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Abstract: We prepared AlGaN/GaN high electron mobility transistors (HEMTs) with GaN cap
thicknesses of 0, 1, 3, and 5 nm and compared the material characteristics and device performances.
It was found that the surface morphology of the epitaxial layer was effectively improved after
the introduction of the GaN cap layer. With the increase of the GaN cap thickness, the carrier
concentration (ns) decreased and the carrier mobility (µH) increased. Although the drain saturation
current (IdSat) of the device decreased with the increasing GaN cap thickness, the excessively thin
GaN layer was not suitable for the cap layer. The thicker GaN layer not only improved the surface
topography of the epitaxial layer but also effectively improved the off-state characteristics of the
device. The optimal cap thickness was determined to be 3 nm. With the introduction of the 3 nm
GaN cap, the IdSat was not significantly reduced. However, both the off-state gate leakage current
(IgLeak) and the off-state leakage current (IdLeak) decreased by about two orders of magnitude, and
the breakdown voltage (BV) increased by about 70 V.

Keywords: GaN cap; HEMTs; hall effect; surface morphology; off-state characteristics

1. Introduction

AlGaN/GaN HEMTs are extensively used in applications requiring high power
and high frequency capabilities due to their wide band gap, high mobility, and low on-
resistance [1–4]. Due to the high affinity of Al for O, it is common to introduce a GaN cap
layer above the barrier layer to suppress the oxidation of the AlGaN. Numerous researchers
have investigated the influence of the GaN cap on the performance of AlGaN/GaN HEMTs.
Yu et al. obtained the relationship between the two-dimensional electron gas (2DEG) con-
centration and the thickness of each layer for GaN/AlGaN/GaN HEMTs by theoretical
calculations, and they pointed out that the increase in the thickness of GaN led to a decrease
in the 2DEG concentration [5]. Jurkovic et al. reported a case that negative polarization
charges appeared at the upper interface of the barrier layer when introducing a GaN cap
layer above the InAlN/GaN heterojunction, leading to a significant decrease in 2DEG
concentration [6]. Recently, researchers have discovered that the introduction of a GaN cap
layer can effectively passivate the surface of an HEMT, reducing the density of surface de-
fect states. Their efforts in utilizing the GaN cap layer to suppress off-state leakage current
and current collapse in the devices have yielded significant results [7–12]. Furthermore,
researchers have achieved commendable results by using density-functional theory (DFT)
to study GaN-based epitaxial layers, which can help to adjust the epitaxial layer growth
process to optimize the growth quality and reduce the interfacial states [13,14].

The selection of the thickness of the GaN cap is always a challenge. Variations in
the thickness of the GaN cap affect the various properties of the device to varying de-
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grees. Devices for different application scenarios require different performance parameters.
Therefore, studies on the effect of GaN cap thickness on HEMTs are essential.

In this study, the impact of GaN cap thickness on the performance of AlGaN/GaN
HEMTs has been analyzed. It was found that an increase in GaN cap thickness led to a
decrease in surface roughness. As the cap thickness increased, the ns decreased, while
the µH increased. The increase in GaN cap thickness within 0–3 nm did not significantly
degrade the IdSat of the device, which was attributed to the significantly increased µH.
Additionally, it was found that the increase in cap thickness led to a decrease in IgLeak and
an increase in BV, improving the off-state performance of the device.

2. Experimental Details

All the samples obtained in this work were grown on 6-inch-high resistance Si (111)
substrates by metal organic vapor deposition (MOCVD). TMGa, TMAl, and NH3 were
used as precursors for Ga, Al, and N sources, respectively. H2 and N2 were used as carrier
gases. Deposition started with a 150 nm AlN nucleation layer followed by a 400 nm-thick
Al0.25Ga0.75N layer. Subsequently, a 640 nm Fe-doped GaN layer was grown at a doping
concentration of 2.19 × 1018 cm−3 to improve the off-state characteristics of the device. The
760 nm unintentionally doped GaN layer was then grown. Then a 1 nm AlN insertion
layer, a 22 nm Al0.25Ga0.75N barrier layer, and an optional GaN cap were incorporated. The
cap thicknesses of the four samples were 0, 1, 3, and 5 nm, respectively. After growth, the
surface morphology of all these samples was measured using atomic force microscopy
(AFM) with the scan area of 5 × 5 µm2. Hall effect measurements were carried out on these
samples at 300 K using the van der Pauw configuration.

After growth, by employing inductively coupled plasma etching (ICP) to perform
dry etching all the way down to the HEMT structure, device mesa isolation was achieved.
Subsequently, the samples were immersed in buffered oxide etchant (BOE) for 60 s to
remove the surface oxides. Ohmic contact was made by the deposition of Ti/Al/Ni/Au
(20/100/10/100 nm), and the samples were subsequently annealed at 790 ◦C for 30 s in
N2 atmosphere. The gate electrode was composed of Ni/Au (50/200 nm), which was
fabricated by electron beam evaporation. Furthermore, the device dimensions used for
these studies were as follows: LG/WG/LGS/LDS = 1/100/10/20 µm. The schematic of the
devices is shown in Figure 1.
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3. Results and Discussion

Figure 2a–d respectively show the AFM micrographs of samples with cap thickness of
0, 1, 3, and 5 nm. From Figure 2, the well-defined step flow morphology can be observed
from the surfaces of these four samples. The obvious step flow morphology is the result
of the high efficiency growth of the film. The root mean square (RMS) roughness of the
sample surface was significantly reduced by the introduction of GaN. Similar observations
have been documented in many studies [7]. A GaN cap layer can inhibit oxidation on
the surface of the epitaxial layer, which may account for the reduced surface roughness.
It was observed that as the cap thickness increased from 1 nm to 5 nm, the RMS of the
wafer decreased from 0.275 nm to 0.211 nm, making the surface of the film even smoother.
However, the surface roughness of a sample with a 5 nm cap is comparable to that of the
sample with a 3 nm cap. We speculate that the protrusions on rough surfaces may hinder
the lateral migration of Ga, leading to a tendency for GaN to form in the depressions, thus
reducing the surface roughness of the film [15–17].
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Figure 2. AFM image (scan area = 5 µm × 5 µm) of samples with cap thickness of (a) 0 nm, (b) 1 nm,
(c) 3 nm, (d) 5 nm.

Figure 3 shows the values of 2DEG mobility (µH), 2DEG density (ns), and sheet
resistance (Rs) of samples with cap thicknesses of 0, 1, 3, and 5 nm measured at 300 K. As
the cap thickness increased from 0 nm to 5 nm, the ns decreased from 1.13 × 1013 cm−2 to
1.02 × 1013 cm−2. Due to the lattice mismatch between the GaN cap layer and the AlGaN
barrier layer, the increase in cap thickness led to an enhanced piezoelectric polarization
field above the barrier layer. This raised the conduction band and decreased the ns. As
the cap thickness increased, the µH increased. The decrease in ns led to a reduction in the
intensity of roughness scattering at the heterojunction interface [18,19]. In addition, as the
cap thickness increased, the surface roughness of these samples decreased and the distance
from the 2DEG to the surface of the epitaxial layer increased, which may lead to a decrease
in remote scattering intensity from the surface charges [20,21]. In addition, the difference
in µH between the sample with a 3 nm cap and the sample with a 5 nm cap was observed
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to be nonsignificant. We speculate that the lower ns led to a reduced effect of the ns change
on the roughness scattering intensity of the heterogeneous interface. As the cap thickness
increased, interface roughness scattering intensity and the remote scattering intensity from
the surface charges decreased, which made the effect of both on the µH decrease. Therefore,
the increase in mobility was no longer significant.

Micromachines 2024, 15, x FOR PEER REVIEW 4 of 9 
 

 

observed to be nonsignificant. We speculate that the lower ns led to a reduced effect of the 
ns change on the roughness scattering intensity of the heterogeneous interface. As the cap 
thickness increased, interface roughness scattering intensity and the remote scattering in-
tensity from the surface charges decreased, which made the effect of both on the µH de-
crease. Therefore, the increase in mobility was no longer significant. 

 
Figure 3. The room temperature Hall test results for samples with cap thickness of 0, 1, 3, and 5 nm. 

Figure 4 shows the output characteristic curves of these four samples. The IdSat of the 
devices with cap thickness of 0, 1, 3, and 5 nm are 358 mA/mm, 349 mA/mm, 343 mA/mm, 
and 319 mA/mm, respectively, at a gate-to-source voltage (VGS) of 2 V. As the cap thickness 
increased, the IdSat of the device decreased. However, as the cap thickness increased from 
0 to 3 nm, the change in IdSat of the device was not significant. Although the 2DEG concen-
tration decreased with the increase in cap thickness, a significant increase in carrier mo-
bility was observed. 

 
Figure 4. Output characteristics of samples with cap thickness of (a) 0 nm, (b) 1 nm, (c) 3 nm, and 
(d) 5 nm. 

Figure 3. The room temperature Hall test results for samples with cap thickness of 0, 1, 3, and 5 nm.

Figure 4 shows the output characteristic curves of these four samples. The IdSat of the
devices with cap thickness of 0, 1, 3, and 5 nm are 358 mA/mm, 349 mA/mm, 343 mA/mm,
and 319 mA/mm, respectively, at a gate-to-source voltage (VGS) of 2 V. As the cap thickness
increased, the IdSat of the device decreased. However, as the cap thickness increased
from 0 to 3 nm, the change in IdSat of the device was not significant. Although the 2DEG
concentration decreased with the increase in cap thickness, a significant increase in carrier
mobility was observed.
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The transfer characteristics of these four samples are depicted in Figure 5. The Vth is
defined as the drain voltage at which the drain current is 1 mA/mm. The Vth of samples
with cap thickness of 0, 1, 3, and 5 nm are −2.92 V, −2.86 V, −2.8 V, and −2.8 V respectively.
The Vth is the point at which a device transitions from an on-state to an off-state. Although
the distance between the gate and the channel layer increased with increasing GaN cap
thickness, making it more difficult to deplete the carrier in the channel, the reduced carrier
density compensates for this effect and minimizes the variation in the Vth of all these
samples. Therefore, the disparity in Vth among the samples is slight. The transconductance
(Gm) of the devices with cap thicknesses of 0, 1, 3, and 5 nm are 96 mS/mm, 92 mS/mm,
86 mS/mm, and 77 mS/mm, respectively. The Gm is positively correlated with gate
capacitance and carrier concentration. As the GaN cap thickness increased, the distance
between the gate and the channel layer increased, resulting in a decrease in gate capacitance.
Additionally, the decrease in ns further led to the decrease in Gm.
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Figure 6 shows the drain current as a function of VGS expressed on a log scale. It was
observed that the IdLeak of the device decreased as the cap thickness increased, and the
IdLeak of the device decreased by about two orders of magnitude after the cap thickness
increased from 0 to 3 nm. The drain current ON/OFF (Ion/Ioff) ratio of the devices with
cap thickness of 3 nm and 5 nm were both higher than 107 due to the reduced IdLeak. Thus,
the increased GaN cap thickness reduced the IdLeak and improved the Ion/Ioff ratio.
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Micromachines 2024, 15, 571 6 of 9

Figure 7 shows the gate leakage curves of samples with cap thickness of 0, 1, 3, and
5 nm. As the cap thickness increased, IgLeak decreased. To appreciate the effect of GaN
cap thickness on the off-state characteristics of the device, simulation was performed
using Silvaco TCAD 2014. Figure 8 shows the electric field distribution of the device
under a biasing condition of VGS = −8 V, and VDS = 0 V. Figure 8a shows the electric field
distribution of the device without GaN cap layer, where the electric field is concentrated at
the gate edge due to the lateral electric field crowd. As shown in Figure 8b, the introduced
GaN cap layer homogenized the electric field in the barrier layer, leading to a decrease
in peak electric field [22]. The peak electric field decreased as the thickness of the GaN
cap layer increased. We speculate that the negatively polarized electric field introduced
by the GaN cap layer reduced the potential at the top of the barrier layer. It increased
the vertical electric field in the GaN barrier layer, thus reducing the lateral electric field
crowding [22–25]. As the thickness of the GaN cap increased, the potential at the top of
the barrier layer further decreased and the electric field distribution further homogenized.
Therefore, the increase in GaN cap thickness can effectively reduce the peak electric field
near the gate. As the GaN cap thickness increased, the electric field peak in the barrier layer
decreased and the barrier thickness increased, which effectively suppressed the vertical
tunneling of electrons and thus reduced the IgLeak. The thick GaN cap layer also reduced the
carrier density under the gate and improved the barrier thickness, which further inhibited
the vertical tunneling of electrons. In addition, the GaN cap layer could also inhibit the
natural oxidation of the epitaxial layer. The reduction of O impurities on the surface of the
epitaxial layer could reduce the hopping probability of electrons through the defect state
and further reduce the IgLeak [26–28].
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Figure 9 shows the breakdown characteristic curves of all these samples. It was
observed that the BV of devices with cap thicknesses of 0, 1, 3, and 5 nm were 325 V,
383 V, 393 V, and 414 V respectively. As the cap thickness increased, the BV increased. As
mentioned previously, the increase in GaN cap thickness inhibited the IgLeak and the IdLeak,
resulting in an increase in BV.
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4. Conclusions

We have investigated the material and electrical properties of AlGaN/GaN HEMTs
with GaN cap thicknesses of 0, 1, 3, and 5 nm, respectively. Although the increased cap
thickness causes a reduced carrier concentration, a too-thin GaN cap layer is not suitable
as a cap for an HEMT. The too-thin GaN cap leads to an increase in the surface roughness
of the epitaxial layer and a degradation in device off-state performance. A too-thick GaN
cap layer significantly reduces the IdSat of the device. The optimized cap thickness was
3 nm. As the cap thickness increased from 0 to 3 nm, the surface roughness of the samples
decreased from 0.362 nm to 0.221 nm. Meanwhile, IdSat decreased by less than 10%, while
both IdLeak and IgLeak decreased by about 2 orders of magnitude, and BV increased by
about 70 V. The results for the quantification and reproducibility of HEMT clearly indicate
the role of GaN cap thickness.
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