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Abstract: Interactions between carbon (C), nitrogen (N), and phosphorus (P), the vital indicators
of ecological restoration, play an important role in signaling the health of ecosystems. Rapidly and
accurately mapping foliar C, N, and P is essential for interpreting community structure, nutrient
limitation, and primary production during ecosystem recovery. However, research on how to rapidly
map C, N, and P in restored areas with mixed plant communities is limited. This study employed
laser imaging, detection, and ranging (LiDAR) and hyperspectral data to extract spectral, textural,
and height features of vegetation as well as vegetation indices and structural parameters. Causal
band, multiple linear regression, and random forest models were developed and tested in a restored
area in northern China. Important parameters were identified including (1), for C, red-edge bands,
canopy height, and vegetation structure; for N, textural features, height percentile of 40–95%, and
vegetation structure; for P, spectral features, height percentile of 80%, and 1 m foliage height diversity.
(2) R2 was used to compare the accuracy of the three models as follows: R2 values for C were 0.07,
0.42, and 0.56, for N they were 0.20, 0.48, and 0.53, and for P they were 0.32, 0.39, and 0.44; the random
forest model demonstrated the highest accuracy. (3) The accuracy of the concentration estimates could
be ranked as C > N > P. (4) The inclusion of LiDAR features significantly improved the accuracy of
the C concentration estimation, with increases of 22.20% and 47.30% in the multiple linear regression
and random forest models, respectively, although the inclusion of LiDAR features did not notably
enhance the accuracy of the N and P concentration estimates. Therefore, LiDAR and hyperspectral
data can be used to effectively map C, N, and P concentrations in a mixed plant community in
a restored area, revealing their heterogeneity in terms of species and spatial distribution. Future
efforts should involve the use of hyperspectral data with additional bands and a more detailed
classification of plant communities. The application of this information will be useful for analyzing C,
N, and P limitations, and for planning for the maintenance of restored plant communities.

Keywords: ecological monitoring; LiDAR; hyperspectral image; foliar C, N, and P concentrations;
ecological restoration

1. Introduction

Intense levels of human activity, such as mining, have caused extensive vegetation
removal or degradation in many areas [1,2]. In recent years, important ecological restora-
tion efforts have gained popularity; for instance, the United Nations recently declared
2021–2030 as the decade for ecosystem restoration [3]. Vegetation, as a vital component in
ecological restoration, plays a crucial role by contributing significantly to the structure and
function of ecosystems [4,5]. To ensure the stability and resilience of a restored ecosystem,
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land managers usually employ a variety of species during revegetation with the goal of
creating a mixed-species plant community. However, the restoration of vegetation on de-
graded land is often limited by nutrient deficiency, which hinders the process of ecological
restoration [6]. Therefore, monitoring the nutrient levels and functions of an ecosystem has
become important to ensure that these characteristics develop according to the expected
recovery trajectory [7,8].

For a restored plant community, carbon (C), nitrogen (N), and phosphorus (P) con-
stitute fundamental building blocks required for plant growth and development. Carbon
is the most important element with the highest concentration in leaf dry matter, while
N and P are essential nutrients for building plant structures [9–11]; these three elements
serve as important indicators of ecological health. Their availability and stoichiometric
ratios not only indicate the nature of conditions related to plant growth and community
composition [12,13] but also reveal the nutrient dynamics and limitations of plants under
changing climatic conditions [14–16]. Nutrient limitations, specifically in the form of C, N,
and P limitations, can impede the absorption and utilization of nutrients by plants, affecting
their growth rates, metabolic processes, and the decomposition of litter [17,18]. This, in
turn, influences the overall health of a restored ecosystem. Therefore, for the assessment of
ecosystem health, and to ensure the success of restoration efforts, it is imperative to conduct
rapid monitoring of foliar C, N, and P concentrations in a mixed plant community within
an ecological restoration area.

Recent monitoring and assessment of restoration efforts have focused more on vegeta-
tion coverage or greenness rather than on the chemical or biological indicators of vegetative
conditions [19,20]. In particular, limited research is available on the rapid monitoring of C,
N, and P in mixed plant communities within ecological restoration areas. Traditional exten-
sive surveys of foliar concentrations of C, N, and P in the canopy are time-consuming and
labor-intensive, making them impractical for the large-scale mapping of C, N, and P and
applications employed in post-restoration management. In the recent two decades, remote
sensing has been adopted as an efficient alternative monitoring method, providing a crucial
means for the large-scale monitoring of plant growth and quantification of the biochemical
properties of vegetation [21–23]. Unmanned Aerial Vehicle (UAV)-based laser imaging,
detection, and ranging (LiDAR) and hyperspectral remote sensing are two advanced remote
sensing technologies, each possessing unique advantages in acquiring surface informa-
tion [24]. Specifically, LiDAR is characterized by a high level of accuracy and an ability to
penetrate the canopy, providing high-resolution three-dimensional structural information.
This technique enables the accurate and effective monitoring of plant communities in spatial
dimensions [25]. Hyperspectral remote sensing offers rich spectral information, exhibiting
high sensitivity to vegetation health and types, which is valuable for monitoring vegetation
health and conducting biochemical composition studies [26]. It has been found from recent
research progress that the integration of LiDAR and hyperspectral data has a strong capac-
ity to enable the classification of vegetation and assessment of structural and morphology
parameters, such as biomass, diversity, and canopy coverage [27,28]. In addition, the two
technological methods have been successfully applied to assess biochemical parameters
such as N and P. However, those application cases mainly focus on individual species
such as phoenix trees [29], rice [30], apple trees [31], Phragmites communis [32], and maize [33].
Studies that discuss the feasibility of mapping the foliar C, N, and P of restored ecosystems
with mixed plant communities are lacking. Considering that the combination of LiDAR
and hyperspectral data may provide information about the chemical signal of different
plants with various morphologies, this synergistic approach may contribute to a better
understanding of spatial heterogeneity in C, N, and P among different plant communities
and their responses to ecological restoration.

Therefore, the present study is an attempt to examine the possibility of using LiDAR
and hyperspectral data in the spatial mapping of the C, N, and P concentrations in a mixed
plant community of an ecological restoration area. The main research goals include the
following: (1) to establish the optimal model for estimating foliar C, N, and P concentrations;
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(2) to investigate how the LiDAR and hyperspectral data could contribute to the estimation
accuracy; and (3) to discuss the ability of LiDAR and hyperspectral data to reveal the
heterogeneity of foliar C, N, and P across plant species and spatial regions. The research
aims to serve as a reference for identifying C, N, and P nutrient limitations and assessing
the health of an ecosystem.

2. Materials and Methods
2.1. Study Area

The study area is the Shendong Mining Area, which is close to Ordos City, Inner
Mongolia, China (Figure 1). The average annual temperature and precipitation of the area
are about 8.5 ◦C and 300–400 mm, respectively. The average elevation of the area is around
1250 m, with significant terrain fluctuations; the region has a typical arid and semi-arid
plateau continental climate. The study area has an east–west length of approximately 2 km
and a north–south width of about 300 m, covering an area of approximately 0.6 km2. Situ-
ated in the transitional zone between grassland and forest steppe, the original vegetation
types include deciduous trees, shrubs, sandy-soil vegetation, and grassland.
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Figure 1. Geographical situation of the study area (a,b) in Shaanxi Province, north China;
(c) orthophoto view of the study area.

Intensive coal mining in the study area has negatively impacted the original vegetation
of the site. Consequently, ecological restoration measures, primarily focused on soil and
water conservation as well as revegetation, were undertaken after the completion of mining
activities in 2010. The central part of the restored ecological zone includes roads with
the restored vegetation types on the roadsides mainly consisting of Populus spp. (mixed
poplar), Camphor pine, Wild cherry, Prunus sibirica, Prunus humilis, Salix spp., Sea buckthorn,
Caragana spp., Amorpha fruticosa, Artemisia oleifera, and Medicago sativa. Among these,
Populus spp. and Pinus sylvestris have been planted with a certain degree of regularity
across the landscape. Sea buckthorn has been extensively planted as an economically
important species, primarily concentrated in the central part of the study area.

2.2. Data
2.2.1. Remote Sensing Data

Two types of remote sensing data, i.e., LiDAR data (LiAir 220) and hyperspectral
images, were acquired from the DJI M600 (Dajiang Baiwang Technology Co., Ltd., Shenzhen,
Guangdong, China) on 25 July 2022. July is the growing season for plants in the study area.
Investigating the growth status of vegetation during this season can reflect the success of
the ecological restoration. LiDAR data were acquired by a LiAir 220 UAV LiDAR system.
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A total of three flight routes were planned. The flight height was 90 m, the speed was
5 m/s, the horizontal field of view angle was 360◦, the vertical field of view angle was
greater than 20◦, and the average point cloud density was 130 points/m2. The elevation of
the study area was 1200–1296 m, and the number of echoes was two. The LiDAR 360 6.0
software was acquired from GreenValley International (Berkeley, CA, USA) and was used
for preprocessing. The preprocessing included creating an aerial strip mosaic, point cloud
registration, strip redundancy removal, noise removal, point cloud feature extraction, and
point cloud classification [26]. First, mosaic the LiDAR data and then register to minimize
the spatial position differences between the points. Then, remove the redundant point
cloud data of the overlapping part of the strip and point cloud noise, and then divide
the point cloud into ground and non-ground points. Finally, extract the point cloud data
features. Before extracting the LiDAR features, it was necessary to normalize the LiDAR
data by subtracting the elevation value Z of each point in the LiDAR point cloud data.
Normalization can remove the influence of terrain fluctuations on the elevation value of
the point cloud data.

Hyperspectral data were acquired by an S185 hyperspectral sensor (Cubert GmbH,
Ulm, Germany). For the hyperspectral data, eight flight routes were set up to ensure full
coverage of the area. The drone had a flight altitude of 140 m, a spatial resolution of
0.19 m, and a lateral overlap rate of 57%, flying a total of four sorties. The spectral range
obtained during each flight was 398–1002 nm, with a total of 112 bands. During the data
collection, sensor calibration was carried out using a standard diffuse reflection board,
followed by atmospheric correction, geometric correction, band splicing and cropping, and
image fusion. Next, ENVI 5.0 software (Research Systems, Inc., Boulder, CO, USA) was
employed for hyperspectral image preprocessing mainly including radiometric calibration,
atmospheric correction, geometric correction, noise and dimensionality reduction, aerial
strip mosaicking, clipping, and band fusion [34].

2.2.2. Field Data

While acquiring remote sensing data, 60 sample plots were established for collecting
plant community data. Within each sample plot, three 10 m × 10 m quadrats were created
for trees, 5 m × 5 m quadrats for shrubs, and 1 m × 1 m quadrats for grasses. The spacing
between quadrats was greater than 50 m. In addition, a 500 g sample of canopy leaves was
collected from the canopy of the plant community in each quadrat. In total, 166 samples of
plant leaves were collected.

Fresh leave samples were first cleaned with distilled water to remove dust, sediments,
and other debris. After rinsing with deionized water, they were rinsed with 18.2 MΩ
ultrapure water. Leaf samples were dried in a baking oven at 105 ◦C for 15–20 min and then
dried at 80 ◦C for 10 h until a constant weight was reached. The dried leaf samples were
ground and passed through a 100-mesh screen. Next, a 6 g sample of the leaf samples was
ground prior to determining the C, N, and P concentrations. The potassium dichromate
oxidation, Semi-Micro-Kjeldahl, and Mo-Sb colorimetric methods were used to determine
the C, N, and P concentrations in the leaves, respectively [16]. Table 1 shows the maximum,
minimum, mean, and standard deviation of foliar C, N, and P of the collected samples.

Table 1. Foliar carbon (C), nitrogen (N), and phosphorus (P) concentrations based on sample data.

Min Max Mean Standard Deviation

C (%) 34.46 52.28 45.80 2.36
N (%) 1.09 4.06 2.62 0.87

P (g/kg) 0.63 3.08 1.73 0.49

Figure 2 shows the C, N, and P concentrations of eight dominant plant communi-
ties including the Pinus sylvestris, Populus spp., Salix spp., Sea buckthorn, Artemisia oleifera,
Amorpha fruticosa, Caragana spp., and Herbaceous spp. communities. No significant differ-
ence in C concentration was observed among the eight dominant plant types. Among
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them, Pinus sylvestris exhibited the highest C concentration, while the Populus spp. and
Herbaceous spp. communities showed slightly lower C concentrations. Considerable vari-
ations were observed for N and P. Amorpha fruticosa and Caragana spp. demonstrated
relatively high N concentrations, while Pinus sylvestris, Populus spp., and Herbaceous spp.
had lower N concentrations. Artemisia oleifera showed the highest P concentration, while
Pinus sylvestris and Herbaceous spp. had lower P concentrations.

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 23 
 

 

N (%) 1.09 4.06 2.62 0.87 
P (g/kg) 0.63 3.08 1.73 0.49 

Figure 2 shows the C, N, and P concentrations of eight dominant plant communities 
including the Pinus sylvestris, Populus spp., Salix spp., Sea buckthorn, Artemisia oleifera, 
Amorpha fruticosa, Caragana spp., and Herbaceous spp. communities. No significant differ-
ence in C concentration was observed among the eight dominant plant types. Among 
them, Pinus sylvestris exhibited the highest C concentration, while the Populus spp. and 
Herbaceous spp. communities showed slightly lower C concentrations. Considerable vari-
ations were observed for N and P. Amorpha fruticosa and Caragana spp. demonstrated rel-
atively high N concentrations, while Pinus sylvestris, Populus spp., and Herbaceous spp. had 
lower N concentrations. Artemisia oleifera showed the highest P concentration, while Pinus 
sylvestris and Herbaceous spp. had lower P concentrations. 

Figure 2. Foliar carbon (C), nitrogen (N), and phosphorus (P) concentrations of eight dominant plant
communities in the study area.

2.3. Methods
2.3.1. Technical Process

Figure 3 illustrates the technical roadmap for foliar C, N, and P mapping by using
UAV-based LiDAR and hyperspectral data, combined with ground sampling data. The
Boruta algorithm was used to select features and construct three models including causal
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bands (namely, causal absorption features (nm) related to foliar biochemicals including
C, N, and P, multiple linear regression, and random forest. The model with the highest
accuracy was used to map the foliar C, N, and P in the study area.
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2.3.2. Extraction of Features

LiDAR can acquire the morphological characteristics of plant communities, and hy-
perspectral can reflect the spectral characteristics of different plant community types. The
morphological point cloud filtering method [35] was used to distinguish the ground in-
formation in the LiDAR data and extract the variables highly correlated with the plant
community. In this study, a total of 112 spectral features, 15 textural features, 33 vegetation
indices, 34 height features, and seven vegetation structure parameters were extracted as
parameters for model construction.

1. Spectrum

Given that the spectral reflectance of different plant leaves varies, 112 bands of hy-
perspectral data were employed as parameters for model construction. In this study, all
112 bands were used, with a wavelength range of 398–1002 nm and a band width of 5.2 nm.

2. Texture

Mean, variance, entropy, data range, and skewness were extracted as textural features.
Table 2 presents the calculation formulas for these features. Using ENVI’s Minimum Noise
Fraction to process hyperspectral images, the first two converted bands contained more
than 99% of the image information. In addition, green, red, and near-infrared bands are
composed into a pseudo-color image synthesis band. These three bands were individually
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used to extract the five textural features in Table 2. In total, 15 textural features were
extracted. The formula for calculating the pseudo-color image is as follows [26]:

Bpseudo−color = (B Green + BRed + BNIR

)
/3 (1)

Table 2. Calculation formulas of texture features.

No. Texture Feature Formula

1 Mean N−1
∑

i=0

N−1
∑

j=0
iP(i, j)

2 Variance N−1
∑

i=0

N−1
∑

j=0
(i − u)2P(i, j)

3 Entropy N−1
∑

i=0

N−1
∑

j=0
P(i, j) log P(i, j)

4 Data range P(i, j)max − P(i, j)min

5 Skewness 1
N

N−1
∑

i=0

N−1
∑

j=0

(
P(i,j)−u

σ

)3

3. Vegetation indices

Remote sensing-based vegetation indices can be used to qualitatively evaluate veg-
etation coverage and growth. Therefore, the 33 vegetation indices listed in Table 3 were
selected for model construction.

Table 3. Calculation formulas of vegetation indices.

No. Indices Formula

1 CIgreen [36] (R780/R550)− 1
2 CIred_edge [36] (R780/R710)− 1
3 DD [37] (R750 − R722)/(R700 − R670)
4 DVI [38] R800 − R670
5 EVI [39] [0.5 × (R800 − R638)]/(R800 + 2.5 × R800 − 6.0 × R472 + 7.5)
6 GM [36] R750/R702
7 GNDVI [36] (R780 − R552)/(R780 + R552)
8 LCI [40] (R850 − R710)/(R850 + R682)
9 MCARI [41] [(R720 − R680)− 0.2 × (R720 − R550)]× (R720/R680)]
10 mND705 [42] (R750 − R705)/(R750 + R705 − 2 × R445)

11 MSAVI [43] 0.5 × (2 × R800 + 1 −
√
(2 × R800 + 1)2 − 8 × (R800 − R680))

12 mSR705 [37] (R750 − R445)/(R705 − R445)
13 MTVI1 [44] 1.2 × [1.2 × (R802 − R550)− 2.5 × (R670 − R550)]
14 NDI [36] (R834 − R662)/(R834 + R662)
15 NDVI [45] (R450 − R680)/(R450 + R680)
16 NPCI [46] (R450 − R680)/(R450 + R680)
17 PBI [47] R810/R562
18 PRI [48] (R531 − R570)/(R531 + R570)
19 PSNDa [49] (R802 − R682)/(R802 + R682)
20 PSNDb [49] (R802 − R634)/(R802 + R634)
21 PVR [50] (R550 − R650)/(R550 + R650)
22 RVI [51] R800/R670
23 RVSI [52] (R714 − R752)/2 − R733
24 R680 [53] Reflectance at 680 nm
25 R800 [54] Reflectance at 800 nm
26 SAVI [55] (R800 − R670)/[1.5 × (R800 + R670 + 0.5)]
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Table 3. Cont.

No. Indices Formula

27 SPI [56] (R802 − R450)/(R802 + R682)
28 SRPI [46] R430/R680
29 TVI [57] 0.5 × [120 × (R750 − R550)− 200 × (R670 − R550)]
30 VARI [58] (R730 − R662)/(R730 + R662)
31 VOGa [59] R742/R722
32 VOG2 [59] (R742 − R746)/(R714 + R722)
33 WI [60] R900/R970

Note, R680 in the table indicates the spectral reflectance at 680 nm; other parameters are analogized. Chlorophyll
index—green (CIgreen); chlorophyll index—red edge (CIred_edge); double difference index (DD); difference veg-
etation index (DVI); enhanced vegetation index (EVI); Gitelson and Merzlyak index (GM); green normalized
difference vegetation index (GNDVI); land cover index (LCI); modified chlorophyll absorption in reflectance index
(MCARI); modified normalized difference (mND705); modified simple ratio (mSR705); modified soil-adjusted
vegetation index (MSAVI); modified triangular vegetation index (MTVI1); normalized vegetation index (NDI);
normalized difference vegetation index (NDVI); normalized pigment chlorophyll index (NPCI); plant biochem-
ical index (PBI); photochemical reflectance index (PRI); pigment specific normalized difference of chlorophyll
a (PSNDa); pigment specific normalized difference of chlorophyll b (PSNDb); perpendicular vegetation reflectance
(PVR); ratio vegetation index (RVI); red edge vegetation stress index (RVSI); the range of leaf reflectance at
680 nm (R680); the range of leaf reflectance at 800 nm (R800); soil-adjusted vegetation index (SAVI); standardized
precipitation index (SPI); simple ratio pigment index (SRPI); triangle vegetation index (TVI); visual atmospheric
resistant index (VARI); Vogelmann red edge index 1 (VOGa); Vogelmann red edge index 2 (VOG2); water
index (WI).

4. Height and vegetation structure parameters

The airborne LiDAR system can obtain a dense point cloud, from which the height
and vegetation structure parameters can be extracted. In this study, 34 height features and
seven vegetation structure parameters were selected, as shown in Table 4.

Table 4. Variable symbols of laser imaging, detection, and ranging (LiDAR) features.

No. LiDAR Features Variable Symbols

1 Maximum height Hmax
2 Minimum height Hmin
3 Average height Hmean
4 Height kurtosis Hkurt
5 Median Hmedian_z
6 Height skewness Hskew
7 Height standard deviation Hstd
8 Height variance Hvar
9 Canopy relief ratio Hcrr
10 Canopy density metrics d0, d1, d2, d3, d4, d5, d6, d7, d8, d9

11 Height percentile
HP1st, HP5th, HP10th, HP20th, HP25th, HP30th,
HP40th, HP50th, HP60th, HP70th, HP75th, HP80th,
HP90th, HP95th, HP99th

12 Canopy height CHM
13 Canopy cover CC
14 Gap fraction GF
15 Leaf area index LAI
16 Foliage height diversity FHD-1m, FHD-2m, FHD-3m

Note, that the calculation of the features above can be found in our previous research [26].

2.3.3. Selection of Features

Feature filtering refers to reducing the dimensionality of high-dimensional feature
datasets by removing some invalid features, selecting the most suitable features for model-
ing, and constructing an optimal feature dataset. In general, feature filtering is required
when a feature dataset is too large; this process not only reduces the computation time but
also prevents the model from overfitting. In this study, the Boruta algorithm was used for
feature selection [61]. This algorithm is designed as a wrapper around a random forest



Remote Sens. 2024, 16, 1624 9 of 22

classification algorithm. It iteratively removes the features that are proven by a statistical
test to be less relevant than random probes.

The Boruta algorithm consists of the following steps [61]:

1. Build random forest: construct a random forest model using the original dataset. This
typically involves multiple decision trees, each trained on a random subset.

2. Calculate the importance of the original features: for each feature, compute its relative
importance using the random forest model. This is achieved by measuring the
contribution of the feature to the model’s predictive accuracy.

3. Create shadow features: for each original feature, generate a corresponding “shadow”
feature. A shadow feature is created by randomly permuting the values of the
original feature.

4. Build an extended random forest: build another random forest model using a dataset
that includes both the original and shadow features.

5. Compute the importance of the shadow features: calculate the relative importance of
each shadow feature in the extended random forest.

6. Compare the importance of the original and shadow features: for each original feature,
compare its actual importance with the average importance of its shadow features. If
the original feature’s importance is higher than the average importance of its shadow
features, retain the feature; otherwise, label it as unimportant.

7. Repeat steps 4–6: iterate through steps 4–6 until the stopping criteria are met, such as
reaching a specified number of features or marking all features as important.

8. Final feature selection: retain the features labeled as important for modeling or
further analysis.

2.3.4. Estimation Model

This study involved the construction of three models based on different feature vari-
able combinations, including causal band features, hyperspectral features, and hyperspec-
tral + LiDAR features.

1. Causal band model

Components in vegetation related to C, such as starch, cellulose, proteins, and lignin,
exhibit absorption features in the infrared bands [62,63]. Components associated with N in
vegetation, such as chlorophyll and proteins, exhibit absorption features in the visible and
near-infrared bands [64–66]. The range of wavelengths associated with P in vegetation was
inconsistent in this study, possibly due to the low P concentration observed in leaves (less
than 1% of dry leaf mass) and the indistinct P absorption features [67]. Some studies suggest
that the wavelengths suitable for detecting P may be in the visible and near-infrared bands.

A regression model was established based on the foliar C, N, and P causal bands
obtained by reviewing the literature and was compared with the multiple linear regression
and random forest models. In this study, the causal absorption features (nm) associated
with foliar C mainly occurred at 970 and 990 nm [68], while those associated with foliar N
mainly occurred at 510, 700–750, and 910 nm [68]; in addition, those features associated
with foliar P mainly occurred at 400–900 nm [69,70].

2. Multiple linear regression algorithm

A multiple linear regression model with multiple explanatory variables that explained
the linear relationship between the explanatory variable and other multiple explanatory
variables was used. Suppose given an example described by d attributes x = (x1; x2;. . .; xd),
where xi is the value of x on the ith attribute; then, the multiple linear regression model can
be expressed as follows:

f (x) = ω1x1 + ω2x2 + . . . + ωdxd + b. (2)
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It is generally written in vector form as follows:

f (x) = ωTx + b, (3)

where ω = (ω1;ω1;. . .;ωd) and x = (x1;x2;. . .;xd).

3. Random forest algorithm

A random forest algorithm is a collection of multiple decision trees [71]. A random
forest combines the predictions of multiple decision trees to build a more robust model,
so it is not easily overfitting by itself, but it does not provide the same interpretability as
decision trees. This study employs a 10-fold cross-validation as an independent validation
to assess the accuracy of the random forest model. The random forest algorithm can be
summarized in four steps:

1. n samples randomly drawn from the training set are put back.
2. Create a decision tree from a dataset consisting of these n samples.

a. At each node: randomly select d features without putting them back.
b. Use maximized learning gain or other methods to split nodes based on these

features.

3. Repeat steps 1–2 several (k) times.
4. Finally, take the average value according to the estimation results of these decision

trees as the final estimation results.

2.3.5. Validation

To test the performance of the estimation models, the sample data were randomly split
into two subsets, with 80% for training and 20% for validation. One-to-one relationships
between the measured and estimated foliar C, N, and P concentrations were fitted; then,
the R2, root mean squared error (RMSE), and mean absolute error (MAE) were calculated.
RMSE and MAE have the same unit for the C, N, and P concentrations. The R2 values report
how well the model explains the variation of the dependent variable. The RMSE values
report the degree of difference between the measured and estimated values. MAE is the
average of the absolute error between the measured and estimated values. The calculation
formulas of R2, RMSE, and MAE are, respectively, as follows:

R2 =
∑n

i=1
(

yi − y′i
)2√

∑n
i=1( y − yi )

2
(4)

RMSE =

√
1
n

n

∑
i=1

(
y′i − yi

)2 (5)

MAE =
1
n

n

∑
i=1

∣∣ y′i − yi
∣∣ (6)

where n is the number of samples, i is the sample serial number, y is the average of the
measurements of C, N, and P concentrations in the plant community canopy, and yi and
y′i are the measured and estimated C, N, and P concentration of the plant community
canopy, respectively.

3. Results
3.1. Selected Feature

The feature selection results are shown in Figure 4. The blue box plot corresponds to
the minimum, mean, and maximum Z scores (importance) of the shadow features. The red,
yellow, and green box plots represent the Z scores for the rejected, tentative, and confirmed
features, respectively. In this study, important variables (green box) were picked out as the
input variables for modeling.
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Figure 4. Selection results of the features of (a) C, (b) N, and (c) P. All features were ranked according
to the Z score calculated by the Boruta algorithm. The red, yellow, and green box plots represent the Z
scores for the rejected, tentative, and confirmed features, respectively. For C, red-edge bands, height
variables, and vegetation structure parameters were identified as comparatively important. For N,
textural features, height percentiles of 40–95%, and vegetation structure parameters were deemed
significant. For P, spectral features, a height percentile of 80%, and 1 m foliage height diversity were
considered crucial.
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3.2. Accuracy of the Estimation Model

The causal bands, multiple linear regression, and random forest models were built
using these selected feature combinations. Specifically, the causal band model takes as
input the spectral bands causally related to foliar C, N, and P. The multiple linear regression
model takes as input the combination of the hyperspectral features and hyperspectral +
LiDAR features, while the random forest model takes the same input combination as the
multiple linear regression model.

Table 5 presents the R2 and RMSE for different models and feature combinations. For
C, the accuracy of the three models ranged from 0.07 to 0.56, with the RMSE ranging from
1.19% to 9.49%. Among them, the multiple linear regression and random forest models
outperformed the causal bands model. Additionally, combinations with LiDAR features
outperformed those with hyperspectral features. The best performance was observed in
the random forest model with hyperspectral + LiDAR, where R2 reached 0.56. For N, the
accuracy of the models ranged from 0.20 to 0.53, with the RMSE ranging from 0.57% to
0.92%. Similar to C, the multiple linear regression and random forest models outperformed
the causal band model. The difference in R2 between the models with hyperspectral
+ LiDAR and hyperspectral features was 0.00. The best performance was observed in
the random forest model with hyperspectral features, reaching an R2 of 0.53. For P, the
accuracy of the models ranged from 0.32 to 0.44, with the RMSE ranging from 0.40 g/kg
to 0.52 g/kg. The multiple linear regression and random forest models outperformed the
causal band model; the difference in R2 between the models with hyperspectral + LiDAR
and hyperspectral features was only 0.01. The best performance was observed in the
random forest model with hyperspectral + LiDAR, achieving an R2 of 0.44.

Table 5. Accuracy of the estimation models.

Model Feature Combination R2 RMSE MAE

C

Causal bands (970, 990 nm) 0.07 5.16 3.64

Multiple linear regression model
Hyperspectral features 0.34 4.69 3.11

Hyperspectral + LiDAR 0.42 2.24 2.13

Random forest model
Hyperspectral features 0.38 3.47 2.74

Hyperspectral + LiDAR 0.56 1.19 1.00

N

Causal bands (510, 700–750, 910 nm) 0.20 0.92 0.60

Multiple linear regression model
Hyperspectral features 0.46 0.87 0.52

Hyperspectral + LiDAR 0.48 0.85 0.48

Random forest model
Hyperspectral features 0.53 0.57 0.46

Hyperspectral + LiDAR 0.53 0.57 0.46

P

Causal bands (400–900 nm) 0.32 0.52 0.45

Multiple linear regression model
Hyperspectral features 0.37 0.51 0.36

Hyperspectral + LiDAR 0.39 0.50 0.36

Random forest model
Hyperspectral features 0.43 0.40 0.31

Hyperspectral + LiDAR 0.44 0.40 0.31

In comparison, the causal band model exhibited the best accuracy in estimating the
foliar P concentration (Figure 5), the multiple linear regression model performed best in
estimating the foliar N concentration (Figure 6), and the random forest model excelled in
estimating the foliar C concentration (Figure 7).
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3.3. Map of Foliar C, N, and P Concentrations

Foliar C, N, and P concentration maps were made to visualize the spatial distribution of
these three nutrients. These maps were generated by applying random forest models to the
images of the feature variables corresponding to the C, N, and P concentrations. Figure 8a–c
illustrates the foliar C, N, and P concentrations in the study area, respectively. The spatial
distribution of C, N, and P concentrations in each plant community was significantly
different, which could effectively reflect the differences in C, N, and P concentrations
among different plant communities.



Remote Sens. 2024, 16, 1624 14 of 22

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 23 
 

 

   
Figure 6. Accuracy of estimation model of multiple linear regression for (a) C, (b) N, and (c) P. 

   
Figure 7. Accuracy of estimation model of random forest for (a) C, (b) N, and (c) P. 

3.3. Map of Foliar C, N, and P Concentrations 
Foliar C, N, and P concentration maps were made to visualize the spatial distribution 

of these three nutrients. These maps were generated by applying random forest models 
to the images of the feature variables corresponding to the C, N, and P concentrations. 
Figure 8a–c illustrates the foliar C, N, and P concentrations in the study area, respectively. 
The spatial distribution of C, N, and P concentrations in each plant community was sig-
nificantly different, which could effectively reflect the differences in C, N, and P concen-
trations among different plant communities. 

 
(a) 

Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 23 
 

 

 
(b) 

 
(c) 

Figure 8. Study site maps produced using the random forest model for foliar: (a) C, (b) N, and (c) P 
concentrations. 

The maximum C value, 48.70%, was observed in the Pinus sylvestris community, 
while the minimum, 38.20%, was found in the Herbaceous community. The average C con-
centration was 45.17%, with a median of 45.20%. The majority of C values were concen-
trated within the range of 42.20–48.00%. The high-value areas of C concentration were 
mainly found in the Sea buckthorn and Pinus sylvestris communities in the middle of the 
study area, and the low-value areas were mainly found in the Populus spp. and Herbaceous 
communities in the study area. 

The maximum N value, 3.69%, was observed in the Caragana spp. community, while 
the minimum value, 1.35%, was found in the Herbaceous community. The average N con-
centration was 2.56%, with a median of 2.54%. The majority of values were concentrated 
within the range of 1.50–3.50%. The high-value areas of N concentration were mainly 
found in the Sea buckthorn community in the middle of the study area and scattered Popu-
lus spp. and Caragana spp. communities, while the low-value areas were mainly found in 
the Pinus sylvestris community near the main road and the Populus spp. community in the 
east. 

The maximum P value, 2.42 g/kg, was observed in the Artemisia oleifera community, 
while the minimum value, 1.12 g/kg, was found in the Herbaceous community. The average 
P concentration was 1.65 g/kg, with a median of 1.63 g/kg. The majority of values were 
concentrated within the range of 1.30–2.20 g/kg. The high-value area of P concentration 
was mainly found in the Artemisia oleifera community in the middle of the study area, and 
the low-value areas were mainly found in the Pinus sylvestris, Populus spp., and Herbaceous 
communities in the study area. 

Figure 8. Study site maps produced using the random forest model for foliar: (a) C, (b) N, and
(c) P concentrations.



Remote Sens. 2024, 16, 1624 15 of 22

The maximum C value, 48.70%, was observed in the Pinus sylvestris community,
while the minimum, 38.20%, was found in the Herbaceous community. The average C
concentration was 45.17%, with a median of 45.20%. The majority of C values were
concentrated within the range of 42.20–48.00%. The high-value areas of C concentration
were mainly found in the Sea buckthorn and Pinus sylvestris communities in the middle
of the study area, and the low-value areas were mainly found in the Populus spp. and
Herbaceous communities in the study area.

The maximum N value, 3.69%, was observed in the Caragana spp. community, while
the minimum value, 1.35%, was found in the Herbaceous community. The average N
concentration was 2.56%, with a median of 2.54%. The majority of values were concentrated
within the range of 1.50–3.50%. The high-value areas of N concentration were mainly found
in the Sea buckthorn community in the middle of the study area and scattered Populus spp.
and Caragana spp. communities, while the low-value areas were mainly found in the
Pinus sylvestris community near the main road and the Populus spp. community in the east.

The maximum P value, 2.42 g/kg, was observed in the Artemisia oleifera community,
while the minimum value, 1.12 g/kg, was found in the Herbaceous community. The average
P concentration was 1.65 g/kg, with a median of 1.63 g/kg. The majority of values were
concentrated within the range of 1.30–2.20 g/kg. The high-value area of P concentration
was mainly found in the Artemisia oleifera community in the middle of the study area, and
the low-value areas were mainly found in the Pinus sylvestris, Populus spp., and Herbaceous
communities in the study area.

4. Discussion
4.1. The Role of Features in the Model

Table 6 presents the hyperspectral and LiDAR features involved in constructing the
models to measure the foliar C, N, and P concentrations. A total of 32 features were used
in estimating both the C and N concentrations, including nine hyperspectral features and
23 LiDAR features for C along with 14 hyperspectral features and 18 LiDAR features for
N. In the case of the P concentration estimation, 16 features were considered, consisting of
12 hyperspectral features and four LiDAR features.

For C, red-edge bands, height variables, and vegetation structure parameters were
identified as comparatively important. For N, textural features, height percentiles of
40–95%, and vegetation structure parameters were deemed significant. As for P, spectral
features, a height percentile of 80%, and a 1 m foliage height diversity were considered
crucial. Among these, the 80% height percentile, height standard deviation, height variance,
and 1 m leaf height diversity were identified as common features contributing to the
construction of C, N, and P concentration estimation models, indicating their importance
in estimating C, N, and P concentrations. Additionally, during the construction of the C
concentration estimation model, the incorporation of LiDAR features significantly enhanced
the predictive accuracy, suggesting that the C concentration is sensitive to plant height and
can differentiate plant communities based on height. However, when constructing the N
and P concentration estimation models, the inclusion of LiDAR features did not notably
improve predictive accuracy, indicating that the sensitivity of N and P concentrations to
plant height is limited; in addition, enhancing the accuracy of the N and P estimates did
not rely heavily on the LiDAR features.



Remote Sens. 2024, 16, 1624 16 of 22

Table 6. The hyperspectral and LiDAR features employed for estimating C, N, and P concentrations.

Hyperspectral Features C N P LiDAR Features C N P

R399
√

d6
√

R404
√ √

d8
√

R409
√

d9
√

R415
√ √

Hmax
√

R420
√ √

Hmean
√ √

R451
√

Hmedian_z
√ √

R462
√

HP1st
√

R473
√

HP10th
√

R483
√

HP20th
√

R504
√

HP25th
√

R510
√

HP30th
√

R515
√

HP40th
√ √

R758
√

HP50th
√

R763
√

HP60th
√ √

EVI
√ √

HP70th
√ √

GNDVI
√

HP75th
√ √

MTVI1
√

HP80th
√ √ √

NPCI
√

HP90th
√ √

PVR
√

HP95th
√ √

R680
√

HP99th
√

SRPI
√

Hstd
√ √

WI
√ √

Hvar
√ √

B1-Data Range
√

CC
√

B1-Mean
√ √

CHM
√ √

B1-Variance
√

FHD-1m
√ √ √

B3-Data Range
√ √

FHD-2m
√

B3-Variance
√ √

FHD-3m
√

/ / / / GF
√

4.2. Implications of the Foliar C, N, and P Map

Considering the fact that the restoration of vegetation on degraded land is often
limited by nutrient deficiency, C, N, and P maps can be used to examine nutrient limita-
tion and storage in an area, so as to provide information supporting the post-restoration
management of vegetation.

The C:N ratio reflects the vegetation’s ability to assimilate carbon (C) in relation to
nitrogen (N) and its efficiency in utilizing nitrogen; this ratio also indicates the carbon
sequestration capacity of the plant [72]. A high C:N ratio implies a relatively higher content
of C and a lower content of N in the leaves. This may occur in environments with limited
N supply, or when plants grow under conditions rich in C but deficient in N. Plants with
a high C:N ratio exhibit high N use efficiency but grow slowly because they require more
time to acquire sufficient N to support growth [73]. However, a low C:N ratio signifies
a relatively low C content and a higher N content in the leaves. This typically indicates that
the studied plants have an ample N supply, possibly due to being in an N-rich environment
or receiving N fertilizer. Plants with a low C:N ratio have rapid decomposition traits and
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faster growth, with a relatively lower demand for C [73]. Plants with a moderate C:N ratio
have a balanced content of C and N in their leaves. This usually suggests that plants are in
a relatively balanced state in terms of C and N supply, are capable of adapting to various
environmental conditions, and thrive under suitable conditions.

In the present study, the C:N ratios were calculated (Figure 9a). This figure shows that
the Pinus sylvestris and Populus spp. communities had higher C:N ratios. This suggests
that Pinus sylvestris and Populus spp. have relatively high N use efficiencies and stronger C
sequestration capabilities, whereas Sea buckthorn, Artemisia oleifera, Amorpha fruticosa, and
Caragana spp. have lower N use efficiencies and weaker carbon sequestration capabilities.
The C:N ratios for the Salix spp. and Herbaceous plant communities were relatively balanced.
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The N:P ratio reflects the availability of N and P in plants; the availability of N and
P is a critical factor that can limit plant growth [74]. Therefore, analyzing the N:P ratio in
plants can provide insights into the growth and nutrient limitations of plants. Typically,
when the N:P ratio is between 14 and 16, plants are not limited by N or P or are co-limited
by both. In contrast, when the N:P ratio is less than 14, plants are primarily limited by
N, while when the N:P ratio is greater than 16, plants are mainly limited by P [75]. The
N:P ratios for different plant canopies in the study area were generated from the N and P
concentration maps (Figure 9b).

The blue region (46.62%) in Figure 9b primarily represents communities of
Amorpha fruticosa, Sea buckthorn, and Caragana spp., with an N:P ratio greater than 16,
indicating that these three plant communities were limited by P. The green region (20.06%)
in the same figure mainly represents Pinus sylvestris, Artemisia oleifera, and Salix spp. com-
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munities, with an N:P ratio of less than 14, indicating that these three plant communities
were limited by N. The orange region (30.32%) in that figure mainly represents Populus spp.
and herbaceous communities, with an N:P ratio between 14 and 16, suggesting that these
two plant communities may either not have been limited by N or P or they may have been
co-limited by both.

4.3. Limitations and Future Work

This study has some limitations that need to be noted. First, the plant communities in
the study area are mixed. Although LiDAR provides high accuracy, the richness of plant
community types results in lower estimation accuracy when compared with conditions
in communities with vegetation types composed of a single species such as wheat or
corn [75,76]. Second, the limited spectral bands (398–1002 nm) in the hyperspectral data
allow for only a partial inversion of C, N, and P concentrations, because sensitivity to these
elements is lacking in certain bands (1000–2000 nm). Third, seasonal or monthly variations
may affect the effectiveness of the developed approach. We suggest assessing the C, N,
and P concentrations during the maturity period of vegetation growth. Moreover, the C,
N, and P concentrations of different vegetation types should be conducted in the same
observing time.

The developed approach is more suitable for semi-arid regions with less diverse
vegetation. It can also be used in farmland, plantations, and natural forests to quickly
assess foliar C, N, and P concentrations for fertilization management and ecosystem health
assessment. For implementing the developed approach, the recommended procedures
include, first, acquiring LiDAR and hyperspectral data by UAV, extracting the sensitive
features using LiDAR 360 V6.0 software and ENVI 5.0 software, as shown in Table 6,
training random forest models to generate maps of C, N, and P concentrations, and then
validating the results. If the accuracy cannot be accepted, change the sensitive features and
re-train the models, and, if accepted, the maps could be applied to show the status of foliar
C, N, and P.

The technology employed in this study demonstrates significant potential, offering
a synergistic approach for estimating foliar C, N, and P concentrations in plant communities
and revealing their responses to ecological changes. Moreover, the monitoring results can
be applied to ecological restoration management, ecosystem health assessment, and plant
stress identification. The research shows substantial spatial heterogeneity, significantly
reducing estimation accuracy, particularly in forests restored by humans that are often
under C, N, and P limitations. The maps of C, N, and P could be used to explain the
driving factors, such as soil, terrain, and vegetation, of restoration success. Considering
that plant community types have a significant impact on LiDAR and hyperspectral features,
in the future, it can be considered to classify mixed plant communities first, and then
establish estimation models for C, N, and P concentration for each plant community type
separately, reducing inter-class differences in data and achieving the goal of improving
evaluation accuracy. In addition, this study only used shallow features from remote sensing
images, such as plant height and vegetation index information. In the future, deep network
models can be used to extract deep features, such as abstract semantic information from
remotely sensed images and LiDAR point cloud data, to improve evaluation accuracy
and efficiency. Expanding monitoring capabilities using satellite data to acquire C, N, and
P information for ecological assessments or vegetation health monitoring is crucial for
overcoming the limitations of traditional monitoring based on vegetation indices such as
coverage and greenness.

5. Conclusions

This study used LiDAR and hyperspectral data to extract spectral features, textural
features, vegetation indices, height features, and vegetation structural parameters for eight
dominant plant communities in the Shendong Mining Area in China. Three models, namely,
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causal bands, multiple linear regression, and random forest models, were developed and
tested in an ecological restoration area in northern China.

The key findings and conclusions of this research suggest that LiDAR and hyperspec-
tral data can be used to effectively monitor the C, N, and P concentrations in a mixed
plant community zone within an ecological restoration area. The random forest model
demonstrated the best performance, with the optimal feature combination being hyperspec-
tral + LiDAR data. This study revealed that C, N, and P concentrations effectively reflect
differences among various regions and communities, indicating the stress levels on plants
often caused by a lack of these elements. This approach offers a rapid and cost-effective
means of acquiring related data, providing valuable information for the management and
successful assessment of an ecological restoration area.

Based on the experience of this study, it is necessary to utilize hyperspectral data with
a broader range of bands and perform classification for plant communities in this type of
study. An extended spectral range can provide richer information for analyzing the spatial
heterogeneity of foliar C, N, and P concentrations and their stress on vegetation growth
after restoration. Plant classification may reduce the spatial and spectral uncertainties intro-
duced by plant community heterogeneity, offering the potential to enhance the accuracy
of predicting plant C, N, and P concentrations. Using this information for the analysis of
C, N, and P limitations and ecosystem health assessment will contribute to a more precise
understanding of ecosystem restoration.
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