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Abstract: Using a stainless shadow mask combined with a magnetron-ion-assisted deposition (IAD)
sputtering system, we investigate the surface morphologies and optical properties of microfilms.
Optimal color-filter (CF) coating microfilms with niobium pent-oxide (Nb2O5)/silicon dioxide (SiO2)
multilayers on a hard polycarbonate (HPC) substrate, grown at 85 ◦C and 50 SCCM oxygen flow,
can obtain a fairly uniform thickness (with an average roughness of 0.083 and 0.106 nm respectively
for Nb2O5 and SiO2 films) through all positions. On a flexible HPC substrate with the Nb2O5/SiO2

microfilms, meanwhile, the peak transmittances measured in the visible range are 95.70% and 91.47%,
respectively, for coatings with and without a shadow mask for this new-tech system. For the optimal
CF application with a shadow mask, transmittance on each 100 nm band-pass wavelength is enhanced
by 4.04% absolute (blue), 2.96% absolute (green), and 2.12% absolute (red). Moreover, the developed
new-tech system not only enhances the quality of the films by achieving smoother and uniform
surfaces but also reduces deposition time, thereby improving overall process efficiency. For the
with-shadow-mask condition, there is little shift at 50% transmittance (T50%), and high transmittance
(~97%) is maintained after high-temperature (200 ◦C) baking for 12 h. These results are well above
the commercial CF standard (larger than 90%) and demonstrate reliability and good durability for
flexible optical applications.

Keywords: shadow mask; ion-assisted deposition (IAD); color filter (CF); uniform thickness; flexible
substrate; 50% transmittance (T50%)

1. Introduction

In the realm of sputtering technologies for depositing microfilms, achieving uniformity
in the surface morphologies is paramount for ensuring optimal performance across various
applications [1–5]. Two problems generally occur in terms of the uniform distribution of
the thickness deposited by the direct current (dc) reactive magnetron sputtering system.
The first problem consists of an electrically insulating layer generated on the target sur-
face during the high-temperature sputtering process, resulting in arcing due to charge
accumulation. In particular, insulating film deposition on the electrode strongly affects
the gas discharge properties, not only by blocking the current flow but also by discharg-
ing the dielectric surface fully by reverse pulses [6]. Furthermore, a high-temperature
process with low discharging limits flexible application on hard polycarbonate (HPC) or
stainless-steel substrates.

In the second non-uniform problem from magnetron sputtering, the distance between
the target and substrate is often very short, and as a result, the coating thickness at different
positions of the substrate depends on the sputtering distribution of the target material [7,8].
Without controlling the uniformity, a coating on a flat substrate is usually thick at the
center, and the thickness gradually decreases toward the edges [8,9]. This limits the size
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and number of coating elements for multi-film applications that can be produced in a
single coating run. In the case of curved optics, the desired thickness distribution cannot
be achieved without effectively controlling the thickness. Thus, controlling the lateral
thickness distribution is essential for coatings prepared by magnetron sputtering.

To solve these problems, ion-assistance deposition (IAD) equipped with a shadow
mask with an adjustable stripe and length can be attached to a reactive magnetic sput-
ter [10–13], allowing deposition for optical applications with smooth-surface and high-
density microfilms under low-temperature operation. By evaluating the different deposition
thicknesses at individual positions on the film surface, the stripe length of the shadow
mask is adjusted, thus improving the uniformity and smoothness of the film surface [14].

Our aims are to demonstrate the environmental durability of this new technique and
to deposit a multilayer to verify the new-tech advantages in enhancing the performance of
flexible color-filter (CF) applications. In this research, therefore, we not only investigate
the technique of IAD combined with adjustable shadow masks to improve the surface
uniformity of microfilms but also conduct durability evaluations on the developed flexible
CFs. These harsh environmental conditions include immersion in boiling water and
saltwater as well as exposure to high temperature to enhance the CF performance and
surface-morphology improvement from new-tech application opportunities.

2. Experiments and Measurements

The block diagram of a reactive magnetron sputter equipped with an IAD system (as
shown in Figure 1a) and the detailed thin stripe-length stainless-steel shadow mask (with
200 µm thickness, placed as shown in Figure 1b,c) to produce beneficial modifications in
the surface morphologies for optical applications are provided [15]. In the developed IAD
sputter in Figure 1a, there were niobium (Nb) and silicon (Si) targets, both with cylinder
shapes, where cooling water flowed at the center during the sputtering process. A drum
(at 60 rpm speed) under the 100 V pulse-dc voltage of discharging ions rotated each HPC
substrate (with 30 × 30 mm2 dimension). The reactive sputtering also involved allowing
sufficient reactive gases (Ar and O2) into the chamber to keep the target completely covered
with a dielectric [16], for uniform film deposition of the Nb and Si materials with sequential
and continuous coating.
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monitored at 550 nm during deposition of the layers and at 5 nm intervals over the 
400~700 nm spectral range after deposition. 

To measure the optical properties of the developed CFs, we used a 
spectrophotometer (Hitachi UV-Visible-NIR, Tokyo, Japan) to measure the transmittance 
within the visible wavelength range (400–700 nm). Additionally, we employed a scanning 
electron microscope (SEM, Hitachi S-4100) and atomic force microscopic (AFM, Digital 
Instruments Inc. (Tonawanda, NY, USA), NanoScope E with dimension 3100 controller) 
system to observe the surface morphology in this experiment. The surface roughness 
(RMS for Rq) values were obtained with the software that came with the instrument. 

3. Results and Discussion 
Table 1 lists the morphology comparison of Nb2O5 (at top, ~400 nm thickness) and 

SiO2 (at bottom, ~600 nm thickness) microfilms as deposited with (at right)/without (at 
left) shadow-mask conditions. The corresponding surface morphology (2D and 3D AFM 

(a) (c) 

(b) 

Figure 1. (a) Schematic diagram of the developed reactive magnetron sputter equipped with the IAD
system and a shadow mask. (b) The detailed adjustable 16 positions of thin stripe-length stainless-steel



Micromachines 2024, 15, 551 3 of 14

shadow mask. A numerical optimal algorithm with trial–error iteration [17] optimizes the design
of shadow-mask size (with 30 × 30 mm2 dimension and 200 µm thickness). (c) The orientation of
the shadow mask relative to the targets. This takes into account the substrates on the rotating drum,
sputtering targets, and a shadow mask with predefined stripe-length shape.

This study uses a vacuum coating system equipped with an electron beam gun. At
the ambient temperature of the substrate, niobium pent-oxide (Nb2O5) and silicon dioxide
(SiO2) thin films are deposited on the substrate through an electron beam supported by
oxygen ions (O−). Meanwhile, as shown in Figure 1b, we added the detailed stripe-
length shadow mask at 16 positions for measurement, hoping to enhance the uniformity of
the new-tech color-filtering microfilms. Furthermore, Figure 1c illustrates the sputtering
geometry in which the substrate is mounted on a rotating drum; β is the emission angle of
the ejected particle flux relative to the normal to the target surface, and α is the incidence
angle of the deposited particle flux relative to the normal to the substrate surface. On path
A, the particles reach the substrate, and on path B, the shadow mask blocks the particles.
In order to optimize the mask to achieve high uniformity over a large area, the sputtering
yield, the angular distribution of the ejected particles from the target (path A), the mask
restriction function, the arriving angle (α) of the sputtered particles on the substrate, and
the substrate movement need to be taken into account.

Therefore, the chamber was first pumped down to 1 × 10−5 Torr or less. Then, the
working Ar (99.99%) gas was applied with a flow rate of 55 and 85 SCCM (1 SCCM is
identical to 1 atm cm3/min at STP), respectively, for Nb and Si targets. Pure O2 gas (99.99%)
with a 50 SCCM flow rate, 125 W sputtering power, and 85 ◦C deposition temperature could
also be introduced into the vacuum system to assist oxidation during the deposition process
(deposition rate was 2.04 and 3.43 nm/min, respectively, for Nb2O5 and SiO2 microfilms).
The total working pressure was ~5.1 × 10−4 Torr, with mean 0.2 A sputtering current. The
s-polarized component of the light transmitted by the coated substrate was monitored at
550 nm during deposition of the layers and at 5 nm intervals over the 400~700 nm spectral
range after deposition.

To measure the optical properties of the developed CFs, we used a spectrophotometer
(Hitachi UV-Visible-NIR, Tokyo, Japan) to measure the transmittance within the visible
wavelength range (400–700 nm). Additionally, we employed a scanning electron micro-
scope (SEM, Hitachi S-4100) and atomic force microscopic (AFM, Digital Instruments Inc.
(Tonawanda, NY, USA), NanoScope E with dimension 3100 controller) system to observe
the surface morphology in this experiment. The surface roughness (RMS for Rq) values
were obtained with the software that came with the instrument.

3. Results and Discussion

Table 1 lists the morphology comparison of Nb2O5 (at top, ~400 nm thickness) and
SiO2 (at bottom, ~600 nm thickness) microfilms as deposited with (at right)/without (at
left) shadow-mask conditions. The corresponding surface morphology (2D and 3D AFM
images below), in which Rmax, Ra, and Rq stand for the maximum surface height, average
centerline, and root-mean-square (RMS) roughness, respectively.



Micromachines 2024, 15, 551 4 of 14

Table 1. The comparisons of Nb2O5 and SiO2 microfilms and the corresponding surface morphology
(AFM images below) deposited with/without mask condition. Layer thicknesses of Nb2O5 and SiO2

microfilms are about 600 and 400 nm, respectively.

Nb2O5 Film (~400 nm thickness)

Conditions Rmax Rmean Ra Rq (RMS)

Without Mask 8.778 nm 3.044 nm 0.760 nm 0.974 nm

With Mask 8.710 nm 2.746 nm 0.603 nm 0.792 nm

SiO2 Film (~600 nm thickness)

Conditions Rmax Rmean Ra Rq (RMS)

Without Mask 5.36 nm 2.211 nm 0.488 nm 0.631 nm

With Mask 2.211 nm 1.139 nm 0.186 nm 0.242 nm

Nb2O5 Film (Without Mask) Nb2O5 Film (With Mask)
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non-uniform, with the maximum surface height (Rmax)/average centerline (Ra)/RMS
(Rq) surface roughness of 8.778/0.760/0.974 nm and 5.360/0.488/0.631 nm, respectively,
for Nb2O5 and SiO2 microfilms. For the with-shadow-mask condition, the Rmax/Ra/Rq
values are 8.710/0.603/0.792 nm and 2.211/0.186/0.242 nm, respectively, for Nb2O5 and
SiO2 microfilms, being much smoother and uniformly distributed over the film surface.
Meanwhile, this shadow-mask design could adjust the stripe length in accordance with
different positions, thus shortening the morphology roughness and improving surface
uniformity. Shadow-mask sizes are typically adjusted for uniform optimization via the
preferential sputtering caused by ion bombardment [16].

Figure 2 illustrates a comparison of the deposition thicknesses at various positions
for Nb2O5 and SiO2 microfilms prepared with/without a shadow mask in the developed
magnetron-IAD sputtering system. For comparison with/without a shadow mask, Nb2O5
microfilm-roughness ranges are large, from 19.86 to only 1.33 nm. Similarly, SiO2 microfilm-
roughness ranges are large, from 34.5 to only 1.7 nm. For the condition with a stripe-length
shadow mask, significantly, all the films’ surface morphologies were smooth and uniform,
with less roughness, with a decrease in morphology roughness similar to the phenomena
in the AFM images (values of Rmax, Ra, and Rq) of Table 1.
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and the corresponding film thicknesses as a function at the 16 positions for the (a) Nb2O5 and (b) SiO2

microfilm deposition.

The roughness of SiO2 films is significantly less than that of Nb2O5 films. The surface
morphology becomes rougher as the layer thickness increases, both with/without shadow
mask conditions, as shown in the bottom-left axis of Figure 2. In Figure 2b, meanwhile, the
SiO2 film thickness with the mask is higher in positions 13–16 than without the mask, which
is consistent with the stripe-length trend (blue lines). This phenomenon may be attributed
to the deposited material accumulating on the evolving edges of the micro-crystallites [18].
It can also illustrate that the adjustment trend of the stripe length is related to the thickness
of the deposited film. Without masking, locations corresponding to thicker film deposition
have shorter stripe length, while locations corresponding to thinner film deposition have
longer stripe length.

For the without-shadow-mask condition (red lines in the bottom-left axis of Figure 2), it
can be found that the thickness of the microfilm first increases corresponding to the position
number from 1 to 8 and then decreases from the 9th to the 16th position. The microfilms’
surfaces were rough and non-uniform, with an average roughness of 1.241 and 2.156 nm,
respectively, for Nb2O5 and SiO2 films. It can be inferred that the adjustment trend of the
stripe length of the mask is related to the thickness of the microfilm deposition [9,14]. On
the bottom-relation axes of Figure 2, therefore, the stripe length (blue line referred as the
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right-Y axis) at all positions should be adjusted by following this trend (red line referred as
the left-Y axis). For the with-shadow-mask condition (green lines in the bottom-left axis of
Figure 2), consequently, it can be verified by the above trend that a fairly uniform thickness
is obtained (with an average roughness of 0.083 and 0.106 nm, respectively, for Nb2O5 and
SiO2 films) through all corresponding positions.

The major CF design is a combination of high and low refractive indices, i.e., Nb2O5/SiO2
microfilms, of multilayer coatings [19]. The refractive indices (n) and extinction coefficient
(k) can be calculated by Equations (1) and (2) [20,21]:

n =

[
Q +

(
Q2 − n2

s

)1/2
]1/2

(1)

and

k =

(
λ

4πd

)
(ln(x)) (2)

where 

Q = 2(ns)
[

TM−Tm
TMTm

]
+

(
n2

s+1
2

)

x =
F−

[
F2−(n2−1)

3
(n2−n2

s )
]1/2

(n−1)3(n−n2
s)

F =
8(n2)ns

Ti
, Ti =

2(TM)Tm
TM+Tm

d = (λ1)(λ2)
2(n2(λ1)−n1(λ2))

where ns is the substrate refractive index; TM and Tm are the maximum and minimum
transmittance of the spectrum, respectively; d is the film thickness; λ1 and λ2 are the
adjacent maximum and minimum wavelength, respectively; and n1 and n2 are the refractive
indices corresponding to λ1 and λ2.

In the manufacturing of color-filtering applications, the layering process causes parti-
cles to settle between and on top of each layer. Consequently, all layers, including the CF
coatings, have rough surfaces, posing challenges for accurately determining the (n, k, d)
parameters through inverse methods due to scattering effects [19]. To obtain the (n, k, d)
effective values simultaneously [19], mean square errors (MSEs) between measured and
fitted reflectivity for a wide range of illuminations are minimized.

For the (n, k, d) effective values calculated by Equations (1) and (2), the optimal
Nb2O5/SiO2-bilayer thickness can be determined for the layer numbers required to enhance
the CF performance. Thus, Figures 3 and 4 demonstrate the (n, k, d) relationship under
the discharge current range (3–8 A) of the ion source and at λ = 450 nm with/without
shadow masks, respectively, from the (k, d) and (n, d) parameter models. In the (k, d) model
depicted in Figure 3, the roughness of the film thickness (d, in nm at the bottom-left axis)
and the extinction coefficient (k, in ×10−5 order at the bottom-right axis) as a function at
the various 16 positions, respectively, are given for (a) Nb2O5 and (b) SiO2 microfilms as
compared with/without shadow masks. For the comparison with/without a shadow mask,
the k values (blue lines) were increased by 0.019% (from 3.01 to 4.90 × 10−4 for Nb2O5
film) and 3.0 × 10−3% (from 1.42 to 1.45 × 10−4 for SiO2 film), respectively. In contrast,
the d values (green lines) were, respectively, decreased by 18.53 nm (from 19.86 to only
1.33 nm for Nb2O5 film) and 32.8 nm (from 34.5 to only 1.7 nm for SiO2 film) as compared
with/without a shadow mask in the developed IAD-sputter system. Therefore, the curve
rate of change (in %) of k and d values is 0.7% or 0.8%, respectively, becoming smoother,
with a uniform surface. Meanwhile, in Figure 3a,b, it can be seen that the k values of Nb2O5
films are higher than those for the films of SiO2. This is because SiO2 usually shows lower
absorption characteristics in the visible spectrum range (400–700 nm wavelength), while
Nb2O5 films can show higher absorption; the same argument can be found in [22].
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Figure 3. The comparison of the extinction coefficient (k) and the corresponding film thicknesses as a
function at 16 different positions for (a) Nb2O5 and (b) SiO2 microfilms with/without shadow masks,
respectively measured for the (k, d) parameter model.

Similarly, for the (n, d) parameters plotted in Figure 4, the difference of the film
thickness (d, in nm at the bottom-left axis) and the refractive indices (n, at the bottom-right
axis) as a function at the various 16 positions, respectively, are given for (a) Nb2O5 and
(b) SiO2 microfilms as compared with/without shadow masks. It can be seen that the
curve tendency of the n and d values becomes smoother, with a uniform surface, after
using the shadow mask in the developed magnetron-IAD sputtering system. For the
comparison with/without a shadow mask, the n values (blue lines) were increased by
0.045% (from 2.36419 to 2.36464 for Nb2O5 film) and 3.98% (from 1.5055 to 1.5453 for SiO2
film), respectively.
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Figure 4. The comparison of the refractive index (n) and the corresponding film thicknesses as a
function at 16 different positions for the (a) Nb2O5 and (b) SiO2 microfilm with and without shadow
masks, respectively measured for the (n, d) parameter model.

It can be observed that the n value of the film without the shadow mask increases as
the d values increase, showing a proportional relationship consistent with the literature [23].
In contrast, since the d values (green lines) of the films produced with mask remain uniform,
the change in n values is quite small, with only 0.011% variation (from 2.36390 to 2.36410
for Nb2O5 film) and 3.98% variation (from 1.5055 to 1.5453 for Si2O2 film), respectively, as
compared with/without a shadow mask in the developed IAD-sputter system.

Meanwhile, in Figure 4a,b, it can also be seen that the n values of Nb2O5 films are
higher than those for the films of SiO2. This is because SiO2 is a non-metal oxide with a
simpler structure, and its refractive index is usually lower. In contrast, Nb2O5 is a metal
oxide with a complex structure composed of niobium and oxygen atoms, and its refractive
index may be higher. This is the same argument as found in [24].

Following this (n, k, d) effective model, we can evaluate the optimal Nb2O5/SiO2-
bilayer thickness and determine the layer numbers required to enhance the CF performance.
Thus, Figure 5a–c depict the layer-number evaluation (19~37 layers) required for the narrow
band-pass wavelength, respectively, for the blue (B), green (G), and red (R) regions. At the
same time, in Figure 5, the optimal number of 36 layers can be determined from the narrow
bandwidth (100 nm wavelength) for (a) B region (400–500 nm wavelength), (b) G region
(500–600 nm wavelength) and (c) R region (600–700 nm wavelength).
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The values of the optimal 36-multilayer (Nb2O5/SiO2-bilayer) thicknesses of the RGB
CF coatings determined from the effective (n, k, d) model of Figure 5a–c are listed in Table 2a.
The total 36-multilayer thicknesses are 2.27, 2.86, and 3.11 µm for the RGB CF coatings.
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Table 2b plots the optimal 36-layer CFs using a flexible HPC substrate (30 × 30 mm2

dimension) and the developed magnetron-IAD with a shadow-mask sputtering system.

Table 2. The design parameters of CF application. (a) Each value of the optimal 36-layer thickness
for the RGB-filter design, and (b) the schematic structure coating on a flexible HPC substrate (with
2.27–3.11 µm 36-layer thickness and 30 × 30 mm2 dimensions) by the developed IAD-sputtering
shadow-mask system.

Layer No. Materials Blue (nm) Materials Green (nm) Materials Red (nm)

1 Nb2O5 88.68 Nb2O5 33.44 Nb2O5 51.37

2 SiO2 72.51 SiO2 208.32 SiO2 95.47

3 Nb2O5 77.72 Nb2O5 53.21 Nb2O5 46.69

4 SiO2 104.64 SiO2 88.38 SiO2 60.74

5 Nb2O5 50.16 Nb2O5 50.8 Nb2O5 58.74

6 SiO2 114.59 SiO2 31.57 SiO2 86.72

7 Nb2O5 63.81 Nb2O5 39.72 Nb2O5 53.51

8 SiO2 90.03 SiO2 87.3 SiO2 89.31

9 Nb2O5 58.52 Nb2O5 52.12 Nb2O5 51.35

10 SiO2 118.93 SiO2 87.14 SiO2 76.69

11 Nb2O5 50.42 Nb2O5 48.13 Nb2O5 85.81

12 SiO2 94.5 SiO2 29.07 SiO2 55.64

13 Nb2O5 68.67 Nb2O5 44.68 Nb2O5 55.37

14 SiO2 95.41 SiO2 88.81 SiO2 89.31

15 Nb2O5 59.86 Nb2O5 55.83 Nb2O5 47.77

16 SiO2 94.52 SiO2 70.86 SiO2 85.07

17 Nb2O5 68.84 Nb2O5 117.67 Nb2O5 117.88

18 SiO2 91.41 SiO2 99.89 SiO2 45.9

19 Nb2O5 61.59 Nb2O5 72.11 Nb2O5 47.98

20 SiO2 109.15 SiO2 97.2 SiO2 64.15

21 Nb2O5 76.77 Nb2O5 99.87 Nb2O5 52.39

22 SiO2 167.97 SiO2 109.35 SiO2 79.56

23 Nb2O5 75.99 Nb2O5 60.94 Nb2O5 20.62

24 SiO2 109.41 SiO2 129.06 SiO2 71.25

25 Nb2O5 64.96 Nb2O5 75.56 Nb2O5 47.44

26 SiO2 101.2 SiO2 141.68 SiO2 42.11

27 Nb2O5 86.55 Nb2O5 63.64 Nb2O5 46.29

28 SiO2 166.54 SiO2 98.73 SiO2 66.22

29 Nb2O5 68.15 Nb2O5 89.84 Nb2O5 54.71

30 SiO2 115.67 SiO2 130.8 SiO2 78.49

31 Nb2O5 64.19 Nb2O5 70.27 Nb2O5 63.17

32 SiO2 88.72 SiO2 105.79 SiO2 76.52
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Table 2. Cont.

Layer No. Materials Blue (nm) Materials Green (nm) Materials Red (nm)

33 Nb2O5 76.02 Nb2O5 98.46 Nb2O5 51.69

34 SiO2 91.92 SiO2 32.49 SiO2 67.28

35 Nb2O5 69.49 Nb2O5 70.49 Nb2O5 42.73

36 SiO2 53.92 SiO2 30.19 SiO2 40.63

Total (µm) 3.11 2.86 2.21
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color filter using the shadow mask, Table 3 shows that there was a great enhancement in
the transmittance on each 100 nm band-pass wavelength by 4.04%absolute (blue CF with
3.11 µm thickness), 2.96%absolute (green CF with 2.86 µm thickness), and 2.12% absolute
(red CF with 2.21 µm thickness). This shadow-mask CF design can also improve the narrow-
band transmitting property, which corresponds to enhancing the surface uniformity, as
presented in the AFM images of Table 1. Thus, it is the surface-roughness effect of the CF
microfilm at a given wavelength, the same argument as found in [25], that is related to its
high transmittance.

Table 3. The RGB-CF transmittance comparison and the corresponding wavelength plot (below),
with/without shadow-mask, by the magnetron-IAD sputter.

Condition
Filters Blue Filter

(400~500 nm) Green Filter (500~600 nm) Red Filter (600~700 nm)

Thickness 3.11 µm 2.86 µm 2.21 µm

With Mask 95.5041% 95.6174% 95.7046%

Without Mask 91.4657% 92.6601% 93.5871%

In the process of CF development, conducting stability verification before mass produc-
tion is crucial. This phase ensures that the product can withstand various harsh conditions
and meets the expected performance standards. Evaluation and testing in hot water, salt-
water, and high temperatures were conducted on the flexible CFs with a Nb2O5/SiO2
multilayer coating.

Figure 6 illustrates the changes in light transmittance of the CFs after high temperature
(200 ◦C) from 0 to 12 h. In Figure 6a, it can be observed that, in the meantime, the T50% (at
50% transmittance) relative transmittance wavelength of the filters prepared as unmasked
shifts from 662 to 638 nm wavelength (decreasing by 3.63%), and the transmittance de-
creases from 97% to 88% (variation of 9%absolute). In comparison, the CF in Figure 6b
maintains the transmittance and wavelength at 662 nm (T50% variation for 0.3%absolute)
and 97%, respectively.
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Figure 6. The comparison of the transmittance changes (in the visible range) of CFs fabricated by
the magnetron-IAD sputtering system (a) without and (b) with a shadow mask, for environmental
durability at 200 ◦C for 0, 1, 6, and 12 h. The cut-off wavelengths are quoted (with long-dash line) at
the 50% (T = 50%) relative transmission.

After immersion in boiling (100 ◦C) water for 4 h and salt (100%) water for 3 days, the
developed CFs with the shadow mask showed variations at T50% of 4.39 and 2.16%absolute,
respectively, which can be considered negligible (both less than 5%). Therefore, all the
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phenomena demonstrate that CFs deposited with the shadow mask are more stable under
harsh environments for optical applications. This also demonstrates that this new-tech
system can enhance CF durability and reliability.

4. Conclusions

In summary, the adjustable stripe lengths of the shadow mask with the magnetron-IAD
sputtering system can enhance the surface thickness uniformity of Nb2O5/SiO2 microfilms.
The important novelty of this study is that we constructed a (n, k, d) effective model and
calculated the simulated reflectance spectra by incorporating the variable refractive index
and thickness of each layer of Nb2O5/SiO2 microfilms. Following the (n, k, d) parameter
model, the optimal Nb2O5/SiO2-bilayer thickness can be evaluated, and layer numbers
required to enhance the CF performance can be determined.

The optimal 36-layer CF was fabricated and observed by AFM and SEM to determine
surface morphology. Next, the transmittance was measured by a spectrophotometer. Thus,
for each CF with the shadow mask, each 100 nm band-pass wavelength exhibited a great
enhancement in the transmittance, by 4.04%absolute (blue CF), 2.96%absolute (green CF),
and 2.12% absolute (red CF). Finally, the developed new-tech system was shown to improve
both the performance and surface morphology of the flexible-CF application, thus ensuring
great durability under harsh environmental conditions (such as hot-temperature baking,
saltwater immersion, and boiling water treatment). All these results are well above the
commercial CF standard (larger than 90%), showing the reliability and durability of this
developed new-tech system.
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