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Abstract: With the continuous growth in the optoelectronic industry, the demand for novel and
highly efficient materials is also growing. Specifically, the demand for the key component of several
optoelectronic devices, i.e., transparent conducting oxides (TCOs), is receiving significant attention.
The major reason behind this is the dependence of the current technology on only one material—
indium tin oxide (ITO). Even though ITO still remains a highly efficient material, its high cost and the
worldwide scarcity of indium creates an urgency for finding an alternative. In this regard, doped zinc
oxide (ZnO), in particular, solution-processed aluminum doped ZnO (AZO), is emerging as a leading
candidate to replace ITO due to its high abundant and exceptional physical/chemical properties. In
this mini review, recent progress in the development of solution-processed AZO is presented. Beside
the systematic review of the literature, the solution processable approaches used to synthesize AZO
and the effect of aluminum doping content on the functional properties of AZO are also discussed.
Moreover, the co-doping strategy (doping of aluminum with other elements) used to further improve
the properties of AZO is also discussed and reviewed in this article.

Keywords: transparent conducting oxides; aluminum doped zinc oxide; co-doped zinc oxide; solution
processable; doping; spray pyrolysis; sol-gel; spin coating

1. Introduction

This is not an understatement to state that doped zinc oxide (ZnO) is emerging as
a leading candidate for the replacement of indium tin oxide (ITO) [1–3]. The reason
behind this claim is the excellent physical/chemical properties of ZnO, such as wide-
band gap, tunable conductivity with the dopant concentration, high carrier concentration
(1020–1021 cm−3) after doping, high transparency, ease of synthesis in different forms or
morphologies, and most importantly, the high abundance of zinc on the earth crust [3–10].
In particular, its high abundance makes ZnO based devices affordable, which is one of the
most important aspect of any type of technology in today’s world. On the other hand, the
world-wide shortage of indium is now a well-known fact, creating an urgency for finding
an alternative TCO [1].

Furthermore, in order to achieve optimal functional properties, ZnO was doped with
many different elements, such as In, Ga, Al, Li, La, Mg, Sm, Pr, etc. [3,4,11,12]. Among
them, Al- doped ZnO (AZO) exhibits the lowest resistivity (2 × 10−4 Ω cm), which makes
it as a leading candidate to replace ITO [13], and a number of reports can be found in which
doped ZnO was used for optoelectronic applications [10,14–19]. However, this low resistive
film of AZO was prepared using magnetron sputtering [13], which increases its resulting
cost. In this context, solution processable approaches, such as the use of sol-gel, [20]
hydrothermal methods [21], etc., represents cost-effective and highly efficient methods
to synthesize AZO. Beside the low-cost and easy tuning of the doping level, the solution
processable route provides the possibility of synthesizing AZO in different morphologies,
such as nanowires [22] nanorods [23] and nanoparticles [24], that can be beneficial for its
application as a TCO. Furthermore, in addition to doping with a single element, such as
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Al, co-doped ZnO (doping with two different elements, e.g., Al and Ga) [25] represents
an excellent approach to further enhance the functional properties of solution processed
AZO for TCO applications. In fact, over the past few years, a great deal of progress have
been achieved in the development of solution processed AZO and co-doped ZnO for TCO
applications [12,20,22,25–28].

In this mini review, recent progress in the development of solution processed AZO
and co-doped ZnO have been summarized. In the case of co-doped ZnO, only reports in
which Al is used as one of the co-dopants, are included in this review article. The synthesis
and thin film deposition techniques that were used to fabricate these materials are briefly
discussed, while one of the most important aspects of doped-ZnO, i.e., the effect of the
Al-doping level on the functional properties of ZnO, is discussed on detail. Finally, the
recent literature (typically from the last 7 years) reporting on solution processed AZO and
co-doped ZnO is reviewed.

2. Synthesis of Al-Doped ZnO Precursor Solution and Thin Films

Among the wet chemical or solution processable approaches, sol-gel is the most widely
used method to synthesized the metal oxide nanoparticles, whether they are doped or
undoped [29–32]. The reason behind its wide use is its simplicity, low cost, low opera-
tional temperature, high yield, and the possibility to synthesize complex structures and
composites materials [29,30,33]. In a typical sol-gel process, the metal alkoxide precursor
undergoes hydrolysis and condensation reaction, in the presence of water or alcohol as a
solvent. In sol-gel, “sol” represents the colloidal particle suspension in the solvents and
when these particles interconnect with each other and form a 3-dimensional network, it is
called “gel” [30,34]. Moreover, when water is used as a solvent, the process is called the
“aqueous sol-gel method.” On the other hand, when an organic solvent, such as ethanol, is
employed, this process is termed as the “non-aqueous sol-gel method.” In the preparation
of doped or undoped ZnO, most widely, zinc acetate and ethanol were employed as the
precursor and solvent, respectively [4]. Coming back to the sol-gel method, the hydrolysis
and condensation reactions can be expressed by the following equations,

M−OR + H2O→ MOH + ROH (Hydrolysis) (1)

M−OH + XO−M→ M−O−M + XOH (Condensation) (2)

where M = metal and X, H, or R represents the alkyl group (Cn H2n+1). The detailed expla-
nation of the sol-gel process can be found in these reports [29,30,34]. Moreover, a number
of reports can be found in which AZO was synthesized by the sol-gel process in different
morphologies such as nanoparticles, quantum dots, granular morphology, etc. [3,17,35–38].

Other solution processes that are included in this review articles are the solvother-
mal and hydrothermal synthesis of doped ZnO nanoparticles. Both hydrothermal and
solvothermal processes can be defined as chemical reactions performed inside a closed
vessel, such as an autoclave, under autogenous pressure, and the solvents are heated close
to their critical points [39]. The difference between both processes is based on the type of
solvent used. When water is used as a solvent, the process is hydrothermal, and when
an organic solvent, such as ethanol, is used for synthesis, the process is referred to as
solvothermal. However, in some cases, the term “hydrothermal” is also used when the
reaction is carried out under ambient environmental conditions [39].

Finally, the solution obtained via sol-gel, hydrothermal, and solvothermal processes is
processed on a substrates such as glass in the form of thin film using deposition techniques
such as spin coating [40], spray pyrolysis, [41] dip-coating, [42] etc. Furthermore, in addition
to these deposition techniques, aerosol-assisted CVD (AACVD) [25], electrospinning [43],
and electrodeposition [23] are also considered because the starting material is in solution
form (precursor solutions).
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The detailed discussion of these thin film depositions and nanostructure synthesis
techniques is out of the scope of this mini review article. Readers can refer to these articles
for details [44–49].

3. Finding an Optimal Doping Level of Al: Effect of Al Doping on Functional
Properties of AZO

The doping of ZnO with aluminum (Al) offers several advantages, such as high trans-
parency, excellent conductivity, non-toxicity, and high mechanical/chemical stability that
make this material ideal for TCO applications [7,21]. However, the doping concentration
of Al needs to be carefully selected or optimized, as it can also decrease the electrical,
structural, and optical properties of the AZO [50–53]. In this section, we will discuss a
few reports in which the important factors associated with the Al doping level that can
deteriorate the properties of AZO are presented.

Y. Zhao et al. [54] have studied the influence of Al doping on the optical and electrical
properties of AlxZn1−xO (for x = 0.0625, 0.125, or 0.1875) via first-principal investigations
based on the density functional theory (DFT). Detailed theoretical observations reveal that
the band gap and electrical conductivity of AZO were found to be decreased with the
increase in ‘x,’ i.e., the doping level of Al. This can be understood from the dependency of
the AZO band structure on the Al doping level, as shown in Figure 1. The calculated band
gap of pure ZnO was found to consist of three parts: the upper part (−3.8 to 0 eV), the lower
part (−6.7 to −3.8 eV), and the third part, which resulted from the interactions between
lower and upper parts, and which lies between −18.6 to −16.0 eV. The band structures of
AZO at different doping levels of Al are presented in Figure 1b–d. Clearly, doping with
Al caused the decrease in the energy levels of both the conduction and valance bands,
which resulted in the shift in the Fermi level toward the conduction band (the Fermi level
becomes located in the conduction band). According to the theory of semiconductor when
the Fermi level lies inside the conduction band, the quantum states near the conduction
band minimum become completely filled with electrons. This distribution of electrons
obeys the Fermi distribution law, but disobey the Boltzmann distribution conditions. When
the doping level of Al continuously increased, the interactions between the impurities also
increased, and the band-gap narrowed. In fact, the bulk doping of ZnO with Al generates
the additional potential field around the Al due to its ionization, causing the scattering of
electrons that results in the decrease in electrical conductivity.

Furthermore, W. Sripianem investigated the effect of Al doping levels, as a function
of the dissolution of the aluminum precursor in a solvent, on the properties of AZO thin
films [51]. The crystallinity of thin film was found to decrease with the increase in dopant
concentration, owing to the decrease in the grain size, as shown in Figure 2. In particular,
all doped thin films exhibit high transmittance (>80%), and electrical conductivity was
improved only when ZnO was doped with 1 at% and 2 at% aluminum. The author
suggests that at a higher doping level (>2 at%), the conductivity of the AZO film decreased
because of the limited solubility of the aluminum precursor in the solvent. Additionally,
the occurrence of high grain boundary electron scattering due to the smaller grain size also
lowers the conductivity at higher doping levels (see Figure 1). These findings indicate that
the dissolution of aluminum precursors in a solvent is an important factor that should be
consider before AZO synthesis.

In another work, Al-doped ZnO thin films with different dopant percentage (1 at.%,
3 at.%, and 5 at.%) were prepared by the dip coating method on a glass substrate [42].
The precursor solution (zinc acetate dihydrate) was prepared by the sol-gel method. A
detailed investigation reveals the formation of the polycrystalline AZO thin film with the
highest transparency when 1% doping of aluminum was performed. In particular, AZO
films exhibit minimum and maximum absorption for 1% and 5% Al doping. The band
gap of AZO films continues to increase until reaching a 3% doping level and decreased at
a 5% doping level (due to the red-shift in the absorption spectra of AZO at 5% doping).
The author suggested that this red-shift is the indication of a stress relaxation mechanism,
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which is due to the merging of the impurity level into the conduction band of AZO (also
causing the decrease in the band gap).
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Figure 2. SEM images for AZO films obtained from spray pyrolysis with varying Al-doping contents:
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Furthermore, excellent insight was presented by Jianwei Li. et al. [52] on variation in
the electrical properties of AZO with Al doping content, as shown in Figure 3. The AZO
films were prepared by aerosol-assisted chemical vapor deposition (AACVD). Clearly, both
mobility and resistivity were abruptly decreased when 2.9 at% Al doping was performed,
while carrier concentration at this doping level was abruptly increased. The author suggests
that the abrupt increase in carrier concentrations at 2.9 at% Al doping is due to the release of
one electron for every Zn2+ substituted by Al3+. On the other hand, a decrease in mobility
was observed due to the ionized impurity scattering. In fact, at the 2.9 at% doping level,
the AZO films exhibit the lowest resistivity, i.e., 3.54 × 10−3 Ω cm.
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Figure 3. Hall effect results showing the change in carrier concentration, carrier mobility, and
resistivity upon doping of ZnO with Al. Reproduced with permission from ref. [52].

In a similar work, the optimal structural, electrical, and optical properties of AZO
spray coated film was observed at 1 at% of Al doping [50]. When doping was increased
beyond this value, both the crystallinity (see Figure 4) and conductivity of the AZO films
were found to decreased. Moreover, the Hall effect measurements showed the change
in carrier concentration, carrier mobility, and resistivity upon doping of ZnO with Al. It
has been suggested that the difference in an ionic size of Zn (rZn

2+ = 0.074 nm) and Al
((rAl

3+ = 0.074 nm) results in the occurrence of stress in AZO film at higher doping levels.
This stress deteriorates the structural properties of the AZO films. As far as the decrease in
conductivity of the AZO film is concern, many reports also indicate that a higher Al doping
level caused the formation of a non-conducting Al2O3 phase. This non-conducting phase
creates disorder in the crystal structure and also acts as a carrier trap [55,56].

Many other reports can be found in which the effect of the Al doping level on the
functional properties of AZO are described [53,57–59].

In summary, the excess doping of aluminum in ZnO and the limited dissolution of
the aluminum precursor in a solvent at a higher doping content can harm the properties of
AZO. Indeed, all the articles discussed above suggested different optimal doping levels of
Al, thus making it difficult to pin-point one doping level that can be adopted to synthesize
highly efficient AZO. Hence, finding an optimal Al doping level in ZnO that can offer
adequate electrical, structural, and optical characteristics for use as a TCO is a challenging
and complex task.
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4. Aluminum and co-Doped ZnO

In this section, we discuss some of the interesting reports on AZO and co-doped ZnO
published over the last 7 years. It should be noted that in co-doped ZnO, only reports
in which Al was included as one of the co-dopants were considered. Furthermore, while
discussing these reports, attention has been paid to the synthesis approach, the thin film
deposition techniques, and the effect of parameters such as doping content, precursor
type, thin film annealing temperature, solvent type, etc. on the functional properties of
doped ZnO.

4.1. Aluminum Doped ZnO (AZO)

A great deal of progress has been made over the last few years in the development of
AZO for TCO applications. Q. Nian et al. [60] tuned the electrical and optical properties of
sol-gel spin-coated AZO thin film via ultra-violet laser crystallization (UVLC). Specifically,
UVLS treated films exhibit improved high transmittance (88–96%) and electrical resistivity
of 1 × 10−3 Ω cm. Moreover, AZO film exhibited extremely low scattering transmittance
(1.8%), which was found to be superior compared to that of solution deposited silver
nanowires. Furthermore, AZO nanofibers were prepared by the electrospinning technique,
while the precursor solution was prepared by the sol-gel method [43]. The author suggested
that the nanofiber transparency increased when annealed in air. This is an important
development in the synthesis of AZO, as one-dimensional (1D) nanostructures, such
as nanofibers, nanowires [61], etc., offer excellent electrical properties, along with high
crystallinity, that can be beneficial for optoelectronic application. However, as far as this
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work on nanofibers is concerned, electrical properties were not investigated by the authors.
Furthermore, T. Ganesh et al. [62] synthesized a multilayer (6–24 layers) thin film of AZO
(Al 1.5 wt%) via the sol-gel spin coating technique. In up to 18 layers, the crystallinity,
crystallite, and grain size were found to be improved, while all the films maintained more
than 85% transparency. Moreover, AZO thin films with layers between 10–18 possessed
low-activation energies, a better dark-photo current, and good photo response, making
them ideal for solar cell applications. Furthermore, a low-temperature spray-coated AZO
thin film, with varying concentration of Al (0.25 at.%, 0.50 at.%, 0.75 at.%, and 1at.%) was
reported for use in transparent electronics [63]. The schematics of the spray pyrolysis
system and the AZO thin film growth process, respectively, are shown in Figure 5a,b. In
particular, at the optimal doping level (0.5 at.%), the AZO thin films exhibit low resistivity
(4 × 10−3 Ω cm), high crystallinity, and 87% optical transparency.
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Figure 5. (a) Simplified schematic of the spray pyrolysis system and the main stages (b) of the
ZnO-based film growth process, starting from small sprayed clusters, which undergo nucleation
and coalescence, forming a continuous polycrystalline layer that then acquires a light-purplish color
during substrate heating (via the hot plate), and finally changes to a darker purple after the rapid
thermal annealing (RTA) post-process. Reproduced with permission from ref. [63].

Furthermore, not only the doping level, but also the properties of the solvents used to
prepare the precursor solution were found to affect the properties of the AZO film. D. B.
Potter et al. [64] used many different solvents (as well as a mixture of two solvents), i.e.,
methanol, n-hexane, toluene, tetrahydrofuran, cyclohexane, and ethyl acetate to prepare
the precursor solution for AZO. The films were deposited via the AACVD technique. It has
been observed that the films prepared using methanol (MeOH) exhibit high transparency
(83%) (see Figure 6), low-resistivity (0.5 × 10−2 Ω cm), and an optical band gap of 3.25 eV
owing to the lowest boiling point of MeOH as compared to those of the other solvents. Due
to this, MeOH was more likely to evaporate during the growth process of the AZO film
via AACVD as compared to other solvents, which in-turn affected the properties of AZO.
Furthermore, post-annealing treatment was found to enhance the electrical properties of
the AZO thin films (2 at% Al) deposited by spray pyrolysis [26]. In particular, upon an-
nealing at 450 ◦C under vacuum, the resistivity of the film was found to be improved from
1.39 × 10−2 Ω cm (as deposited) to 5.10 × 10−3 Ω cm (annealed). However, the transmit-
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tance of the AZO film slightly decreased after annealing, but it still exhibited a transmittance
of higher than 85%. This slight decrease in transmittance was attributed to the increase in
phonon scattering and the free charge carrier absorption of photons, as annealing under
vacuum caused the increase in the free charge carrier concentration and mobility.
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Furthermore, AZO films (see Figure 7) with different doping contents of Al were
fabricated using fine-channel mist chemical vapor deposition (FCM-CVD) [65]. The precur-
sor solution was synthesized via dissolving zinc chloride (ZnCl2) and aluminum chloride
hexahydrate (AlCl3·6H2O) in distilled water. Detailed observations reveal that with an
increase in the doping concentration, the preferential orientation of ZnO changes from (002)
to (100). Moreover, the AZO films with doping concentrations of 25% and 50% were found
to exhibit high transmittance, making them ideal for TCO applications.
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Furthermore, it is well known that AZO film prepared using vacuum deposition
techniques, such as sputtering, exhibit properties superior to those of solution processed
films [28]. Especially, solution processed AZO films exhibit high electrical resistivity [66].
To tackle this issue, A. Kumar et al. [66] suggested that vacuum/low pressure annealing is
a viable route to enhance the electrical properties of solution processed AZO film. In this
work, AZO films were fabricated using spray pyrolysis and after vacuum annealing, films
showed an enhanced transparency of 82%, as well as low resistivity (2 × 10−3 Ω cm) as
compared to the as deposited films.

In the Table 1, some of the interesting reports regarding solution processed AZO in
different forms, such as thin films, nanofibers, nanowires, etc., are listed, along with their
functional properties.

Table 1. Solution processed AZO in different forms, such as granular, nanofibers, nanorods, etc.,
along with their functional properties. Here, ODL = optimal doping level (at%) of aluminum;
T = transmittance (%) of AZO in the visible region; Eg = band gap (eV) of AZO; and ρ = resistivity
(Ω cm) of AZO.

AZO Process Morphology ODL (at%) T (%) Eg (eV) ρ (Ω cm) Ref.

Thin film Sol-gel, spin coating Nanocrystals 2 88–96 1 × 10−3 [60]
Thin film Sol-gel, spin coating Grains 1 80–95 50 [20]
Nanofiber Sol-gel, electrospinning Nanofibers 1 90 - [43]
Thin film Sol-gel, ultrasonic spray pyrolysis Grains 8 80 3.27 9 [67]
Thin film Sol-gel, dip coating Nanoparticles 3 99 3.25–3.32 - [24]
Thin film Sol-gel, ultrasonic spray pyrolysis Grains 3 >85 3.3 - [27]
Thin film sol-gel, dip coating Grains 1.4 >90 3.29 2.1 × 10−2 [68]
Thin film Sol-gel, spin coating Grains 2 >75 3.25–3.30 - [69]
Thin film Sol-gel, ultrasonic spray pyrolysis Grains 0.5 87 3.23–3.35 4 × 10−3 [63]
Thin film Aerosol-assisted CVD (AACVD) Grains 2.9 84 3.40 3.54 × 10−3 [52]
Particles Solvothermal method Particles 1–9 ~80 2.84–3.36 - [70]
Thin film Sol-gel, spin-coating Nanostructures 2 97 3.39–3.37 [40]
Nanowire Hydrothermal method Nanowires 1–3 >80 3.23–3.37 - [22]
Nanorods Electrodeposition Nanorods 1–2 61–82 - - [23]

4.2. co-Dope ZnO (Al Doping with Other Elements)

Co-doping is another interesting approach to tune the functional properties of ZnO
for TCO applications. In fact, previously we have seen that after a certain doping level, the
functional properties of AZO, especially its electrical conductivity, are decreased, either due
to the insolubility of the aluminum precursor, or by excess aluminum doping [51,52,54]. For
practical application, AZO must possess low resistivity, and in this context, the co-doping
of AZO with another element offers a pathway to further improve the properties of AZO [4].
Moreover, an ideal TCO must possess not only good electrical conductivity, but also high
transparency in the visible region and adequate structural properties. However, as specified
in many reports discussed in the previous section, Al doping caused the improvement
in one or two properties, but other properties required for its application as a TCO were
compromised. For example, as shown in Figure 3, with an increase in Al doping, the carrier
concentration is increased and resistivity is decreased, but the mobility of AZO is also
decreased. The mobility of TCO is also an important parameter, as it determines the charge
transfer from TCO to the active layer. Hence, co-doping can be beneficial to achieve the
optimal functional properties of AZO.

In an interesting work involving an AIZO (Al and In co-doped ZnO) thin film, the
effect of the precursor type and the doping level of aluminum and indium on the func-
tional properties were investigated [71]. The films were prepared by ultrasonic spray
pyrolysis. Detailed investigations reveal that by using aluminum chloride as a precursor
and a doping level of 2 at.% of Al and In, the AIZO film possesses superior structural,
optical, and electrical properties. It has been revealed that the better decomposition of the
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aluminum chloride precursor than aluminum sulphate plays a key role in determining the
properties of AIZO films. In another work, the zinc precursor was ball milled before the
preparation of the co-doped (1.5 at% Al and 1.5 at% In) AIZO precursor solution using the
sol-gel method [72], while the AIZO thin film was prepared by ultrasonic spray pyrolysis.
The film exhibits high crystallinity along (002), >70% transparency, and low resistivity
(2.35–4.59 × 10−3 Ω cm). Furthermore, Zi N. Ng et al. [73] fabricated the Al-Ga co-doped
ZnO microrods via the sol-gel spin coating technique. Indeed, the microrod thin film
exhibited high transparency (95%), with lowest resistivity, determined by Hall effect, of
23 Ω cm when the doping level was fixed at 1 at%.

Furthermore, D. B. Potter et al. [25] synthesize three different types of thin films,
i.e., aluminum/gallium co-doped ZnO (AGZO), indium/gallium co-doped ZnO (IGZO),
and aluminum/indium co-doped ZnO (AIZO) thin films via aerosol assisted chemical
vapor deposition (AACVD). The AGZO and AIZO films were found to exhibit similar
morphology, with randomly oriented grains (see Figure 8 (left)), while the grains of the
IGZO film were more likely hexagonal in shape. The optical characterization results, as
shown in Figure 8 (right), represent the high transmittance of the AGZO film as compared
to the others. The reason behind the low transmittance (high absorption) of both IGZO
and AIZO is the larger radius of the In3+ ions that creates disorder in the structure and
increases the optical absorption. In addition to better optical properties, AGZO films also
possess superior transport properties, such as the lowest resistivity, the highest carrier
concentration, and carrier mobility, making this thin film suitable for TCO applications.
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Furthermore, the rare earth element samarium (Sm)-doped AZO (Sm:AZO) was
deposited via the nebulizer spray pyrolysis technique [12]. The precursor solution was
prepared via the solution route, and the aluminum doping level was fixed at 3 at%, while
different doping levels of Sm were employed (0 at%, 0.5 at%, 1 at%, and 1.5 at%). Indeed,
with an Sm doping level of 1 at%, the co-doped AZO films exhibited high transparency
(90%), with an approximate energy gap of 3.30 eV (see Figure 9). Moreover, Sm:AZO films
exhibited low electrical resistivity, i.e., 4.31 × 10−4 Ω cm. In fact, the doping of ZnO with
this rare earth element offered unique opto-electronic properties due to their highly discrete
energy levels [4].
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In particular, doping with rare earth elements found to enhance the electrical and opti-
cal properties of ZnO, which can be beneficial as a TCO [4]. In this regard, praseodymium
(Pr) co-doped AZO thin film was prepared by the nebulized spray technique [11]. Again,
the Al doping content was fixed at 3 wt%, while different doping concentrations of Pr were
adopted. In Figure 10, atomic force microscopic images of the Pr:AZO films at different
Al doping levels are shown. The doping with Pr was found to enlarge the size of the
spherical grains as the doping level increased. In particular, the grain sizes were found to
be 45 nm, 56 nm, 62 nm, and 68 nm for doping levels of 0%, 0.5%, 1%, and 1.5%, respec-
tively. Furthermore, with the 1.5% doping, the Pr:AZO films exhibited a low resistivity of
4.62 × 10−4 Ω cm and high carrier concentrations of −3; thus, they were proposed to be
ideal for optoelectronic applications. Furthermore, Lee et al. [74] synthesized the Sn and Al
co-doped ZnO (TAZO) thin film using the sol-gel dip coating process and investigated the
resulting structural, electrical, and optical properties. Figure 11 showed the cross-sectional
SEM images of TAZO film at different doping levels. The thickness of all the films was
found to be 350 nm. The films were found to be highly transparent, with an average trans-
mittance of 88%, while the film with the doping level fixed at 1at% for both the elements
exhibited the minimum resistivity (0.36 Ω cm).
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Figure 11. The cross-sectional SEM image of the TAZO thin film, with varying dopant concentrations,
annealed at 500 ◦C for 1 h in air (a–c) and vacuum (d–f). The doping levels are (a,d) Sn = 1 at.% and
Al = 0.5 at.%; (b,e) Sn = 1 at.% and Al = 1 at.%; and (c,f) Sn = 3 at.% and Al = 1 at.%. Reproduced
with permission from ref. [74].



Micromachines 2023, 14, 536 13 of 17

In another work, F. Khan et al. [75] investigated the charge transport properties
of solution processed Ag and the Al co-doped ZnO nanostructures. To synthesize the
nanostructures, the Al/Zn molar ratio was fixed at 0.5%, while the Ag/Zn molar ratio
varied to different values such as 0, 0.3, 0.5, and 1%. In Figure 12, variations in resistivity,
carrier density, and mobility were expressed as a function of the Ag/Zn molar ratio
(RAg/Zn). Cleary, the nanostructures exhibited better charge transport properties, including
low resistivity, high mobility, and carrier concentrations at the 0.3% molar ratio. Moreover,
the nanostructures also exhibited high transparency (85%) and an optical band gap of
3.14 eV.
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Furthermore, the In and Al co-doped ZnO (AIZO) thin films were prepared with spray
pyrolysis, and the precursor solution was synthesized via the sol-gel process [41]. While
investigating the effect of different Al and In doping levels on the properties of the AIZO
thin film, the author suggested that 1.5% is the optimal level for In/Al. Indeed, at this
optimal doping level, the AIZO films exhibited a low electrical resistivity of 3 Ω cm and
a high transmittance of 85%. In Table 2, different co-doped ZnO, with their functional
properties, are summarized.

Table 2. Solution processed co-doped ZnO in different morphologies, along with their functional
properties. Here, AIZO = Al, In co-doped ZnO; AGZO = Al, Ga co-doped ZnO; TAZO = Sn, Al
co-doped ZnO; ODL = optimal doping level (at%) of aluminum; T = transmittance (%) of AZO in the
visible region; Eg = band gap (eV) of AZO; and ρ = resistivity (Ω cm) of AZO.

co-Dope ZnO Process Morphology ODL (at%) T (%) Eg (eV) ρ (Ω cm) Ref.

AIZO Sol-gel, ultrasonic spray pyrolysis Grains Al, In = 2 89.10 3.41 3.44 × 10−3 [71]
AIZO Sol-gel, ultrasonic spray pyrolysis Grains Al, In = 1.5 79.62 3.53 2.74 × 10−3 [72]
AGZO Sol-gel, spin coating Micro-rods Al, Ga = 1 95 23 [73]
AGZO Aerosol-assisted CVD (AACVD) Grains - ~80 3.27–3.28 2.74 × 10−2 [25]

Sm:AZO Nebulizer spray pyrolysis Grains Al = 3, Sm = 1 90 3.30 4.31 × 10−4 [12]
Pr:AZO Nebulizer spray pyrolysis Grains Al = 3, Pr = 1.5 84–90 3.25 4.62 × 10−4 [11]
Ni:AZO sol-gel, dip coating Grains - - ~3.20–3.28 - [76]
TAZO Sol-gel, dip coating Grains Al, Sn = 1 88 ~ 3.28 - [74]

Ag:AZO Sol-gel, spin-coating Nanostructures - 85 3.14 5.18 × 10−2 [75]

Hence, co-doping is an alternative approach to further optimize the functional proper-
ties of solution-processed AZO.
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5. Conclusions

The recent progress in the development of solution-processed AZO and co-doped ZnO
is systematically reviewed in this article. According to the literature, sol-gel is found to be
the preferable chemical route to synthesize the precursor solution of AZO and co-doped
ZnO, while spin-coating and spray pyrolysis are most commonly employed to deposit their
thin films. The AZO film deposited via spray pyrolysis, with an aluminum doping level of
2 at%, was found to exhibit the lowest resistivity, i.e., 5.10 × 10−3 Ω cm. Furthermore,
besides the improvement in AZO properties, the excess doping of Al and the limited
solubility of the Al precursor can also harm the properties of AZO. Thus, the AL doping
level must be carefully selected and optimized. In this context, co-doping represents
an interesting route to further enhance the functional properties of AZO. Among the
various co-dopants, praseodymium (Pr) doped AZO exhibited the lowest resistivity, i.e.,
4.62 × 10−4 Ω cm. Clearly, by choosing the appropriate co-dopant, along with aluminum,
co-doped ZnO exhibited better properties, especially in regards to low resistivity, than
AZO. Furthermore, beside the aluminum doping level, the type of solvent and precursor
are also found to affect the properties of AZO. Specifically, solvent with a low-boiling point
(e.g., methanol and ethanol) tends to evaporate rapidly during the deposition of the film,
leading to the improved functional properties of AZO as compared to those of the solvents
with a higher boiling point (e.g., n-hexane, toluene, etc.), while the aluminum precursor
(e.g., aluminum chloride) with better decomposition also determined the final properties
of AZO.

Hence, solution-processed AZO and co-doped ZnO are excellent candidates to replace
ITO, provided that some of the important parameters, such as the aluminum doping level,
the type of solvent, and the precursor, are carefully chosen. Moreover, in addition to its
granular structures, AZO should also be synthesized and explored in other morphologies,
such as quantum dots, nanowires, nanoparticles, etc., to achieve this goal.
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