, buffer fluidity, etc., where these improvements are aided to
enhance some of the system optimization metrics. Table 4 shows a classification of the NoC-
related papers according to their main optimization metric and the three most common
specific NoC management improvement areas in accordance with our investigation: routing
algorithm, topology, and buffer.
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Figure 3. Typical Network-on-Chip architecture.

Table 4. Classification of the NoC-related papers according to their main optimization metric and the
most common specific NoC management improvement area.

Management Goal or Improvement

NoC
Management
Improvement

Area

Power
Efficiency Thermal Latency Fault-

Tolerance Throughput Security QoS Execution
Time Area

Routing
algorithm [161,180,188] [165,189,193]

[161,166]

[10,50,62]
[49,168,180]
[104,165,166]
[71,153,160]
[169,182,194]

[134,168,179]
[169,195]

[10,188,189]
[107,168,180]
[115,161,166]

[153]

[21,37,41] [115] [165,188]

Topology [4,44,199]
[22,172,173,192] [22,77] [4,116,160]

[169,182,190,192] [169,183,203] [4,107] [116] [170,199] [44]

Buffer [52,198] [10] [10,115] [198] [115] [174,198]

• Routing algorithm: In an NoC, a routing algorithm is a procedure whose main ob-
jective is to forward and distribute packets from source to destination through the
best path available in the MPSoC [194,204]. The related works are commonly aimed at
solving the usual routing protocol problems, such as deadlock, livelock, congestion,
or network faults [204]. Some of these works implement modern techniques to deal
with these problems, for example, by using adaptive routing to find the shortest path
and preventing possible changes in the network [194], or in other cases, by using
self-properties to find a path within a faulty network [195].

• Topology: An NoC topology represents the physical and logical distribution of
the channels and nodes within the network, and, normally, its design has a cost-
performance impact in the NoC [160]. The most common NoC topologies are mesh,
torus, tree, polygon, and butterfly [190]. In this context, researchers have worked
in developing new topologies or modifying existing ones to implement communica-
tion infrastructure improvements like circulant topology [203] and Butterfly-Fat-Tree
topology [183] for improving fault-tolerance, honeycomb topology [160] for improv-
ing network-cost, WK-Recursive topology [192] for improving power efficiency and
latency, RicoBit topology [190] for improving latency, or Spidergon topology [205] for
improving structure and modularity. Also, new development includes not only 2D
topologies but also 3D topologies [142,143,161,173,174,189,190].

• Buffer: NoCs use buffers to store transmitted packets for a short period of time within
a router before they are processed to be forwarded. Some works have focused on
improving certain aspects related to buffering, such as prioritizing flits forwarding
through buffer fluidity levels awareness [10] or reducing underutilized buffers through
new buffer design and switches’ operation monitoring [198].
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3.1.2. Specific Awareness in MPSoCs

The awareness integration within the MPSoCs field is one of the most recent challenges,
so many researchers have implemented specific awareness to help improve the performance
of these systems. In a general definition, self-awareness alludes to an entity that is capable of
being aware of its state, condition, situation, and environment [144,206]. In this context, we
refer to specific awareness to the partial application of the term self-awareness in MPSoCs,
i.e., that the system only knows very specific things. Although the research focused on
specific awareness is far from the ideal conceptualization of whole-system self-awareness,
these works have conformed a necessary precedent to identify the path toward self-aware
systems. Table 5 presents the classification of the research papers implementing specific
awareness. The table shows, from left to right, the type of specific awareness with the
highest number of research papers to the one with the lowest number. Ultimately, we also
present an extra column that identifies papers focusing on NoCs.

The purpose of Table 5 is to show the number of papers dedicated to investigating
awareness within the MPSoCs. Likewise, this table helps us identify the specific types of
awareness studied and their intended purpose. Table 5 is closely related to Table 3 since we
can observe that the most significant number of papers have been directed to the system to
focus awareness on aspects such as temperature and energy. Researchers focused about 50%
of these papers on NoCs-related issues. In the NoCs context, much of this specific awareness
involves managing network resources, such as traffic-aware, network-congestion-aware,
network-contention-aware, workload-aware, buffer-fluidity-aware, and loss-aware (optical
networks) systems. We also found papers focused on adding other types of awareness
related to different aspects of the system, such as reliability, the kind of application executed,
environmental fluctuations, and QoS.

• Thermal-aware: Thermal-aware research is concerned with implementing techniques
focused on the system not exceeding the set temperature limits while dealing with its
constraints and varying processes and workloads. In addition, they involve addressing
challenges immersed in temperature behavior management techniques that are related,
for example, with limitations on the number of sensors that can be included in the
system or with the performance impact of continuous monitoring of the temperature
distribution across the chip [148].

• Energy-aware: Since one of the main goals of modern systems is to maximize battery
lifetime, researchers have aimed to improve the power performance of MPSoCs. One
problem is predicting the application’s behavior for adequate energy management,
either by implementing known techniques or by generating new and improved ones.
Consequently, some research papers have included a methodology in which the system
monitors and acts on energy consumption, allowing it to improve several aspects.
For example, through learning policies, the system can better respond to dynamic
changes in applications [186] and to NoC processes that impact energy consumption
the most [52]. Another way is by monitoring the strategies of other techniques, such
as task replication, which, while improving system reliability, can also increase energy
consumption too much [184].

• Reliability-aware: Within the MPSoC environment, reliability is related with the sys-
tem’s ability to respond to possible failures, so the more prepared it is to resolve
failures, the more reliable it becomes. Although MPSoCs are exposed to different
types of faults (see Section 3.1—Fault-tolerance), research has identified three main
types that affect the reliability of electronics: manufacturing defects, constant random
failures, and failures due to aging of materials [197]. As a result, monitoring the
system’s reliability is necessary, which consists of adequately managing the MPSoC
resources, i.e., keeping the system aware of the communication infrastructure, applica-
tion processes (allocation and execution of tasks), and memory performance. In this
way, a reliability-aware system constantly acts at different levels to ensure specific
QoS requirements.
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Table 5. Classification of research papers according to their specific awareness.

Year

Aware System Management

Thermal-
Aware Energy-Aware Reliability-

Aware
Traffic-
Aware

Congestion-
Aware

Environment-
Aware

Application-
Aware

Workload-
Aware

Contention-
Aware QoS-Aware Loss-Aware Fluidity-

Aware NoC Focused

2003 [153] [153]

2004 [131] [131] [132] [131]

2005 [64,154] [63] [100] [63]

2006 [133]

2007 [124] [156] [66] [66,156]

2008 [58] [158] [58]

2010 [31,125,161] [71,161] [71] [31] [71,161]

2011 [70,103] [68] [68] [163] [138] [163]

2012 [142] [142]

2013 [104,165,166] [76,104,165] [164] [76,104,164]

2015 [79,143] [168] [77] [168] [78] [106] [77,106,168]

2016 [126] [82] [82] [81] [82]

2017 [86,117] [30]

2018 [147,176] [179] [28] [1,28] [179] [176] [1,28,147,179]

2019 [146,181] [52] [180] [29] [38] [40] [29,109] [52,146,181]

2020 [96,112,189] [97,184,186] [96,184,191] [10,95,189] [10,189] [119,187,207] [119] [185] [10] [10,95,185,189,191]

2021 [98,148] [98] [197] [193] [148,193]

2022 [111] [111,198,199,208] [111,128] [199] [111,128,198,199]

2023 [129] [130,201,202] [62] [62,201]
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• Traffic-aware: Traffic-aware research focuses on monitoring the amount of information
exchanged through the communication infrastructure, usually an NoC (communi-
cation through routers). This runtime monitoring can be focused on specific key
regions or distributed across the NoC. Traffic awareness allows the innovation and
implementation of techniques applied in different communication processes, such as
arbitration mechanisms that improve network latency [95] or routing algorithms that
increase throughput [189].

• Congestion-aware: The congestion of the communication infrastructure of an MPSoC
depends on several factors, which, in the case of NoCs, is closely related to the amount
and type of traffic, latency, and network throughput. In addition, the characteristics
and properties of routing and arbitration schemes play an important role in network
congestion. Therefore, monitoring various metrics can improve network performance,
such as leveraging information from buffers, which allows dealing with dynamic traffic
loads through cognitive processes and control techniques [10]. Another improvement
is identifying data flows that congest the network in certain areas or situations and
subsequently avoiding them, resulting in considerable energy savings [82].

• Environment-aware: Environment-aware research explores the interaction between
hardware and software components at different system levels and then implements
management improvements with diverse objectives [68,133].

• Application-aware: Most NoC designs within MPSoCs do not consider the types of
applications and their requirements [168]. This situation can degrade the performance
of the entire system. Therefore, some papers have proposed strategies that involve
application awareness at the network level, for example, by identifying the optimiza-
tion metrics to which they are most sensitive and then classifying and treating them
accordingly [164]. Another solution is monitoring their communication patterns and
balancing the traffic load between resources by estimating routing demands [168].
In other cases, implementing continuous learning of application profiles allows the
system to apply preventive and corrective actions to aid with QoS management [29].

• Workload-aware: The tasks of the application(s), running at any given time, define an
MPSoC’s workload, making it a highly variable parameter. Generally, the NoC of the
MPSoC reflects the implications resulting from workload variability, since if the NoC
is unaware of these variations, it may fail to manage its resources. Therefore, workload
awareness is highly beneficial and can be applied to improve network performance.
For example, it can enhance routing algorithms by evenly distributing NoC traffic
among active resources [179]. It can also help self-recover systems from failures by
identifying free processing elements at a particular time [30] or the unpredictability of
runtime workload by aiding dynamic memory management [81].

• Contention-aware: Contention-aware research involves the system being aware of the
competition in the NoC to perform intercommunication between processing elements.
Given the large number of processing elements in MPSoCs, there are more concur-
rent parallel intercommunications, so if there is no contention-free access scheme,
contentions can degrade NoC performance. Consequently, considering network con-
tentions can help achieve different optimization objectives. This type of specific
awareness can be achieved through task mapping and scheduling in communication
channels [106,163], and, likewise, in optical NoCs leveraging the flexibility of adaptive
routing schemes [193].

• QoS-aware: QoS-aware research aims to provide information that helps appropriately
manage available resources to meet the application requirements. This type of specific
awareness can be implemented, for example, to achieve coordinated management in-
volving the QoS of multiple resources within a class-of-service-based architecture [138].
Similarly, QoS monitoring allows for self-adaptive QoS management at runtime, pro-
viding better resource understanding and a reactive and proactive decision-making
capability [29].
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• Loss-aware: In optical NoCs, light signals usually suffer losses while propagating
through the waveguides. This condition usually requires higher power injection
into the laser to counteract these losses and avoid transmission errors. Generally,
the power setting of transmission lasers does not consider these losses, so a system
adding the awareness of them can increase communication and energy efficiency
through adaptive runtime power setting [185].

• Fluidity-aware: Fluidity awareness refers to understanding the fluidity in the NoCs
router buffers. Researchers implement active buffer monitoring to approximate the
flit fluidity levels, which helps to improve flow and congestion control [10]. A flit is
the smallest entity into which information exchanged over the network is divided.
In addition, fluidity awareness allows for flow prioritization, which in turn allows for
better management of network resources and prediction of dynamic traffic behavior.

4. MPSoCs, Self-Awareness, and Cyber-Physical Systems

The fusion of MPSoC with the state-of-the-art concepts of self-awareness and cyber-
physical systems represents the evolution of traditional MPSoCs towards platforms that
incorporate highly autonomous and self-adaptive management [12,13]. Combining these
concepts within the SoC field allows us to assimilate a system capable of managing and
adapting its autonomy by learning from its runtime environment. In the following subsec-
tions, we present and describe the concepts of self-awareness and cyber-physical systems.

4.1. Self-Awareness

The term self-awareness is used in many fields of science and is broadly concerned
with an entity being aware of its own state, condition, situation, and environment [144,206].
In 2013, as an important precedent, Kornaros et al. [17] surveyed research on intelligent
systems through dynamic monitoring and management techniques. In their work, they
also establish the characteristics that this type of system should have. These characteristics
are proactive management and monitoring since they allow decisions at runtime based
on such evaluations and make the system capable of adapting in real-time. They mention
that online monitoring is the fundamental tool for a system to have adaptive runtime
management. They predicted that the features of new MPSoCs had to include monitoring
platforms with reconfiguration capabilities and programmability of their components.

In the last decade, although some researchers have tried to define and introduce
the concept of self-awareness in the MPSoC field, many researchers have applied the
concept partially. Thus, as Jantsch et al. [206] and Dutt et al. [209] mentioned in their
work, it was necessary to lay the foundations of what it implies and understand its scope
and benefits. The concept of self-awareness in computational systems involves not only
proactive monitoring that provides information on the current state of the system and
self-adaptability but also having an awareness of the model of the static and dynamic
properties of the system, and thereby making decisions that trigger actions in the direction
of the operation objectives [144,206]. Thus, a self-aware system can automatically adapt to
changing environmental conditions and demands to meet its goals by constantly modifying
its behavior and updating its components and resources [144]. Self-aware systems are
intended to continuously perform a series of actions. They learn operation patterns based
on different system situations and use reasoning to make decisions based on self-analysis
at runtime. This is achieved by being aware of the hardware infrastructure and software
architecture. Bellman et al. [12] defined the following terms as key properties of a self-aware
system: self-monitoring, self-modeling, learning, self-analysis, and self-reporting (Figure 4).
In addition, three essential tasks stand out from a self-aware system: dynamic learning,
dynamic goal management, and keeping track of history [206].
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Figure 4. Key properties and tasks of a self-aware system based on information presented in [12,206].

A system that integrates self-awareness is a system whose behavior is based on a constant,
updated, and detailed monitoring of its own state, learning and reasoning from the interaction
with its environment, and acting according to the specific objectives of the system. Therefore,
self-awareness is a feature that can help the system better manage and understand its behavior,
which invariably improves the use of available resources, resulting in greater efficiency [206].

4.2. Cyber-Physical Systems

It is impossible to separate physical and computational processes in a computational
system, as what happens in both affects each other. Thus, the computational and network
entities continuously control and monitor the physical processes. The integration of com-
putational and physical processes is represented by cyber-physical systems (CPS) [210].
These systems constantly interact with their physical environment. They must deal with
aspects such as material degradation and aging, considering the constraints of their internal
resources, such as computational and memory capacity [12].

Cyber-Physical Systems-on-Chip

The Cyber-Physical System-on-Chip (CPSoC) concept incorporates the cyber-physical
systems paradigm into the SoCs field. While the design of a traditional MPSoC does not
specify the explicit, monitored, coordinated, and controlled relationship of computation
and communication operations with the physical environment, a CPSoC architecture incor-
porates an entity in charge of control, communication, and computation which interacts
with the physical processes at runtime [79,107]. In addition, the structured architecture
of a CPSoC allows the system to monitor different aspects through the different layers,
providing essential information to deal with process variabilities. This information adds
adaptability to the system, as it can be used in mechanisms capable of acting at various
levels [144].

Sarma et al. [211] defined the base architecture of a CPSoC (Figure 5), where they
divide it into several abstraction layers interacting with a platform composed of different
sensors and actuators, whose objective is to provide the control and management of the
cyber-information and the physical environment of the chip. They achieve this by using
the Observe–Decide–Act (ODA) paradigm in combination with adaptive and reflective
middleware that includes adaptive NoCs and some degree of self-awareness. A CPSoC
platform provides a computing framework that enables the simultaneous control and
management of data processing and physical environment manifestations. Thus, physical
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and virtual sensors and actuators ensure data reliability by considering aspects such as
power, temperature, degradation, and system performance. Sarma et al. [211] mentioned
that adaptability and self-awareness can be added to each abstraction layer through these
physical and virtual sensors and actuators (a combination of software and hardware).
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Figure 5. CPSoC architecture [211].

4.3. Self-Aware Cyber-Physical Systems-on-Chip

MPSoC design has moved toward submicron platforms, with increased complexity
and design requirements. These platforms integrate many processing elements into increas-
ingly heterogeneous systems for higher functionality and performance. New applications
demand increased capabilities from MPSoCs, so computation and intercommunication
between their components must be faster and more efficient [79]. They must also maintain
acceptable optimization metrics such as power, temperature, and energy. Thus, new MP-
SoCs must be systems that constantly deal with variable processes and dynamic runtime
objectives while maintaining high reliability, security, and efficiency [212]. In this way,
self-aware Cyber-Physical Systems-on-Chip (SA-CPSoCs) represent a suitable solution to
these demands, being CPSoCs which add self-awareness. These characteristics make an
adaptive and dynamic system possible, aware of its condition, state, behavior, and what is
happening in real time in its physical environment, all with little or no human interven-
tion [12,79,144,210,213]. Thus, the design of the SA-CPSoCs allows a significant increase in
adaptability through highly autonomous and intelligent system management.

The research of Bellman et al. [12] is one of the most recent works on self-aware
cyber-physical systems. It defines them as self-managing systems that know their state,
situation, behavior, and goals through knowledge extraction from their physical and virtual
environment. These systems are supposed to learn and reason at runtime to subsequently
make fast and effective adaptive decisions autonomously in the face of unexpected events.
Thus, the addition of these characteristics within a system-on-chip leads to SA-CPSoCs.
In this way, SA-CPSoCs increase management and control capabilities and represent the
evolution of MPSoCs by adding learning and reasoning mechanisms that allow the system
to self-model based on the continuous understanding of its static and dynamic properties
to anticipate and correct faults. In their research, Dutt et al. [144], Jantsch et al. [206],
and Bellman et al. [12] described the key properties and characteristics that CPSoCs that
aim to add self-awareness must meet, considering the development and implementation
challenges that this task implies (Figure 6). In addition to the self-awareness features,
an SA-CPSoC monitors the behavior of different variables between the abstraction layers of



Micromachines 2024, 15, 577 22 of 36

the system, using these data to implement statistical prediction and learning models. These
models are used by the actuation mechanisms that perform adaptations at different system
levels, such as in the intrachip communication system or in the operating system. These
operations must be performed with awareness of the information processing, physical
manifestations, and updated system objectives. The properties and characteristics of SA-
CPSoCs aim to improve the system’s autonomy, making it capable of self-managing its
resources and enhancing its utilization at runtime.
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Figure 6. SA-CPSoC characteristics, based on information presented in [12,144,206].

Prospects, Future Development, and Challenges of SA-CPSoCs

Emerging MPSoCs need to deal with increasingly heterogeneous systems and hostile
environments. In their conception, SA-CPSoCs prove to offer the capabilities required
by modern and future applications where the system is required to have full control
and fresh information of all its resources to act accordingly at runtime. The accelerated
technological progress and its necessities force the development of tools and systems with
greater capabilities, and the field of MPSoCs is no exception. The progress made in recent
years in the agreement of the definition of self-awareness in this field has laid certain
foundations for the development of such systems. As mentioned by Bellman et al. [12] in
their work, the application of self-awareness in its entirety may not be the most profitable
for all cases, and some applications may only require some of its characteristics. It is,
therefore, necessary to think in the future about the design of SA-CPSoCs as a generalized
design that can be applied to a wide range of applications, rather than thinking about
adding self-awareness to an individual system [12]. In this context, these systems must
provide a flexible infrastructure that allows for the adoption and organization of processes
inherent to a self-awareness nature. However, there are several challenges to overcome
to make SA-CPSoCs possible in fullness of their definition, especially in this resource-
constrained system. Table 6 shows the challenges identified by some researchers who have
worked the most in this area.
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Table 6. Challenges facing the development of SA-CPSoCs [12,206].

Challenges

Self-Awareness [206] What Is Needed? SA-CPSoC [12] What Is Needed?

Dynamic Learning Better machine learning algorithms based on
feedback signals.

Considering self-awareness,
subjectivity, and situatedness.

Techniques that consider the system’s own
perspective in different possible situations in
addition to the environmental changes.
Enhancing the decision-making process.

Scalable self-awareness Define different levels of self-awareness for
different system requirements.

Building resource-sensitive
self-awareness.

Consider the resources needed to implement
self-awareness and its processes at runtime.

Ensuring correctness Validate the level of systems adaptation
ensuring reliability and guarantees.

Verifying self-awareness and
establishing guarantees.

Methods to implement verifications of
self-awareness level from the design stage
and make the system understand the
guarantees during operation.

Design methology Change the design paradigm to let the
systems be self-aware.

Developing new designs and
engineering processes.

Adapt design and processes to introduce
self-aware CPSs characteristics including
dynamic decisions instead of predefined
decisions.

Formulation goals

Define more quantitative goals like
adaptability, autonomy, self-assessment, and
situation assessment, and formulating
mechanisms to define trade-offs.

Creating an infrastructure for
self-awareness processes.

New reference architectures and design
templates guided to provide a generic
infrastructure that facilitates the development
of SA-CPS and all of its capabilities.

4.4. NoCs as Self-Aware Cyber-Physical Systems

NoCs face several design and implementation challenges in modern MPSoCs where
the dynamic workloads demanded by new applications impose the necessity to place sev-
eral NoCs in parallel to interconnect many entities, such as processing elements, memories,
and ports, to meet system performance requirements. This workload variability involves
different traffic patterns within the network, which makes NoCs unpredictable, leading
to system instability if proper resource management does not exist. In addition, these
factors add uncertainty at design time because it is practically impossible to know all the
scenarios the system would face during its operation, which decreases the efficiency and
performance of a predefined design for specific applications.

For this reason, the necessity arises to design NoCs with adaptive capabilities, allowing
them to meet various important requirements such as power consumption, reliability,
security, response times, and performance. These requirements must be satisfied even
when the system’s conditions, like temperature and voltage, vary during the execution
of different processes. A cyber-physical NoC with self-aware capabilities may be the first
step toward SA-CPSoCs. In this context, an NoC can apply reconfiguration actions based
on up-to-date knowledge of the system status and situation (active monitoring), actions
such as dynamic bandwidth adaptation, routing algorithms, arbitration policies, topology,
and so on, or the application of techniques such as throttling, DVFS, or clock gating to
adjust power consumption at runtime. These actions make it possible to meet performance
objectives or to achieve the best possible optimization by making the necessary trade-offs
following the system capabilities and constraints and offering certain guarantees [2].

4.5. SDNoC as a Base Architecture in the Many-Core Era

A key component for the capable and efficient management of an MPSoC is the
communication infrastructure. An MPSoC communication infrastructure aims to enable
communication links between the system components, taking the information from a source
to a destination entirely. This sharing of information is critical for the correct operation of
the MPSoC, so the infrastructure must be sufficiently robust and guarantee the necessary
communication resources for each application. If the communication infrastructure cannot
meet the application resources requirements such as bandwidth, throughput, latency,
traffic, waiting time, or utilization time, it can become a serious problem affecting the entire
system’s performance.

In the MPSoC environment, four basic communication infrastructures are commonly
found: point-to-point interconnection (P2P), shared bus interconnection, crossbar switch
interconnection, and NoC. Although all these infrastructures’ general objective is to commu-
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nicate the multiple processing elements within the system, each has different capabilities.
P2P interconnection implies dedicated communication links between each pair of elements,
i.e., there is only direct communication between two elements where a handshake protocol
controls the traffic. Shared bus interconnection implies that all elements share a commu-
nication bus controlled by an arbiter, but there can only be one active link between two
elements at a time. Crossbar switch interconnection implies a communication backbone
controlled by an arbiter where there can be several communication links between several
elements simultaneously, as long as there is not more than one link for the same receiver.
Finally, NoC infrastructure implies a packet-switching network through interconnected
routers throughout the MPSoC, enabling possible communication between all the elements
of the system.

Compared to its counterparts, the advantages of an NoC make it the most feasible
communication infrastructure for MPSoCs. These advantages lie primarily in flexibility,
scalability, and energy efficiency [8]. The NoC communication infrastructure can make the
design of MPSoCs faster and more efficient, allowing the implementation of distributed
schemes. For example, the system can have multiple communication links transmitting
information from different segments instead of concentrating the information in a shared
bus. These features contemplate new allocation, control, and monitoring challenges.

The variability of the processes and workloads of modern systems requires the NoC
to implement control of adjustments that adapt the communication resources in the best
possible way. This control needs to be autonomous and at runtime, i.e., the system must
identify those events that may trigger adaptation actions and make decisions about them at
runtime [29]. An NoC must consider, for example, network traffic, congestion, contention,
and fluidity when making adjustments. Likewise, the new MPSoCs require that these
actions consider the unpredictability of their processes and add intelligence to allow them
to anticipate and act accordingly [27].

These characteristics are part of SA-CPSoCs, and adding them to new systems is a
titanic and challenging task to carry out in a system holistically, so they must be imple-
mented in a modular fashion with a hierarchical organization. In this way, the problem
is divided into smaller and less complex dilemmas that allow progress toward the final
objective. Although the resources of an MPSoC can be very varied, we can divide them
into computational and communication resources [29]. The former is regarding the data
processing in the information processing and storage elements. The latter relates to sharing
information through the network, i.e., data transmission and reception. Management of
NoC resources is a critical and fundamental part of managing an MPSoC. The NoC is
responsible for interconnecting hundreds, and even thousands, of processing and stor-
age elements within an MPSoC through reliable and secure means, allowing correct and
efficient operation according to the system requirements.

In the paradigm of cyber-physical systems, control, computation, and communication
are closely related. Similarly, in the management plane of an MPSoC, the management of
the NoC cannot be excluded. Therefore, their interaction must be taken into account during
decision making in a self-adaptive system. We believe that managing an MPSoC based on
network processes increases the control and management capabilities of the entire system.
The distributed scheme of an NoC allows the system to divide problems throughout the
network while communication and computing resource management are also distributed.
In this context, advances in developing SDNoC architectures can help achieve self-adaptive
cyber-physical systems.

4.5.1. SDNoCs as a Solution

Lee [210] mentions in his work that for a system to take full advantage of a CPS’s
capabilities, one must think in abstractions that allow contemplation of both the dynamic
physical environment and the information processing. These abstractions must be included
in platforms or models that efficiently manage the physical and software processes to
achieve the system objectives. In addition, as mentioned by Bellman et al. [12], introduc-
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ing a self-aware system’s learning and reasoning capabilities into the CPS development
paradigm is challenging while keeping these capabilities relatively explicit and accessible
for processing.

The challenges involved in a self-aware cyber-physical NoC infer the development
of a new paradigm involving the construction of computational and communication ab-
stractions. A layered distributed approach can help address different problems modularly,
so the issues of each layer are treated independently, and changes made to a specific
layer will not affect other layers’ behavior. The management of network resources and
its related challenges, together with the requirements of the MPSoC development trend,
has inspired the research of new solutions that harmoniously combine the advances and
ideas in this field. Such is the case of the motivation of SDNoCs, which, as mentioned by
Gomez-Rodriguez et al. [2], is related to the management problems it can solve.

SDNoC Architecture

Gomez-Rodriguez et al. [2] reviewed the literature and state-of-the-art for SDNoCs, clar-
ifying their conceptualization and further explaining the initial motivation for the approach
and the development path taken in recent years. Based on this work and given that the main
feature of SDN is to simplify network management processes, we believe that an SDNoC
architecture would allow the organization and host each of the features of an SA-CPSoC.

The term SDN dates to 1996 and arose to give the user control over network entities’
data forwarding [214]. Before SDN, the main disadvantages of network systems were
the interoperability between network entities from different vendors and the difficulty of
implementing network configurations. Thus, the main idea of SDN was to decouple control
and data planes so that the control rests out of individual network entities on a centralized
controller. Within this architecture, the controller makes the forwarding decisions by
having an overview of the network, and then these decisions are passed to network
entities like switches to execute them [1,9]. This approach directly impacted network
performance by opening the possibility for the online configuration of network entities
through software-based services and for the standardization of multivendor networks
through open interfaces between control and data plane devices. The SDN concept lets the
system define the forwarding policy based on programmable network services, which are
aware of the application [214]. Therefore, SDN emerged as a solution to simplify network
management for the new intelligent applications requiring dynamic functions with reduced
operational and maintenance costs [1].

More recently, Sandoval-Arechiga et al. [80] proposed introducing the SDN concept
into the NoC field and leveraging its advantages within the MPSoCs. Since this proposal,
various researchers started working on this concept due to its potential to increase the capa-
bilities of the MPSoCs. This SDNoC architecture brings characteristics like programmability
and abstraction capacity to the NoC management environment, opening the possibility for
online reconfiguration and enabling design reuse. SDNoC architecture improves and simpli-
fies NoC management, resulting in more system flexibility, reduced complexity of network
entities (routers), real-time guarantees, and communication network self-adaptation [50]. It
converts the routers into less-complex entities, which can be programmed by following a
forwarding policy dictated by a centralized software controller.

The SDNoC architecture consists of three segments: application, network operating
system (NOS), and infrastructure, and five layers: application, network management,
control, data transmission, and data processing [2], as shown in Figure 7. This architecture
has a hierarchical organization where each layer provides a service to a higher layer through
a well-defined interface. In their work, Gomez-Rodriguez et al. [2] described each of this
architecture’s components and their possible implementations in detail.
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Figure 7. SDNoC architecture. Odd numbers represent the layers, and even numbers represent the
HW/SW interfaces. A different color represents each segment [2].

An SDNoC architecture provides certain facilities that can be exploited to implement
the SA-CPSoC characteristics. Thus, SDNoC can be a valuable tool for constructing a self-
awareness architecture for MPSoCs serving as the backbone of SA-CPSoCs. The layered
infrastructure and abstraction allow a more straightforward connection with the monitoring
and acting infrastructure. The network operating system (NOS) and the optimization
machines help with the concentration of information and the definition of policies to
specify more efficient processes or tasks depending on the system status and application.
Communication channels and protocols are already created and ready to use, so a new
service or element can be included just by adding an existing well-defined interface or
controller. In this way, the SDNoC architecture facilitates the orchestration of physical and
software processes through scalable administrative functions and SDNoC controllers.

A development challenge of this approach is the scalability problem using a central-
ized SDN controller, which can impact the performance of large-scale MPSoCs. Some
researchers have proposed a distributed organization for the SDNoC controller to leverage
the multiple advantages of distributed systems. Table 7 shows SDNoC research according
to the controller organization and system’s goal. In this way, SDNoC facilitates the commu-
nication infrastructure over a distributed system, which is one of the most critical elements
of such systems. Having well-defined communications protocols for a distributed system
allows new services to be set up, leveraging that backbone of communication infrastructure.
For example, supposing the system requires a new thermal monitor service, it can be added
by connecting to the communication infrastructure straightforwardly using standardized
interfaces and just focusing on the controller design for upper layers.

From this perspective, we think that an SDNoC architecture could be an effective
tool or even the main baseline for the SA-CPSoCs. There are still many details to define
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and other development challenges this proposal brings, but the SDNoC architecture can
potentially solve many of the future MPSoC problems.

Table 7. SDNoC research according to the controller organization and system’s goal.

Management Goal or Improvement

General Power Efficiency Latency Fault-Tolerance Throughput Security QoS

Organization
Centralized [23,35,36]

[80,83] [9,32] [32,33,87] [149] [1,21,37]
[41,94,149] [87,91]

Distributed [4,31,44] [14,29,50]
[4] [14] [4] [1,49,94] [14,29]

5. Conclusions

After an extensive investigation of the state-of-the-art management within the MPSoC
field over the last twenty years, this paper presents a classification of management types
based on some of the issues that have driven the development of MPSoCs. The research also
analyzes the optimization or improvement objectives of the research papers, identifying
trends that show the importance and impact of the most exploited areas and those that
are becoming increasingly relevant. Additionally, the paper identifies research papers that
implement self-x properties and classifies them according to the specific type of awareness
they implement to illustrate the evolution of the research and the precedents of the idea
of SA-CPSoCs.

The paper describes the evolution of ideas, concepts, and developments before the
conception of SA-CPSoCs as a solution to the demands of new and future MPSoCs and
presents the challenges that this task implies. The paper also presents a network-based
management of MPSoC that leverages the SDNoC architecture characteristics to strengthen
the development of SA-CPSoCs as a conceptual idea.

The main objective of this research is to provide the scientific community with a
primary point of reference in MPSoCs management and the integration of self-awareness
in this field. This comprehensive and structured material will facilitate future research
and developments.
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