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Abstract: In this paper, we proposed an efficient and high-precision process for fabricating large-area
microlens arrays using thermal reflow combined with ICP etching. When the temperature rises above
the glass transition temperature, the polymer cylinder will reflow into a smooth hemisphere due
to the surface tension effect. The dimensional differences generated after reflow can be corrected
using etching selectivity in the following ICP etching process, which transfers the microstructure
on the photoresist to the substrate. The volume variation before and after reflow, as well as the
effect of etching selectivity using process parameters, such as RF power and gas flow, were explored.
Due to the surface tension effect and the simultaneous molding of all microlens units, machining
a 3.84 × 3.84 mm2 silicon microlens array required only 3 min of reflow and 15 min of ICP etching
with an extremely low average surface roughness Sa of 1.2 nm.

Keywords: microlens array; thermal reflow process; ICP etching; etching selectivity

1. Introduction

Traditional optical lenses have the disadvantages of being large in size and heavy in
weight, which do not satisfy the development trend of miniaturization and lightweighting
for optical systems. Microlens arrays (MLAs) have emerged as an alternative to large aper-
ture optical lenses and are composed of numerous tiny micron-sized lens units arranged
in a specific layout. MLAs can provide excellent optical functions, including illumination,
collimation, focusing, imaging, and light redistribution, coupled with significantly reduced
mass and volume compared to conventional lenses, enabling great application potential
across multiple fields, such as imaging systems [1–5], optical communication [6–8], and
sensors [9,10].

The fabrication processes of microlens arrays include ultra-precision machining tech-
nologies [11–15], laser direct writing [16–18], grayscale lithography [19,20], nanoimprint
lithography [21–24], and thermal reflow processes [25–28]. Ultra-precision machining
technologies, such as single point diamond turning (SPDT), are capable of fabricating
microstructures with complex morphology and excellent precision. However, continuous
cutting for an excessive duration will affect machine tool accuracy and significantly dam-
ages the diamond tool, resulting in poor uniformity of the processed microstructures. Yan
and Makaida [29] studied a tool-servo driven segmented turning method to fabricate silicon
concave microlens arrays. The intermittent contact between the tool and the workpiece
can effectively limit tool wear, achieving a surface roughness of 5 nm, but the machining
area needs to be further improved. Laser direct writing technology utilizes optical systems
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to focus a laser beam onto the surface of the workpiece, thus melting and vaporizing the
material to fabricate micro/nano structures. Hua et al. [30] used a femtosecond laser with
a wavelength of λ = 343 nm and a pulse duration of tp = 280 fs to directly fabricate
a convex MLA on silicon with a surface roughness of below 3 nm. Femtosecond laser
technology works directly on the target material without additional masks, but it is not
suitable for machining large-area microstructures due to the low processing efficiency
caused by its inherent characteristic of removing material point by point. The laser used by
Hua had a material removal rate of 120 µm3/s, and it took 1 h to ablate the MLA with a
footprint of 100 × 100 µm2, which is clearly not applicable to large-area microlens arrays.
Deng et al. [31] attempted to process large areas, but the SEM images showed that the
uniformity of array units was not satisfactory.

Grayscale lithography requires only one-time exposure and development to obtain
3D microstructures on photoresist (PR) using grayscale masks. However, the difficulty of
producing high-precision masks greatly limits its promotion and application. Nanoimprint
technology transfers the microstructure from the mold to the polymer through mechanical
hard contact and is classified into hot embossing lithography (HEL) and UV-NIL [32],
according to the polymer molding principle used, which are shaped by high temperature
and UV light, respectively. This technique is characterized by process simplicity, high
efficiency, and good reproducibility, thus enabling its use in mass production. Notably, it
requires ultra-precision machining of the opposite target microstructure on a mold first,
and as mentioned above, the ultra-precision machining technology is still insufficient for
machining large areas. Once, we [33] successfully machined a 6 × 6 microlens array on a
silicon substrate using a hot embossing process; however cutting a 600 × 600 µm2 high-
precision mold already approached our machine tool limit and the surface roughness of
the microlens unit was only 17.7 nm, which would affect the light throughput quality of
the lens.

Compared with the above technologies, the thermal reflow process provides a viable
route for efficiently fabricating large-area microlens arrays. This process forms spherical
microlenses with a smooth surface and uniform dimensions based on the liquid surface
tension effect [34–37]. This method adopts common semiconductor processes to simulta-
neously manufacture all the microlens units, resulting in equally short processing times,
even for large-area microstructures. Qiu et al. [38] reflowed photoresist AZ P4620 into a
cylindrical microlens array with a surface roughness of 1.66 nm, requiring only heating at
180 ◦C for 150 s. Extremely low roughness and ultra-smooth surfaces are highly beneficial
for improving the light output quality of the lens. However, simply transforming polymers
into microlenses, which typically adhere to other substrates, causes these plastic MLAs
to be poorly time-stabilized, which greatly limits their application, such as in severe envi-
ronments characterized by high temperature and vibration. In this paper, we investigated
transferring polymer MLAs formed by thermal reflow to rigid substrates underneath,
such as silicon, through inductively coupled plasma (ICP) etching. This process ionizes
appropriate gases into plasmas, which are sputtered vertically down onto the polymer
and substrate, accelerated by an electric field, to achieve large-area etching. Also, during
the ICP etching, the final size of the microlens transferred to the substrate can be adjusted
by controlling the selectivity to compensate for any deviation of the reflowed structure
from the desired dimensions. Experiments were conducted to evaluate the factors affecting
selectivity, including RF power and gas flow.

2. Materials and Methods
2.1. Materials

The 4-inch optical monocrystalline silicon wafers used as the substrate material were
customized from Meixin Electronics (Tianjin, China), with N-type doping, a crystal ori-
entation of <111>, and a thickness of 200 ± 15 µm. The silicon wafers were diced into
1-inch samples using a laser ultra-precision processing system (DelphiLaser, UP-D, Suzhou,
China). All the samples were ultrasonically cleaned with acetone, isopropyl alcohol, and
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anhydrous ethanol sequentially for 3 min and were baked at 100 ◦C for 10 min before
the experiment. Photoresists, such as AZ5214 and S1813, and developer NMD (TMAH
2.38%) were sourced from Resemi (Suzhou, China). The NMP solution obtained from
Shanghai Aladdin (Shanghai, China) was used to remove any residual photoresist on the
wafer surface.

2.2. Experiment

The fabrication process for large-area silicon MLAs in this work is depicted in Figure 1.
First, the photoresist, including AZ5214 or S1813, was spin-coated on the silicon wafer
(step i). The thickness of the film depended on the spin speed and the viscosity of the
photoresist. This was followed by prebaking on a hot plate at 100 ◦C for 60–90 s to ensure
the adhesion of the PR layer to the substrate. Next, the exposure process (step ii) was
performed using an MA/BA8 lithography machine (SUSS MicroTec, Garching, Germany)
and the prescribed intensity of UV light was 23.45 mW/cm−2. Since the thickness of
the photoresist film was mainly below 3 µm, an exposure time of 7 s was sufficient. We
chose soft contact with a photomask as the exposure mode. Although not as effective as
non-contact exposures, such as laser direct writing [39], displacement Talbot lithography
(DTL) [40] can completely avoid the issue of wafer warpage. The lower contact pressure
of the soft contact can maximize the uniformity of the lithography microstructures while
ensuring full contact between the photomask and the photoresist layer on the 1-inch
silicon substrate. Subsequently, the wafer was immersed in NMD solution for 45 s for
development (step iii), thereby removing the photoresist illuminated by the UV light in
step ii. After exposure and development, the initial cylinder array was processed on the
substrate, but the actual structure was similar to a circular truncated cone due to the
imperfect photolithography process, as shown in Figure 2a.
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The following reflow process (step iv) entailed heating the wafer with the photoresist
cylinder array for enough time on a hot plate, which was set above the glass transition
temperature (Tg) of the photoresist. As the temperature rose above Tg, the photoresist
behaved as a viscoelastic material, at which time its flowability was enhanced to easily
deform the photoresist cylinders into spherical structures (shown in Figure 2b), driven by
surface tension. The photoresists used for the experiments were AZ5214 and S1813, with
heating temperatures of 180 ◦C and 150 ◦C, respectively, for 3 min. The microlens size after
reflow was related to the original cylinder thickness and diameter, and the volume may
have been reduced due to solvent evaporation during the heating process. Assuming that
the volume reduction percentage (the ratio of the volume after and before reflow) is k, the
following relationship exists for the volume change:

k·2h(d2
1 + d2

2 + d1d2) = h2(3d2
3 + 4h2

2) (1)

Finally, the target MLA was etched onto silicon through ICP etching (step v), which
was performed using the Oxford etching system (Oxford Instruments, Plasma lab system
100 ICP 180, Yatton, UK). The etcher was equipped with two RF sources, both with a
frequency of 13.56 Mhz, one of which acted as an ICP generator and was connected to a
spiral coil wound outside the chamber to generate an inductively coupled electric field.
The other RF source was connected to an electrode below the sample plate inside the
chamber, called the CCP generator [41,42]. During ICP etching, selected gases entering
the etching chamber generate high density plasma via glow discharge under the effect
of the electric field, and the plasma density is affected by the power of the coil (ICP
power). Then, the ionized plasma is accelerated by the bias voltage generated by the
CCP generator to bombard the wafer downward, thereby removing the surface material
physically and chemically [43–47]. We chose SF6, C4F8, and O2 to be injected simultaneously
as process gases, where SF6 and O2 were mainly used for etching silicon and the photoresist,
respectively. The addition of C4F8 increased the anisotropy of the etching process, which
incidentally slowed down the etching rate. Sometimes the microstructure after reflow may
differ from the desired size; fortunately, this error can be corrected by adjusting the etching
selectivity (the ratio of the etching rate of silicon to photoresist) to control the finalized
structure transferred to silicon. If the reflow size is higher than ideal, a selectivity of less
than 1 can be applied to reduce the height. Conversely, if there is an undersized error, a
selectivity greater than 1 is required. In order to obtain accurate microlens dimensions on
silicon, the influence of RF power and gas flow on etching selectivity under constant ICP
power and chamber pressure was investigated. The selectivity SR is calculated using the
following formula (illustrated in Figure 3):

SR =
ESi
EPR

=
y3

y1 − y2 + y3
(2)
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2.3. Characterization

The photoresist thickness and step height were measured using a stylus profilometer
(Bruker, DektakXT, Billerica, MA, USA), and the surface morphology of the MLA units was
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observed using a metallographic microscope (Zeiss, Axiocam 208 color, Jena, Germany)
and SEM (FEI, Helios 5, Hillsboro, OR, USA). A white light interferometer (Zygo, NewView
9000, Middlefield, CT, USA) and an AFM (Bruker, Demension Icon) were utilized to
characterize the surface roughness and 3D profiles of the microstructures. Nine microlens
units from the edge and center regions of the processed MLA were selected to calculate the
average and uniformity of each parameter, including the diameter, height, and roughness.
The uniformity is characterized by the following equation:

uni f ormity =
Vmax − Vmin
2 × Vaverage

× 100% (3)

where Vmax and Vmin are the maximum and minimum values measured, respectively,
and Vaverage is the average value of the relevant parameter calculated over all the mea-
sured values. From the above equation, a smaller value of uniformity indicates better
array consistency.

3. Results and Discussion
3.1. Results and Analysis of Thermal Reflow

After lithography and the thermal reflow process, photoresist microlenses formed on
the silicon substrate. To clarify the effect of the size before reflow on the lens shape, group
experiments with different bottom diameters d1 were designed at spin-coating speeds of
1000 rpm and 1300 rpm. The obtained results are listed in Table 1. The thickness of the PR
film was roughly 3 µm at 1000 rpm and 2.6 µm at 1300 rpm. For the reflow experiment,
we customized another photomask with multiple 5 × 10 cylinder arrays. The cylinder
units of these arrays were of different diameters, but all had a pitch of 100 µm. Through
a pre-experiment on reflow time, it was observed that all the photoresist cylinders could
reflow into complete spherical structures within 2 min. After 3 min, the reflow tended to
stabilize and the microlens shape was basically unchanged. So, we uniformly set the reflow
time to 3 min to avoid time interference.

Table 1. Experimental data and the results of the thermal reflow process.

Number
Cylinder before Reflow (µm) Microlens after Reflow (µm)

k
d1 d2 h1 d3 h2 R

1 32.65 28.08 3.03 32.88 4.31 33.51 0.850
2 37.50 33.48 3.00 38.28 4.27 45.03 0.841
3 42.73 38.18 3.00 42.53 4.27 55.06 0.797
4 47.73 43.08 2.98 47.50 4.09 70.92 0.758
5 32.60 28.55 2.65 32.33 3.75 36.88 0.804
6 36.20 33.85 2.63 36.45 3.71 46.60 0.774
7 42.13 38.45 2.62 42.40 3.53 65.39 0.753
8 46.95 43.53 2.61 47.35 3.36 85.11 0.709

The section profiles before and after reflow were extracted for comparison using the
stylus profilometer, as shown in Figure 4. Combined with d1 and d3 in Table 1, it can be
seen that the bottom diameter of the photoresist before and after reflow remained almost
unchanged, which is due to the fact that the contact surface between the photoresist and
substrate was already solidified when the photoresist temperature had not risen above
the glass transition temperature, resulting in the reflow being essentially unaffected by
the contact angle. This means that controlling the bottom diameter of the photoresist
cylinder before reflow can determine the bottom diameter of the microlens after reflow.
The cylinder layout was replicated from the mask to the photoresist using lithography. So,
when the mask is designed and fabricated according to the target microlens array before
the experiments start, this indicates that the bottom aperture of the lens has been defined.
From the experimental results of groups 1–4 and 5–8 in Table 1, the volume reduction



Micromachines 2024, 15, 460 6 of 12

percentage k gradually reduced with an increase in the truncated cone diameter at the same
thickness. This was attributed to the larger exposed surface area resulting from increased
diameters, which exacerbated the volatilization of the photoresist solvent during heating.
The variable k makes it difficult to control the lens height h2, which requires numerous
experiments to achieve the desired size. The prolonged time required for thermal reflow
poses an unavoidable problem. Fortunately, ICP etching provides a solution by controlling
the etching selectivity ratio, which we have presented in the next section.
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The whole wafer was directly placed on the hot plate, and all parts of the wafer were
uniformly heated during thermal reflow. Consequently, all the microlens units of the
entire array were shaped simultaneously, making the fabrication time independent of the
array scale. We successfully used photoresist S1813 to machine a 128 × 128 MLA on a
silicon substrate with a microlens unit diameter of 30 µm and a total area of nearly 15 mm2.
The 3 µm thick cylinder arrays were heated for 3 min and reflowed into hemisphere
microlenses with a height of 1.78 µm and a uniformity of 0.02%. A roughness average of
1.13 nm with a 0.50% uniformity was calculated by fitting the extracted microlens profiles
through MATLAB R2021a. The 3D morphology in Figure 5 shows the smooth surface of
the microlens, attributed to surface tension, and the machining of a larger microstructure
area with the same heating time, leading to high process efficiency. There are the two
distinguished characteristics of the thermal reflow process.
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3.2. Results and Analysis of ICP Etching

During ICP etching, the generated plasma etched the photoresist and the silicon
substrate concurrently, gradually transferring the microstructure down to the substrate.
When the photoresist etching rate was equal to the silicon etching rate, i.e., the etching
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selectivity SR = 1, the microstructure on the photoresist was transferred to the silicon at
1:1. Moreover, the final microstructure height decreased when the photoresist etching
rate was larger than the silicon etching rate, i.e., SR < 1, and inversely, it increased at a
selectivity of SR > 1. The h1 in Table 1 reveals that the photoresist layer thickness may
change slightly even at the same spin-coating speed, and the volume reduction percentage k
also varies with the cylinder diameters and thickness, resulting in the deviation of reflowed
spherical microstructures from the expected morphology. This error can then be repaired
by adjusting the etching selectivity. The etching results are related to process parameters,
such as chamber pressure, ICP power, RF power, gas flow, and etching time, among which
ICP power and chamber pressure are responsible for controlling all plasma densities and
have a minor influence on the selectivity. Therefore, we kept the ICP power at 800 W
and the chamber pressure at 10 mTorr constant in our experiments. Several experiments
were performed to research the relationship between the RF power and gas flow of C4F8,
SF6, and O2 on selectivity. The calculated experimental results are shown in Table 2 and
visualized in Figure 6.

Table 2. Results of the selectivity adjustment experiments.

Number RF Power (W)
Gas Flow (sccm) Height (µm) Etching Rate (µm/min)

SR
SF6 C4F8 O2 y1 y1 y3 EPR ESi

1 35 10 30 0 3.343 3.258 0.507 0.197 0.169 0.86
2 35 10 30 40 2.762 3.101 1.116 0.259 0.372 1.44
3 15 10 30 40 2.861 3.158 0.660 0.121 0.220 1.82
4 20 10 30 40 2.971 3.266 0.749 0.152 0.250 1.65
5 25 10 30 40 2.881 3.195 0.863 0.183 0.288 1.57
6 30 10 30 40 2.822 3.132 0.934 0.208 0.311 1.50
7 35 6 30 40 3.308 3.305 0.774 0.259 0.258 1.00
8 35 7 30 40 3.106 3.183 0.850 0.257 0.283 1.10
9 35 8 30 40 3.467 3.623 0.916 0.253 0.305 1.21

10 35 9 30 40 3.513 3.759 1.012 0.255 0.337 1.32
11 35 10 20 40 3.525 4.797 2.276 0.335 0.759 2.27
12 35 10 25 40 3.559 4.303 1.593 0.283 0.531 1.88
13 35 10 35 40 3.302 3.554 0.935 0.228 0.312 1.37
14 35 10 40 40 3.140 3.326 0.859 0.224 0.286 1.28
15 35 10 30 30 2.966 3.182 0.922 0.235 0.307 1.31
16 35 10 30 35 2.926 3.192 1.004 0.246 0.335 1.36
17 35 10 30 45 2.950 3.325 1.188 0.271 0.396 1.46
18 35 10 30 50 2.901 3.364 1.331 0.290 0.444 1.53

Figure 6 intuitively shows that the selectivity increases with SF6 and O2 flow and
decreases with RF power and C4F8 flow. During the ICP etching process, C4F8 ionizes and
deposits on the exposed surface, forming a fluorocarbon polymer that prevents etching,
called passivation, and SF6 and O2 ionize into plasma for etching the silicon and photoresist.
The etching ions can only contact and remove the silicon and photoresist materials after
consuming the passivation layer deposited on their surfaces. So, an increase in C4F8 flow
enhances the protective action, causing degradation of the etching rate of both silicon and
photoresist, as shown in Figure 6a. Because the area of silicon in the etching region is larger
than the area of photoresist, C4F8 is more influential on the silicon etching rate, resulting
in decreased selectivity. The F ions ionized from SF6 are mainly employed for etching
silicon, so when SF6 flow increases, the F ion density in the plasma becomes higher, which
improves the etching rate of silicon. The photoresist etching rate remains almost static in
Figure 6b, and the selectivity rises as a result. O2 is used to enhance the etching of polymer
materials, but Figure 6c exhibits that the addition of O2 changes the selectivity from smaller
than 1 to greater than 1. This suggests that O2 reacts with the C atoms of C4F8, weakening
the passivation of C4F8 and leading to an increase in the silicon etching rate. RF power
boosts the kinetic energy of the plasma bombarding material, which enhances the physical
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etching. It can be seen from Figure 6d that the etching rates of both silicon and photoresist
rose with increasing RF power. These experimental results demonstrate that RF power and
gas flow can regularly change the selectivity, but this does not mean that these process
parameters are appropriate for all situations. When the selectivity needs to be greatly
adjusted, SF6 is better suited for the task. Partly because SF6 only changed the etching rate
of silicon, it had almost no impact on the photoresist, making selectivity easily predictable.
Additionally, a small variation in SF6 flow caused a relatively large change in selectivity,
making it convenient for rapid and extensive adjustments. O2 is recommended for minor
selectivity adjustment because a 20 sccm change in O2 flow only changed the selectivity by
0.21, as shown in Table 2. It must be noted that changing the etching parameters also brings
some side effects; thus, optimizing the process recipe requires caution. For example, an
increase in SF6 gas flow will enhance the isotropy of the etching process, whereas a larger
RF power makes the process more anisotropic.
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The present selectivity can be controlled from 0.4 to 2.3, adequately satisfying the
etching requirements for most conditions. The same reflowed microlens with different
etching selectivities can obtain microstructures with different characterization parameters,
including the radius of curvature, which is exhibited in Figure 7. The height of the reflowed
microlens before ICP etching was 3.38 µm and the radius of curvature was 60.80 µm. When
the selectivity was 1.03, the size of lens on silicon changed slightly. However, the lens height
was reduced and the radius of curvature was 118.85 µm when the selectivity was SR = 0.89.
Drastically varied selectivity may transform the lens spherical structure to an ellipsoidal
shape, such as 1.52 selectivity in Figure 7, which fits to the major semiaxis a = 21.30 and the
minor semiaxis b = 8.62. The 128 × 128 silicon microlens array after 15 min of ICP etching,
with a selectivity of 0.41, is presented in Figure 8, with an average surface roughness
of 1.2 nm and a uniformity of 0.85%, which confirms the technological feasibility of the
thermal reflow process combined with ICP etching for machining large-scale MLAs.
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and (e) the cross-sectional profile of the array.
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4. Conclusions

In conclusion, thermal reflow processes combined with ICP etching proved to be
an efficient fabrication process for machining large-scale microlens arrays. The cylinder
array after lithography was reflowed into smooth spherical microstructures using reflow
processes driven by surface tension, which were subsequently delivered to the silicon
substrate by ICP etching. We discovered that the bottom diameter of the microlens remained
invariant because the contact surface of photoresist and substrate had already cured under
the influence of high temperature before the reflow began. This characteristic makes it
convenient for controlling the microlens dimensions. Although the photoresist volume
reduction percentage varied with the thickness of the cylinder, resulting in a deviation of
the size after reflow from the designed size, this can be rectified by adjusting the etching
selectivity. The selectivity increased with O2 and SF6 flow, with an opposite contribution
of C4F8 and RF power. A 128 × 128 silicon microlens array with good uniformity and a
low surface roughness of 1.2 nm was fabricated in a short period of time, illustrating the
excellence of the thermal reflow process for mass production. Our future work includes
fabricating larger-scale microlens arrays and constructing optical platforms for measuring
the optical performance of MLAs.
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