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Abstract: Regular device-scale DNA waves for high DNA concentrations and flow velocities have
been shown to emerge in quadratic micropillar arrays with potentially strong relevance for a wide
range of microfluidic applications. Hexagonal arrays constitute another geometry that is especially
relevant for the microfluidic pulsed-field separation of DNA. Here, we report on the differences at
the micro and macroscopic scales between the resulting wave patterns for these two regular array
geometries and one disordered array geometry. In contrast to the large-scale regular waves visible in
the quadratic array, in the hexagonal arrays, waves occur in a device-scale disordered zig-zag pattern
with fluctuations on a much smaller scale. We connect the large-scale pattern to the microscopic flow
and observe flow synchronization that switches between two directions for both the quadratic and
hexagonal arrays. We show the importance of order using the disordered array, where steady-state
stationary and highly fluctuating flow states persist in seemingly random locations across the array.
We compare the flow dynamics of the arrays to that in a device with sparsely distributed pillars. Here,
we observe similar vortex shedding, which is clearly observable in the quadratic and disordered
arrays. However, the shedding of these vortices couples only in the flow direction and not laterally
as in the dense, ordered arrays. We believe that our findings will contribute to the understanding
of elastic flow dynamics in pillar arrays, helping us elucidate the fundamental principles of non-
Newtonian fluid flow in complex environments as well as supporting applications in engineering
involving e.g., transport, sorting, and mixing of complex fluids.

Keywords: DNA waves; micropillar arrays; microfluidics; elastic turbulence; geometry; polarization;
polymer solutions; porous media

1. Introduction

Viscoelastic effects are pervasive wherever liquids contain polymer molecules that are
freely suspended in the solvent. These molecules contribute an elastic energy component
to the overall behavior of the fluid, resulting in a range of dynamic behaviors, typically
at high Deborah numbers, De, and low Reynolds numbers, Re. The Elasticity Number,
El ≡ De/Re, describes the relative magnitude of elastic and viscous forces. In this situation,
it is high, leading to flow effects such as non-inertial, elastic turbulence [1]. The altered flow
properties have strong relevance for, for example, food processing, polymer manufacturing,
soft matter engineering, water treatment [2], heat transfer [3], and enhanced oil recovery [4].
Adding polymers has been shown to result in increased mixing rates in small systems [5]
where flows are otherwise laminar and mixing highly inefficient. Relevant biomedical
examples of polymeric viscoelastic flows in porous media include biofilm formation [6]
and pathogen clearance by mucus in the lungs [7,8]. Despite having a broad importance,
elastic flow dynamics remain unexplored to a large extent.

To better understand the viscoelastic effects that lead to dynamic behaviors and
that influence overall flow properties in porous media, simple model systems have been
employed based on microfluidic channels containing single to entire arrays of obstacles in
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1D, 2D, and 3D [9]. Although real-life pore throat diameters and pore bodies are typically
found in the range 100 nm–10 µm and 200 nm–50 µm, respectively [10], models with small
pore dimensions are typically complicated to fabricate and more difficult to study. Most
work on elastic flow across porous media has, therefore, focused on models with larger
dimensions. However, viscoelastic flow behavior on small scales is of great interest as
the relative magnitude of the elastic forces is predicted to strongly depend on relevant
device feature sizes (L) due to the scaling of the Elasticity Number, El ∝ L−2. In addition,
with small device dimensions, the length scale of the polymers and the length scale of the
device features overlap, something we identified as an important factor for the formation
of waves [11]. We could, therefore, expect entirely different (elasticity-dominated) flow
behavior in smaller models that are relevant to a wide range of applications.

There has been significant interest in understanding how the density and distribution
of the pillars affect the elastic flow in 2D micropillar arrays. Early work on larger pillar
arrays (R = 2.38 mm) showed that unsteady flow patterns emerged at a lower flow rate
for a hexagonal array compared to a quadratic array [12]. More recently, a wide range of
microscopic pillar array geometries has been investigated. Work on 1D arrays demonstrates
the crucial importance of the spacing between pillars for the resulting flow pattern. Shi et al.
found that smaller spacing in a 1D pillar array results in stronger flow fluctuations at
similar Weissenberg numbers, Wi [13]. Browne et al. observed that for a large pore spacing,
upstream vortices form, whereas for a small pore spacing, switching between two unstable
flow states occurs [14]. Others have studied the flow dynamics of both ordered [11,15–19]
and disordered [11,17,18,20,21] 2D pillar arrays. It is not fully understood how the geome-
try changes the dynamics. Kawale et al. found that the upstream instabilities in a hexagonal
pattern were shaped as geometrical prisms, while in a quadratic pattern, they filled up the
space between the pillars in the flow direction [16]. There have been reports of pillar geom-
etry randomization to both delay [18] and promote [17] the onset of elastic turbulence. The
latter work reported that at sufficiently high Wi, the flow becomes geometry-independent.
Although much work has been conducted, the parameter space is vast, and many factors,
such as flow in small-scaled arrays, remain unexplored.

We have recently reported the formation of regular macroscopic waves [11] in high-
concentration DNA solutions flowing through quadratic arrays of cylindrical pillars in
microfluidic channels and demonstrated that these waves interfere in the sorting of DNA
in microfluidic devices based on deterministic lateral displacement (DLD) [22]. We also
noticed that the formation of waves is highly sensitive to any disorder in the array as well
as to the symmetry of the pillars [23]. We introduce arrays with hexagonal geometry here
due to their relevance for pulsed-field separation of DNA [24,25]. A hexagonal array can
also be interpreted as a DLD device with a periodicity of N = 2. Similarly, one can interpret
a quadratic array as a DLD with periodicity of N = ∞, which is equivalent by symmetry
to N = 0 and N = 1. To better understand the underlying mechanisms of the waves, we
also introduce a sparse array where we can study the viscoelastic flow around individual
pillars. We evaluate the flow of a concentrated λ DNA solution (400 µg/mL) in our arrays
to study the resulting flow patterns and dynamics at both macro and micro scales. By
tracking the dissolved polymer molecules themselves with fluorescent imaging, we can
observe fluctuations in local sample concentration, and using polarization microscopy, we
can observe their orientation and extension.

2. Materials and Methods

The devices are fabricated using standard microfluidics practices with replica mold-
ing [26,27] using similar designs and approaches as described in Ref. [11]. See details of the
device design and fabrication in Sections S1 and S2 of the Supplementary Materials. The
pillar arrays are approximately 8 mm long, approximately 800 µm wide, and 10.9 ± 0.1 µm
in depth. The pillars are approximately 7 µm in radius with a gap of approximately 4 µm
between rows and columns of the array except for the sparse array. See Table 1 for details
of all the dimensions for all arrays. The hexagonal array has half a unit cell in row shift
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for every other row, thereby making it slightly stretched in the lateral direction compared
to a true hexagonal array. The array of sparsely distributed pillars was designed to be
as open as possible without exceeding aspect ratios that might lead to the collapse of the
PDMS device.

Table 1. Overview of the device dimensions *. Depth of all devices is h = 10.9 ± 0.1µm.

Array Pattern Pillar Radius
Nx

1, Ny
2 Porosity 3 Lateral Pillar Gap Lateral Gap-to-Contour-Length Ratio 4

r (µm) G (µm) (G/L)

Quadratic 7.1 ± 0.4 44, 444 0.52 4.1 ± 0.4 0.25
Hexagonal 7.0 ± 0.2 44, 444 0.52 3.9 ± 0.2 0.25
Disordered 7.0 ± 0.1 37, 381 0.54 ± 7.5 4.5 ± 1.5 0.27 ± 0.09

Sparse 7.0 ± 0.1 6, 70 0.99 100 6.06
1 Number of pillars in the lateral direction. 2 Number of pillars in the longitudinal direction. 3 Porosity is defined
as the volume ratio of the pores to the entire volume of the channel. 4 Lateral gap-to-contour-length ratio is
based on a contour length of λ-phage DNA of 16.5 µm. * The ranges that are given for the entries represent
the measurement uncertainty except for the porosity and lateral gap-to-contour ratio, where they represent the
variation in the actual values across the pillar array in the disordered device.

We work at a semi-dilute concentration (400 µg/mL, concentration/overlap concentra-
tion ratio, C/C* ≈ 4, see calculation details in [11]) of λ-phage DNA in a solution of 5× Tris
EDTA (TE) buffer. We have added a bisintercalating dye, YOYO-1, at a base-pair-to-dye
ratio of 50:1 to visualize the DNA using an epi-fluorescent microscope. We flow the DNA
through the array by applying a pressure gradient. See the details in the Supplementary
Materials: experimental setup including polarization microscopy in Section S3, sample
preparation in Section S4, and image analysis and frequency analysis in Section S5.

We define the Deborah number De ≡ (u/Lch)τ, where u is the estimated mean flow
velocity, Lch is the characteristic length scale (radius of pillars plus the gap between the
pillars for quadratic, hexagonal and disordered arrays, and the gap, 100 µm, for the sparse
array) and τ = 1.43 s is the measured relaxation time of the polymer (at 25 ◦C, see details
of the measurement in [11]). Please note that τ and De are defined assuming the conditions
to be ideal, the solution to be dilute, and in equilibrium. Also, the numbers vary over time
and depend on the location in the array. Furthermore, the exact definitions of length scales
and velocities may differ in the literature. The numbers presented here should, therefore,
be considered approximate and can be difficult to compare to the numbers reported by
other authors. The mean flow velocity, u = Q/A, is calculated from the flow rate, Q, and
the cross-sectional area of the device is calculated based on the lateral pillar gap and the
number of pillars in the lateral direction, A = GhNx. Numbers are rounded off to two
significant digits.

3. Results

Results are presented for flow across three array geometries: quadratic, hexagonal,
and disordered. In addition, a sparse array was studied to illustrate the behavior around
individual pillars. The resulting fluorescence intensities and their fluctuations are presented
in real space, in time, as well as in the corresponding Fourier space. The orientation of
the DNA is visualized using polarization microscopy. For a full understanding of the
following discussion, we strongly encourage the reader to view Movies S1–S4 in the
Supplementary Materials.

3.1. Array Geometry Dictates the Large-Scale Flow Patterns

At high flow velocities, quadratic arrays exhibit ordered device-scale waves with the
peaks corresponding to higher concentration and extension with synchronized orientation
(see Figure 1A). We thoroughly investigated these waves as described previously [11]. When
every other row is shifted half an array pitch, resulting in the hexagonal lattice, different
flow dynamics can be observed. The repetitive diamond pattern of waves with distinct
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wavelengths of different orientations, like those seen in the quadratic array, can no longer
be observed. Instead, we observe chaotically distributed zig-zag patterns of varying size at
high flow velocities (see Figure 1B). The zig-zag patterns undergo continuous reshaping,
disintegration, and merging with other regions into new zig-zag patterns. As observed
previously [11], when the pillar distribution is randomized, no large-scale fluctuations are
visible even at the highest flow velocity Figure 1C. Some regions develop concentration
variations that look wavelike, but they do not propagate very far through the array as they
do in the quadratic or hexagonal arrays. To more easily observe the dynamic phenomena,
see Figure 2 for kymographs and Movie S1 of the Supplementary Materials.

In a sparse array where the pillars are separated by a large distance (100 µm), we
observe that the flow around the pillars couples only in the flow direction and that large-
scale patterns do not form (see discussion in Section 3.5 below).

Figure 1. Large-scale flow pattern as a function of array geometry and flow velocity. Repetitive
wavefronts can be seen in the quadratic array at higher flow velocities (A), whereas smaller repetitive
zig-zag patterns are visible in the hexagonal array (B). In contrast, no large-scale flow pattern is
visible in the disordered array (C). Please note that the vertical stripes seen in the lower flow velocity
micrographs and in the disordered array are most likely a combination of sample concentration
fluctuations together with viscoelastic focusing occurring in the inlet channels. The brightness and
contrast settings are the same for all micrographs of the same array type. Please note that some
fabrication defects are visible, i.e., the bright specks in (A), the black strand in (B), and the bright ring
in (C). The devices are made with a pillar radius of R ≈ 7µm. The quadratic and hexagonal arrays
are made with a pillar–pillar gap of G ≈ 4µm, while for the disordered array, the average pillar–pillar
gap is G ≈ 4.5µm. Detailed information about the device dimensions for the different designs is
given in Table 1. The magnification is 2×, and the exposure time for all micrographs is 30 ms. Scale
bar is 400 µm. The data in (A,C) have been adapted from [11], DOI: 10.1039/D2LC01051H, under the
terms of the CC BY 3.0 license https://creativecommons.org/licenses/by/3.0. See Movie S1 of the
Supplementary Materials for a video representing the raw data.

https://creativecommons.org/licenses/by/3.0


Micromachines 2024, 15, 268 5 of 18

Figure 2. Kymographs of quadratic (A), hexagonal (B) and disordered (C) arrays for increasing flow
velocity. The kymographs are based on lines perpendicular to the long axis of the array in between
two rows of pillars. The vertical lengths are normalized so that the flow velocity multiplied by the
time span is equal for all kymographs. The brightness and contrast are set so that they are the same
across the flow velocities for each array type. The horizontal scale bar is 200 µm. The data are based
on low magnification (2×) videos, same as is presented in Figure 1.

3.2. Spatial and Temporal Frequency Analysis of Concentration Fluctuations

To characterize the periodic behavior of the waves, spatial and temporal Fast Fourier
Transforms (FFT) are applied to the movie data. Specifically for the spatial Fourier trans-
form, an FFT is applied to each frame, and the average of these FFTs is presented in Figure 3
at increasing flow velocities. The frequency spectra at high flow rates exhibit clear differ-
ences for the different array types. For the quadratic array, a clear directionality is evident,
while for the hexagonal array, a broad spectrum is the result (Figure 3A,B) consistent with
Figure 1. The disordered array (Figure 3C), however, does not exhibit any significant
change in the frequency spectrum with the flow velocity. The temporal frequency of the
concentration fluctuations is characterized to address two questions. First, the Fourier
amplitudes of the waves are used to quantify the strength of the waves (see Figure 4). In
this way, the start-up distance of the formation of the waves can be quantified. Second,
the amplitude spectra exhibit a power law with different exponents for different cases (see
Figure 5).

To quantify the establishment of the long-range synchronization of the flow patterns,
the temporal frequency spectrum is characterized as a function of longitudinal position
along the device channel (see Figure 4). As is clear also from Figure 1, the waves do not
start immediately in the array. Instead, it seems that the flow needs to pass approximately
50 rows of pillars for waves to form in the quadratic and the hexagonal arrays.

The power law dependence of the fluctuations may give clues to their origins. The
temporal Fourier transform is thus performed on a region of interest in the center of the
device. The region of interest is a circular region with a diameter of 163 µm corresponding
to approximately the width of the waves. The result is that when there are no waves, i.e., for
the disordered array as well as for the low flow rates for the quadratic and hexagonal arrays,
we have an exponent with values in the range −0.5 . . .−1.0. For higher flow rates where
fluctuations develop, we have exponents ≈−1.5 for quadratic and ≈−2.0 for hexagonal.
The details of the calculations are given in Section S5 of the Supplemental Material, and the
results are given in Figure 5.

An alternative way to analyze the data is to consider the relationship between the
average pixel values and the corresponding standard deviations. Density heat maps for the
different geometries at different flow velocities are given in Figure S3 in the Supplemental
Material. As expected, the disordered array exhibits small fluctuations, whereas the
quadratic and the hexagonal arrays have similar overall patterns with increasing standard
deviations as the average pixel values increase. A closer look at the data reveals that for the
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hexagonal array, the fluctuations are stronger for a given average pixel value than for the
quadratic array, as can be seen in Figure 1.

Figure 3. Logarithmically scaled and time-averaged two-dimensional Fourier spectra of DNA sample
flows across quadratic (A), hexagonal (B), and disordered (C) array patterns as a function of mean flow
velocity across the device. The bottom three rows of spectra for the array patterns have had the top
row (background) subtracted to highlight the discrepancy between the arrays. The peak frequencies
within the quadratic array at high pressure are limited to a narrow cone with wavelengths within
approximately 300 µm parallel with the flow direction (y) and approximately 150 µm perpendicular to
the flow (x). Instead, the hexagonal array shows a high signal at similar low frequencies for the entire
range of angles. The panels show only the positive wavelengths in the x-direction (perpendicular
to the flow direction) and not the negative ones. The high-magnitude peak at infinite wavelength
corresponds to the zero-frequency component, while the high-magnitude horizontal line corresponds
to the pillar rows. The image brightness and contrast have been set so that the absolute amplitude
limits are the same for all the array patterns and pressure runs. The spectra are based on data recorded
during 30 s at low magnification (2× objective), same as is presented in Figure 1.
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Figure 4. Strength of the waves as a function of position along the array in the devices. Temporal
Fourier amplitudes are plotted as a function of position along the quadratic (A), hexagonal (B), and
disordered (C) arrays. Temporal Fourier transforms along each row of regions of radius 81.5 µm are
averaged (in total, 41 rows with 5 regions in each row (see Figure S4 of the Supplementary Materials)).
The amplitudes are averaged over a factor of two in frequency, i.e., at the frequencies

√
(2)τ−1 to√

(2)−1τ−1 where τ is the relaxation time of the DNA for each position along the channel. The
error bars denote the standard deviation of the Fourier amplitudes among the regions in each row.
Graphs are plotted for different flow velocities. The data are based on 30 s videos recorded with 2×
magnification (same as is presented in Figure 1).

Figure 5. Fourier transforms of temporal variations. (A–C) show the average 1D Fourier amplitude
spectra for 30 s recordings of the quadratic, hexagonal, and disordered arrays at 2× magnification
(same data as is presented in Figure 1). The averages are based on the mean intensities of 5 × 41 circu-
lar regions of radius 81.5 µm across the entire field of view. (D) The amplitude spectra are analyzed
by first identifying the knee in the spectra and subsequently fitting an exponential to the sloped
region immediately to the right of the knee. The exponent is plotted as a function of applied mean
flow velocity. The inverse relaxation time, τ−1, has been outlined in (A–C).
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3.3. Persistent Flow Patterns Depend on Geometries

When averaging over a long time period (long in relation to the fluctuations in the
system), clear differences between the array types emerge. Figure 6 shows 30 s time
averages of fluorescence videographs. Please note that the brightness and contrast have
been enhanced to show the differences. The quadratic array shows waves moving through
the device without any local bias. Therefore, an average over sufficient time to allow several
waves to pass will not produce any pattern. In contrast, the low-concentration depletion
zones of the hexagonal and disordered arrays exhibit different distinct patterns. Although
the waves in the hexagonal array seem to be more chaotic than those in the quadratic array,
their movement is biased such that certain local areas of the array are avoided. The rows of
the hexagonal array thus exhibit long-range order comprising a synchronized depletion
zone with orientation either to the left or right of the general direction of the flow. The
patterns in the disordered array are highly dependent on the local pillar arrangement (see
Figure 7 and Supplemental Movie S3). Regions of both stable flows and highly fluctuating
flows co-exist. The highly fluctuating regions are most often connected into streaks of
2–4 stagnant zones at irregular locations within the disordered array. The stagnant zones
are characterized by low DNA concentrations and a small degree of cross-flow. A higher
degree of fluctuations and periodic blob growth and shedding (as seen in the quadratic
array) occurs in the upstream locations within these streaks. However, we also observe
stable flow regions with a lack of switching of the flow direction, which is not seen in the
quadratic and hexagonal arrays. In between the highly unstable and stable flow regions,
there is a spectrum with varying degrees of spatial flow fluctuations depending on the
location within the array. The regions seem to last indefinitely and reappear in the same
locations after repeatedly turning off and on the pressure that drives the flow.

3.4. Microscopic Patterns and Polarization

With the DNA stained with intercalating dyes, we can utilize two-channel polar-
ization microscopy to probe the local orientation of extended DNA molecules (see the
high resolution (100×) micrographs in Figure 8). The images are colorized with the pixel
value denoting fluorescence intensity and the hue denoting the emission polarization ratio,
P = (I∥ − I⊥)/(I∥ + I⊥). I∥ and I⊥ refer to the two perpendicular polarization channels
placed at a 45-degree angle to the long axis of the array.

We showed in our previous work [11] that the flow shifts orientation locally at the
pillars in the quadratic array at high flow velocity. A similar phenomenon is observed with
the hexagonal array (see Figure 8). The local orientation and stretching of DNA switches
between right and left for both quadratic and hexagonal flows.

At low flow velocities, P is close to 0 for the three array geometries, implying little or
no polymer directionality. The flow appears laminar with few observed flow instabilities.
At higher flow velocities, high levels of elastic instability together with larger values of P
are observed. High P can be expected as DNA molecules are known to extend during high
shear and extensional rates [28,29]. The flow pattern of the quadratic and the hexagonal
arrays appear remarkably similar, with switching of the flow direction between left and
right (see Figure 8F–H,J–L). Please note that between the switching events, the flow patterns
in the two array types differ. In the quadratic array, dark regions of low DNA concentration
form in the gaps between the pillars in the flow direction. Periodic cycles of accumulation
and shedding of DNA mass are observed in each of the two vortices formed in the pillar
gaps (see Figure 8G and Movie S2). For the hexagonal array, the DNA molecules flow
along the highly curved paths, exhibiting strong preferential orientation in either of the
polarization channels.
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Figure 6. Time averages (30 s) for the three dense pillar arrays: quadratic (A), hexagonal (B) and
disordered (C). The brightness and contrast have been set so that the features are enhanced for each
image. The exposure time for all recordings was 30 ms. The frame rates were 2 fps, 12.5 fps, 21 fps,
and 33 fps for the images left to right in (A) and 2 fps, 12.5 fps, 21 fps, and 21 fps for the images left to
right in (B,C). The scale bar is 100 µm, and the data are based on 4× magnification measurements.



Micromachines 2024, 15, 268 10 of 18

Figure 7. The disordered array exhibits high local flow pattern variation. (A) Micrograph snapshots
of the disordered array at low and high pressures, emphasizing the wide variation in local flow
behavior. The red arrows show (1) a highly stable flow region at high DNA concentration. (2) A
region with a vortex pair, continuously generating and shedding blobs. (3) An unstable flow region
that switches from low to high DNA concentration and low to high flow velocity. (4) An example
region showing high stability at low flow velocity. (B) Kymographs of the row-gap areas marked out
with red arrows in (A). Scale bar is 20 µm in (A). The data have been recorded with 20× magnification.
See also Supplemental Movie S3 for a dynamic depiction of the high-velocity flow.

Figure 8. Polarization micrographs (100 × objective) of polymer orientation on the scale of individual
pillars. There is a stark difference in the small-scale dynamics between the sparse (A–D), quadratic
(E–H) and hexagonal (I–L) arrays. The images are composed of the hue, saturation, and value (HSV)
color model, where the fluorescence intensity is denoted by the pixel value and polarization ratio by
the color. Please note that the colored arrows to the left indicate the two polarization directions that, in
turn, are perpendicular to each corresponding orientation of the DNA. At low flow rates (A,E,I), the
flow direction is parallel to the long axis of the array for all array types. In the sparse and quadratic
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(and disordered arrays), the following phenomenon is observed: A mass of DNA strands (a blob)
grows and subsequently is shed in the vortex pair upstream of the pillar. The blobs are denoted
with black arrows. At high flow rate in both the quadratic (F–H) and the hexagonal array (J–L), the
DNA strand flow fluctuates in the direction between the left or the right of the long axis of the array.
Please note that the DNA strands are concentrated into diagonal streaks and that there is a significant
number of extended polymers that are stuck at the trailing edge of the pillars, resulting in a contrasting
polarization ratio. The scale bars correspond to 10 µm. Please note that the pillars are slightly
laterally compressed at higher flow velocities. Subpanels (E–H) have been reproduced from [11],
DOI: 10.1039/D2LC01051H, under the terms of the CC BY 3.0 license https://creativecommons.org/
licenses/by/3.0, and the Deborah numbers have been recalculated according to the definition used
in this article.

3.5. The Flow around Sparsely Distributed Pillars Couples Only in the Flow Direction

To illustrate how the proximity of the pillars affects the formation of the waves, we
investigate a sparse array, where the pillars are separated from each other by a distance
(100 µm) that is large in magnitude compared to the size of the pillars. Interestingly, we
do not observe any lateral coupling between the flow of neighboring pillar columns. We
note that the distance between the pillars is much greater than the contour lengths of the
longest DNA considered in this work (see Table 1), as well as compared to the size of the
vortices. Analyzing the space in between the pillars, we find a highly uniform flow of DNA
with little fluctuations (see Figure 9A–C). At higher flow velocities, vortex pairs form at
the pillars along with the growth of a DNA blob and subsequent shedding of this blob (see
Figure 8B–D and Movies S2 and S4). The apparent blob size is much larger than in the
quadratic or disordered arrays at similar flow velocities. The shedding of a blob destabilizes
the downstream vortices of the same array column and leads to a cascade shedding of the
DNA blobs downstream (see Figure 9D or more clearly in Movie S2).

Figure 9. The flow across the array of sparsely distributed pillars is overall homogenous. However,
vortices form upstream of the pillars where DNA is periodically collected and subsequently shed. A
shedding event triggers the downstream vortices to shed. (A) Kymographs of the dashed horizontal
line in (C) showing the dynamics that appear at high De. (B) Kymographs with the same data from
(A) where the time span is selected so that the traversed distance is kept constant. The relative durations
for the kymographs in (B) are plotted as red bars in (A) for respective flow velocity. (C) Fluorescent
micrograph snapshot at high flow velocity. Note the upstream DNA blobs. (D) Kymograph of the
dashed vertical line in (C) to elucidate the cycles of growth and DNA blob shedding. The blobs (bright)
grow in time until they are shed (dark section). The devices are made with a pillar radius of R ≈ 7µm.
The pillar–pillar gap is G ≈ 100µm. Detailed information about the device dimensions is given in
Table 1. The kymograph spans a total of 6.4 s. Scale bars are 500 µm in (B) and 200 µm in (C).

https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
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4. Discussion
4.1. Overall Pattern Formation Is Connected to Flow Behavior around Individual Pillars

As is clear from Figure 1, we find a striking difference in the large-scale flow patterns
of the quadratic and the hexagonal arrays. Based on the results of polarization imaging at
high magnification (see Figure 8) we propose that this is primarily due to the smaller local
curvature in the hexagonal array compared to the quadratic one. In the quadratic array, it
is the formation of stagnation zones between the pillars in the flow direction, where the
maximum curvature is located, that precedes all other effects. In the hexagonal array, while
there are stagnation zones, they are considerably smaller. The time required to build up
instabilities (vortices) and for them to collapse is, therefore, considerably smaller in the
hexagonal array, leading to higher temporal frequencies in the fluctuations (see Figure 5).
The amplitude and spatial extent of the flow instabilities in the arrays are seen to increase
with flow velocity or De (see Figure 5).

Instabilities occurring upstream of pillars, similar to those that we observe, have been
studied by others [16,30–33]. Although they have also observed growth of the instability
as a function of Wi and the wobbling between two configurations, only Kawale et al.
have observed the subsequent shedding of such instabilities [31] when studying the flow
of hydrolyzed polyacrylamide (HPAM) across multiple geometries. Interestingly, they
observed “dead zone washing” in both their quadratic and hexagonal arrays. They found
that the hexagonal arrays exhibit smaller dead zones with a “prism”-like shape. It is
possible that growth and shedding of DNA also occur in our hexagonal array, but that
occurs at spatial and temporal scales that are beyond our experimental capabilities and
cannot be ruled out. However, it could also be that, because the dimensions of the arrays
and the composition of the viscoelastic fluid used in our work differ from that of Kawale
et al., this alters the elastic dynamics significantly and prevents shedding and growth
cycles from occurring in our hexagonal arrays. Although Kawale reported that a shedding
event disturbs downstream vortices, they did not observe any large-scale flow patterns
like the waves that emerge in our system. We hypothesize that the important factors that
distinguish our work from that of others are that our arrays are denser and of much smaller
array dimensions. The small dimensions lead to much higher El and stronger elastic effects,
whereas the high pillar density leads to smaller distances between flow patterns and thus
allows for a higher level of coupling between dead zones, vortices, and other effects at
the individual pillar scale. Other experimental studies on flow across disordered arrays
have had much higher porosity (0.84 [17,18]) with larger pillar radii and gaps (R = 50 µm,
G ≈ 95–240 µm [17,18]) and different viscoelastic fluids, e.g., polyacrylamide-based Boger
fluids [18] and aqueous wormlike micellar (WLM) solutions [17].

4.2. Disordered Arrays Prevent Long-Range Synchronization

The lack of long-range flow coupling in the disordered array points to a fundamental
mechanism in the formation of waves. In high magnification images (100×, Figure 7)
and in Supplemental Movie S3, we see that both concentration variations around pillars
and vortices in stagnant zones build up in the disordered array. However, because of
the random nature of the array, each stagnant zone is different, and the formation and
collapse of vortices are also different. There is, therefore, no global population of similar
states that can synchronize to form waves. Similar to what others have observed [14,17],
we observe multiple flow states across our arrays. Various steady-state patterns form
in geometries that we might identify and use as the basis for new designs with specific
functions, such as maximizing or minimizing the depletion of DNA locally. Increased
disorder in 2D-micropillar-array geometries has been shown to both suppress [18] and
enhance flow instability [17]. Both referenced works report varying degrees of flow velocity
fluctuations depending on the local pillar distribution and find stagnation zones when
pillars are next to each other in the flow direction. In the earlier example, Walkama et al.
identified that a disordered array geometry leads to preferential flow paths, which promote
shear over extensional flow by reducing the polymer stretching [18]. These preferential
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paths are similar to those that we observe in the disordered array. Conversely, in the
latter example, Haward et al. explained their finding of enhanced flow fluctuations due
to the occurrence of stagnation points, which leads to high tensile stresses and elastic
instabilities [17]. In our system, we observe a highly reduced level of flow instabilities for
the case of a disordered geometry, consistent with the findings of Walkama et al. [18].

We want to stress that our work does not represent a comprehensive study of disor-
dered arrays. There are multiple ways of designing a disordered array, which may lead to
significantly different flow dynamics. The pillars in our disordered design are still located
along periodic rows, even if the rows are laterally shifted with respect to each other. A
completely randomized pillar distribution or larger variation in the gaps with overlapping
pillars (i.e., pillars of various sizes) could result in an entirely different flow pattern. See,
e.g., the disordered array design of De et al. [34]. We believe that factors such as the
pillar radius, porosity, and the properties of the viscoelastic fluid (relaxation time, contour
length to pillar radius and array pitch ratios, and the degree of shear thinning) all play an
important role in forming the flow pattern. It, therefore, becomes complicated to compare
our work directly to that of others.

4.3. Flow Patterns around the Sparsely Positioned Pillars Are Synchronized in the Flow Direction
but Not Laterally

We show similar behavior in our DNA solutions that others have reported for other
types of viscoelastic fluids around pillars of varying dimensions. We find instabilities
both upstream and downstream of the pillars in our sparse arrays. As seen by some
authors [31,35], we also observe that the upstream instabilities collapse or shed at high
flow velocities (see Figures 8 and 9). When the vortices upstream of the pillars shed DNA
blobs, these blobs persist for long enough that they trigger the collapse of vortices far
downstream. However, no lateral wave behavior is observed for the array of sparsely
distributed pillars. A simple explanation is that even if vortices form and shed in the
vicinity of the pillars, they are too far apart to communicate laterally. Our results are in
alignment with Shi et al. [13], who found that a smaller spacing between pillars in a 1D
array leads to stronger flow fluctuations. Although they do not report any vortex shedding,
they do observe that instability immediately downstream of one pillar affects the upstream
instability of a pillar further downstream. We notice that the blobs of the sparse array are
much larger than those in the quadratic or disordered arrays. We believe that this is due to
the lack of confinement that occurs in the dense arrays by the tightly placed pillars. The
lack of interacting neighboring vortices could also allow for the formation of larger blobs
before collapse is triggered.

We observe that there is no lateral interaction in the sparse array, and we propose that
the coupling here depends on distance only. Conversely, in the flow direction (row-to-row),
we propose that the interaction depends on both distance and time. For the distance
dependence, we compared the contour length of the DNA with the row-to-row distance
and found that for DNA shorter than the row-to-row distance, we would not see any wave
formation [11]. For the time dependence, we need to consider the time it takes for a given
fluid element to go between two pillars, which in turn is related to the row-to-row distance
and the flow speed, and relate that to the lifetime of the relevant flow perturbation. The
latter can be expressed as a Deborah number with relaxation time corresponding to anyone
out of several time scales, such as the polymer relaxation time or the vortex lifetime.

4.4. Cyclic and Random Large-Scale Fluctuations

The fluctuations exhibit a wide range of random and cyclic behaviors. We highlight
various perspectives that we believe will be valuable for future theoretical investigations of
the phenomenon.

The high coherence of the waves in the quadratic array as opposed to the hexagonal
array (see Figure 1), is made clear by the kymographs in Figure 2. Here, we can see that the
waves are much longer-lived for the quadratic array than for the hexagonal array.
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Flow rate has a strong influence on the fluctuations. We observe that the fluctuations
increase with increasing flow rate. In line with what has been reported in the literature,
we also see that the frequency of the fluctuations increases with increasing flow rates (see
Figure 5). Qin et al. observed that an elastic wave propagating upstream from a cylinder
increases with velocity and penetrates higher upstream with higher Wi [32]. Varshney and
Steinberg observed an increase in the peak frequency and the corresponding cross-stream
elastic “wave” velocity with increased Wi [33]. Others have seen that temporal velocity
fluctuations often increase in magnitude with increased Wi. This has been the case for
many geometries, including a 1D pillar array [36], ordered 2D pillar arrays [17,18,37], and
disordered 2D pillar arrays [17,18]. Spatial velocity fluctuations have also been shown to
increase in magnitude with increased Wi for ordered 2D pillar arrays [18] and disordered
2D pillar arrays [18].

The standard deviation can be used to distinguish the different wave patterns that
we observe. Remarkably, the relationship between the maximum standard deviation as
a function of average pixel value seems to be linear with different slopes for the three
different array geometries, and it varies with flow rate, indicating that it originates in the
characteristic fluctuations in each geometry. Conversely, while the maximum average is
also linearly related to the standard deviation, it has similar slopes for quadratic, hexagonal,
and disordered arrays, and it is independent of flow rate, implying that it originates in
imaging noise.

We report clear trends in the scaling relationships of the amplitude versus frequency
plots for the different geometries. At low flow rates where no waves are observed, the
exponent is similar for all array types. In contrast, for high flow rates and for the quadratic
and hexagonal arrays where the waves appear, the exponent gradually changes to more
negative values as the flow rate is increased. We note that in the absence of waves, the
noise is consistent with a 1/ f power spectrum. Compared to the literature for viscoelastic
fluctuations, we need to keep in mind that most power laws are derived from velocity
fluctuations and not concentration fluctuations, as in our case. We display our results as the
amplitude, which means that we need to multiply our exponents by two to be comparable
with the power density exponents. Therefore, we have approximately −1 for the power
law exponent for the disordered array and the case of no waves. Consistent with our
findings, we notice that the power law exponents in most cases are more negative than the
Kolmogorov exponent of −5/3 that is associated with high-Re inertial turbulence. We can
also note that just like in our case, the power law exponents depend on the exact geometry
considered, with approximately −3 for the quadratic array and approximately −4 for the
hexagonal array. Groisman and Steinberg found the power law decay exponent to be
−3.5 [1]. Pan et al. [36] measured the power law decay exponent to be −1.7 immediately
following a 1D array and −2.7 far downstream. De et al. measured the power law
decay exponent of streamwise and lateral velocity fluctuations in a 2D pillar array to be
approximately −3 [37]. Grilli et al. used Lagrangian simulations based on an Oldroyd-B
constitutive equation for a 1D pillar array and found the power law decay exponents to be
−3.4 and −4.3 for various locations around a cylinder. Haward et al. found the power law
decay exponent to be −3.7 (staggered) and −2 (aligned) at low Wi (Wi 7.5) and −2.2 at high
Wi 75 [17]. Qin and Arratia measured a power law decay exponent of −1.7 just after a 1D
pillar array and −2.7 far downstream [38]. Ekanem et al. found that the power law decay
exponent was up to −2.1 at high pressure fluctuations [39]. Browne et al. found the power
law decay exponents in their 3D porous media to vary from −1.1 to −1.4 and −0.8 to −1.1
at Wi 3.9 and 4.4, respectively [10]. Browne refers to 11 other papers with varying exponent
magnitudes, all between −1 and −4.6 or −1 and −3. According to the theoretical work by
Fouxon and Lebedev, the power law decay exponent should be more negative than −3 [40],
which is consistent with some experimental results, however, with several exceptions.
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5. Conclusions

We have shown that changing the spatial pillar distribution transforms the large-scale
fluctuations in a λ DNA solution at high concentration as it flows across a micropillar
array. In contrast to the ordered regular waves seen for the quadratic array [11], we see
seemingly chaotic large-scale fluctuations for the hexagonal array, and we note an absence
of fluctuations when slightly randomizing the array pattern.

In a recent publication [23], we show that the characteristics of the waves can be
determined to a large part by the shape of the pillars. In the paper, we also showed that
the waves can be suppressed by alternating the pillar geometry such that the necessary
conditions for the waves cannot be reached. From a different perspective, we here posit
that a necessary condition for the formation of waves is that the microscopic flow patterns
at each pillar are synchronized across the device. One way to prevent synchronization is
to break translational symmetry in the device by changing the order in which the pillars
are arranged. Indeed, we see a clear suppression of the waves for the randomized array.
Similarly, we note that if the distance between pillars is large, i.e., in the sparse array, we do
not see any correlation between the flow behaviors at the individual pillars and thus no
formation of waves. The outcome is consistent with what we see for the effect of the relation
of the contour length of the DNA to the row-to-row distance in our previous work [11]. We
conclude that to fully understand the role of the distances between pillars in the formation
of the waves, we need to take into account the time it takes for a flow perturbation to
go from one row to the next, the relationship between the polymer contour length and
relevant pillar-to-pillar distances as well as the time scales related to polymer relaxation
and vortex dynamics. The importance of the long-range synchronization is also illustrated
by the fact that while on the microscale, the quadratic and hexagonal arrays feature striking
similarities, with rapid switching in the directions downstream of every pillar, the different
translational symmetry of the array results in dramatically different wave patterns as well
as preferred flow paths.

This work and our previous work [11,22,23], all explore variations of the design that
take place in the plane of the device, i.e., in a 2D context with weak confinement where the
ratio of the pillar size and the device depth is O(1). With both inertial turbulence [41] and
viscoelastic fluctuations [42–45] exhibiting flow patterns that depend on dimensionality, a
natural next step would be to investigate the effect of vertical confinement. A very thin
device would constrain the movement of any vortices, which in turn would be expected
to have a significant effect on the formation of the waves. Strong confinement in one
dimension is also known to increase the relaxation time of the DNA [46] and to decrease
its spring constant [47], which is consistent with the behavior of the molecule in one-
dimensional nanochannels of moderate confinement at the scale of the persistence length
and larger (the deGennes regime) but opposite to the behavior in strong confinement at a
scale less than the persistence length (the Odijk regime) [48]. We should, therefore, expect a
non-monotonous dependency of the Deborah number on the device depth for a given flow
rate, which in turn could be used to control which flow rates lead to wave formation. We
conclude that it would be highly interesting to explore the degree of confinement through
various depths of the device in relationship to DNA persistence length, DNA blob size, i.e.,
the radius of gyration, the size of the vortices, and typical lateral length scales in the device.

Although our work concerns the dynamics of the fluid in a fixed array, another
possibility that has been explored by several groups is to also include the dynamics of
flexible pillars that give additional degrees of freedom for engineering applications. Here,
a recent example of canopy waves resembles our waves, except they are observed as a
movement of the pillars rather than fluctuations in concentration [49]. It would be highly
interesting to explore these types of waves for different geometries, degrees of order, and
symmetry, just like we demonstrate here and have demonstrated previously [11,23].

Our work connects to several other fields of complex systems, opening up new in-
vestigations. We see a clear order/disorder transition. This applies to both the overall
behavior of the flow patterns as the local ordering of the DNA, forming a nematic liquid
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crystal phase as revealed by the polarization data and showing similarities, for example,
with early work by Livolant and coworkers in Refs. [50,51], with broader relevance to
molecular crowding of DNA solutions [52,53]. The time-averaged data reveal characteristic
persistent patterns. In light of the concentration waves moving through the array, these
could potentially be the result of interfering counter-propagating waves, a further deeper
study of which might elucidate deeper mechanisms of the waves.

Our experimental findings can aid in the fundamental understanding of elastic flow
through porous media. By altering the pore structure geometry, the flow dynamics changes,
which could be exploited in important applications by e.g., enhancing or suppressing flow
mixing in microfluidic devices with relevance for transport of complex fluids, sorting of
biomedical samples and enhanced chemical reactions by controlled mixing of reagents.
Specifically, for mixing applications, the waves have been shown to lead to mixing [23]
consistent with what has been shown for elastic turbulence [5,54]. For sorting and unmixing
applications, one approach is to suppress the waves by carefully leveraging the effects of
symmetry as we reported recently [23], or by randomizing the array sufficiently to suppress
the waves, but not excessively such that the sorting mechanism would be hindered. Finally,
it may be conceivable to utilize the waves for turbophoretic unmixing [55,56]. However,
this would require a better understanding of not only the flow of the DNA but also of the
flow of the solvent.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/mi15020268/s1. Figure S1. Array unit cell designs of the quadratic
and the hexagonal arrays. Figure S2. Design of the disordered array. Figure S3. Density heat
maps of the mean intensity plotted against the standard deviation of the intensity for each pixel
in each frame in the low resolution (4×) videographs for the three dense pillar-array geometries
studied. Figure S4. Layout of the computational analysis used to characterize fluctuations. Figure S5.
Demonstration that increasing the density of the measurement-region of interest (ROI) does not
improve the data resolution significantly. Figure S6. Temporal Fourier spectra for the quadratic,
hexagonal and disordered arrays for different flow velocities. Table S1. Applied pressures and frame
rates for the three different geometries for the data shown in Figure S3. Movie S1. Low magnification
(2×) fluorescence videographs of the λ-DNA solution flowing across the quadratic, hexagonal
and disordered arrays at at high flow rates. Movie S2. High magnification (100×) fluorescence
polarization videograph of the λ-DNA solution flowing around a single pillar in the sparse array at
high flow rate. Movie S3. Intermediate magnification (20×) fluorescence videograph of the λ-DNA
solution flowing across the disordered array at high flow rate. Movie S4. Low magnification (10×)
fluorescence videographs of DNA blobs being continuously generated and shed at high flow velocity
in the sparse array.
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