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Abstract: The application of starlight refraction navigation to spacecraft and space weapons is a
significant development. However, the irregular stratospheric atmosphere can cause fluctuations
in relative light intensity and refraction angles of refracted stars, which need to be analyzed to
provide guidance for system design and simulation verification. The internal gravity wave (IGW) is
an important component of the irregular atmosphere. Based on the Rytov approximation, closed-
form approximations were obtained, which can more intuitively reveal the relationship between
the IGW parameters and the star signals’ statistical characteristics. From the GOMOS observations,
the influence of the stratosphere from 25 km to 35 km on the fluctuations in relative intensity
and refraction angles was analyzed in this study. As the height increased, the fluctuations in
starlight signals gradually weakened. Compared with the numerical solution, the error of the closed-
form approximations for relative intensity fluctuations was no more than 10%, and the error for
refraction angle fluctuations was 1.0%. Compared with the measured data, the error of the closed-
form approximations for relative intensity was 6.3%. The proposed approximations better reflect
the relationship between IGW parameters and star signal fluctuations compared to the existing
approximation. The research in this article can provide a reference for application assessment based
on starlight refraction navigation.

Keywords: internal gravity waves; refraction angle fluctuation; relative intensity fluctuation; stratosphere;
starlight refraction navigation

1. Introduction

Under the condition of Global Navigation Satellite System (GNSS) rejection, starlight
refraction navigation may be a backup method for navigation. It can provide position
and altitude information for low-orbit satellites and space weapons [1], using atmospheric
refraction angles at around 25 km. Based on the assumption that the atmospheric density
changes exponentially with height, Robert proposed a starlight atmospheric refraction
model [2]. The atmospheric refraction model assumes the refraction angle is only related to
the tangent height. At a tangent height of 25 km, the ideal refraction angle is 150′′. Position
and altitude information can be calculated to achieve autonomous navigation with the
refraction angles of starlight [3]. However, the stratosphere’s air density irregularities [4]
can cause star signal fluctuations, reducing the quality of star maps and affecting navigation
accuracy. The feasibility of starlight refraction navigation needs to be analyzed. Based on
the Rytov approximation, the theoretical calculations of star signal fluctuations can provide
a reference for the design of the navigation system and the algorithm. Analyzing the impact
of the different parameters of irregular atmospheres on starlight signals can provide a basis
for the verification of the system simulation.

The stratosphere exhibits anisotropic and isotropic characteristics due to internal
gravity waves (IGWs) and turbulence [5]. The following three methods are commonly used
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to study the atmospheric characteristics of the stratosphere. One method is to study IGWs
based on temperature or density measured by remote sensing satellites [6]. However, due to
the measurement data’s time and space limitations, the IGW distribution in the stratosphere
is often studied monthly. Therefore, the first method cannot reflect the instantaneous
characteristics of IGWs. The second method is to invert the parameters of IGWs using
radio sources. Due to the radio wavelength limitation, this method cannot invert the inner
scale parameters of IGWs [7]. The third method is to invert the parameters of IGWs and
turbulence using spectral measurement data [8], such as GOMOS data. GOMOS is an
instrument that is on board the ENVISAT satellite, which uses refracted stars to study the
atmosphere. GOMOS is equipped with two fast photometers sampling at a frequency of 1
kHz in the ranges 644–705 nm and 466–528 nm. The third method can be used to further
study the impact of IGWs and turbulence on star signals, which is adopted in this article.

Irregular atmospheres can cause star signal fluctuations. In 2008, Robert [9] analyzed
the stellar scintillation obtained from a balloon-borne spectrometer. When the exposure
time was 0.42 ms, the contribution of IGWs was greater than that of turbulence in the
visible band. Gurvich [10] derived the effects of turbulence and IGWs on star maps, but the
influence of anisotropy was ignored. In 2008, Du [11] derived the effects of turbulence and
IGWs on the star refraction angle. However, he did not consider the influence of anisotropy.
In 2012, Michael E. Gorbunov [12] analyzed the influence of IGWs on radio occultation
signals based on multiple-phase screens. In 2017, Yang [13] used Fluent 17.0 software to
simulate the density fluctuation field of the stratosphere, and the ray tracing results showed
that the starlight would be deflected due to the air density irregularities. In 2020, Kan [14]
further analyzed the impact of IGWs and turbulence on radio signals. However, because
the radio wavelength is much larger than that of visible light, the approximate formula
obtained does not apply to visible light. In 2023, based on the refraction principle of light
and ten years of atmospheric data from TIMED/SABER, Wu [15] used the ray tracing
algorithm to analyze the starlight refraction angle and found that the fluctuations in the
starlight refraction angle are related to IGWs in the stratosphere. However, the monthly
statistical density characteristics cannot reflect the instantaneous characteristics of IGWs,
which can affect the image of the star.

In general, the impact of the stratosphere on fluctuations in star signals is still unclear.
Based on the GOMOS data, this article analyzed the effects of IGWs and turbulence on
stellar fluctuations from 25 km to 35 km. IGWs are an important component of the irregular
atmosphere. The closed-form approximations for IGW are obtained. Compared with the
numerical integration solution, the closed-form approximations can more intuitively reveal
the relationship between the IGW parameters and the star signals’ statistical characteristics.
Section 2 introduces the characteristics of stratospheric IGWs and turbulence. Section 3
derives the closed-form approximations. Section 4 demonstrates the experimental results
and analysis. This paper is concluded in Section 5. The research in this article can provide
theoretical support for simulation verification and system design.

2. Spectral Model of Refractivity Fluctuation

Because stars are infinitely distant from the Earth, the starlight can be considered
a plane wave. Figure 1 shows a diagram of starlight propagation from the atmosphere
to the satellite. Starlight first passes through the atmosphere, and its phase distribution
changes. The propagation distance of the starlight in the atmosphere is Lt. Then, the
starlight propagates through a vacuum to reach the star sensors. Starlight propagates along
the z-axis, the y-axis is perpendicular to the planet’s limb, and the x-axis is parallel to the
limb. The “thin phase-changing screen” assumes that the atmosphere the starlight passes
through is a single-phase screen [16], which is located at the oyz plane at a distance L from
the satellite. The thin screen is orthogonal to the z-axis and located at the ray perigee point,
and the ray perigee point is the place where the light is closest to the surface of the Earth
and corresponds to the tangent height hp. When the low-orbit satellite height is 792 km, the
distance L is ~3200 km at a tangent height of 30 km.
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Figure 1. The thin phase screen for starlight propagation. 
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The anisotropic and isotropic three-dimensional spectrum for IGWs and turbulence
can be expressed as follows [17]:

ΦW,K = ACW,Kη2(κ2 + κ2
Out
)−u/2 exp

(
−(κ/κI)

2
)

κ2 = η2
(

κ2
x + κ2

y

)
+ κ2
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(1)

where, for the IGWs, CW is the structure characteristic defining the power of the anisotropic
irregularities.

(
κx, κy, κz

)
is the spatial wave number. κOut = κ0 and κI = κW are the

wave numbers corresponding to the outer scale L0 and the inner scale lW . u = 5, A = 1,
and η = 30 is the coefficient of anisotropy [8]. For the turbulence, CK is the structure
characteristic for the isotropic irregularities, and κI = κk is the wave number corresponding
to the inner scale lk. u = 11/3, η = 1, A = 0.033, and κOut = 0 for the turbulence [8].

Assuming the atmospheric refractivity fluctuations are locally homogeneous in a spher-
ical layer, the two-dimensional power spectral density (PSD) of the refractivity fluctuations
FΨ in the phase screen can be obtained:

FΨ
(
κz, κy

)
= ⟨Ψ⟩2CW,K

√
πη2 A√

aEH + η2(1 + κ2
z H2)/κ2

I

ρ−u exp

(
−ρ2

κ2
I

)
(2)

A =
√

ZU(0.5, 0.5(3 − µ), Z) (3)

ρ2 = κ2
z + η2κ2

y + κ2
Out (4)

Z =
ρ2

κ2
I

(
1 +

aEHκ2
I

η2(1 + κ2
z H2)

)
(5)

where aE is the radius of the Earth, H is the atmospheric scale height, and ⟨Ψ⟩ ≈
√

2πaEHn
(
hp
)

is the optical path length in the atmosphere. n
(
hp
)

is the refractivity at the ray perigee point.
In low-latitude regions, the USSA standard atmospheric model can be used to calculate the
above parameters. At a height of 30 km, the refractivity n is 4.09 × 10−6 and H = 6300 m.
U(a, b, z) in Equation (3) is the confluent hypergeometric function.

At the observation plane, located at a distance L from the ray perigee, the two-
dimensional spectrum of relative light intensity fluctuations Fχ

(
κz, κy

)
is related to FΨ

(
κz, κy

)
as follows.

Fχ

(
κz, κy

)
= Ξ

(
κz, κy

)
FΨ

(
κz

q
, κy

)
(6)

where the factor Ξ
(
κz, κy

)
takes into account the diffraction of light, the refractive attenua-

tion q, and the effects of chromatic aberration [17].
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The two-dimensional PSD of relative light intensity Fχ

(
κx, κy

)
in Equation (6) is in-

tegrated to obtain one-dimensional PSD of relative light intensity Vχ(κs, α), as shown in
Equation (7).

Vχ(κs, α) =
∫ ∞

−∞
Fχ(−κn sin α + κs cos α, κn cos α + κs sin α)dκn (7)

where κs is the wave number along the satellite trajectory on the phase screen, and α is the
oblique angle, as shown in Figure 2 of [17].

3. Relative Intensity and Refraction Angle Fluctuations
3.1. Relative Intensity Fluctuations

Based on the one-dimensional PSD of relative intensity and the observed scintillation
data of GOMOS, the atmospheric IGWs and turbulence parameters at different tangent
heights can be fitted [8]. Figure 2 shows the measured PSD and fitted PSD at (32◦S,
162◦E). For IGW, the corresponding inner scale is 10.3 m, the outer scale is 0.86 km, and
CW = 6.7 · 10−11m−2. For turbulence, the inner scale is 0.2 m and CK = 2.2 · 10−9m−2/3.
The stellar scintillation is caused by IGWs and turbulence. The relative intensity variance
can be computed as σ2= 2

∫ κN
0 Vχ(κs, α)dκs. The spectral density of isotropic scintillation is

practically constant for wave numbers κ < κN . So, the blue diagonal area σ2
i in Figure 2

corresponds to the relative intensity variance caused by turbulence. The other area σ2
a

corresponds to the relative intensity variance caused by IGWs. κN is the Nyquist fre-
quency. κN = 2π fN/vs. fN is the Nyquist frequency for the photometer. vs is the ray
perigee velocity.
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Based on the one-dimensional PSD of relative intensity, the variance of the relative
intensity can be obtained, as shown in Equation (8).

σ2 = 2
∫ κN

0
Vχ(κs, α)dκs (8)

where κN is the Nyquist frequency.
When the inner scale κW of IGWs is smaller than the Nyquist frequency κN , the

variance of the relative intensity caused by IGWs can be obtained:

σ2
a =

∫ ∞

−∞

∫ ∞

−∞
Fa

χ

(
κz, κy

)
(9)

where Fa
χ is the two-dimensional PSD of relative intensity for IGWs.
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For the condition δλ/λ < 0.1, the 2D relative intensity fluctuation spectra Fχ on the
observed surface are as follows [17]:

Fχ

(
κz, κy

)
=

4k2

q
exp

[
−
(

kz∆
q

)2
]

sin2
[

L
2k

(
κ2

z
q
+ κ2

y

)]
FΨ

(
κz

q
, κy

)
G
(
κz, κy

)
(10)

G
(
κz, κy

)
=

2J1

(√
κ2

z + κ2
yR0

)
√

κ2
z + κ2

yR0

 (11)

where q is the refractive attenuation dependent on the height. Refractive attenuation is
0.86 at a height of 30 km. k = 2π/λ, and λ is the wavelength of light. G

(
κz, κy

)
takes

into account the averaging effect of the aperture with diameter [18]. The optical system
has an aperture of 0.3 m to suppress the strong limb backgrounds [19]. J1 is the Bessel
function. The chromatic aberration ∆= 3020qϑLδλ/λ3. δλ is the spectral width. ϑ is the
refraction angle.

When wave number κz is greater than κW or κy is greater than κW/η, Fψ

(
κz, κy

)
will

rapidly decay and have a relatively small impact on intensity fluctuations. When κz is less
than κW and κy is less than κW/η, Fψ

(
κz, κy

)
has a great impact on intensity fluctuations.

When wave number κz is less than κW , Z will satisfy Equation (12).

Z ≈ aE
H

(
1
η2 +

κ2
y

κ2
z

)
≥ aE

η2H
(12)

The function A =
√

ZU(0.5, 0.5(3 − µ), Z) is an increasing function for Z. In addition,
the confluent hypergeometric function has the following properties:

√
ZU(0.5, 0.5(3 − µ), Z) = 1 as Z → ∞ (13)

When Z equals aE/
(
η2H

)
, A is 0.55. When the condition κz > κy/η is met, A is less

than 0.6. When the condition κz ≤ κy/η is met, A is more than 0.6 and less than 1. A can
take the average value of 0.7 as a fixed value, and the PSD Fa

Ψ of IGWs can be expressed
as follows:

Fa
Ψ
(
κz, κy

)
≈ 0.7

〈
Ψ2
〉

η2CW

√
π

aEH
ρ−u exp

(
− ρ2

κ2
W

)
(14)

The variance of relative intensity caused by IGWs can be calculated using Equation (15).

σ2
a =

∞∫
−∞

∞∫
−∞

4k2

q
exp

[
−
(

kz∆
q

)2
]

sin2
[

L
2k

(
κ2

z
q
+ κ2

y

)]
Fa

Ψ

(
κz

q
, κy

)
dκydκz (15)

When κz and κy is less than κW , the term in the sine portion of Equation (15) is less
than 1, and G

(
κz, κy

)
is approximately 1. The variance of intensity can be obtained using

the following equations:

σ2
a ≈

s [
1 − (κz∆)2

]
L2
(

qκ2
z + κ2

y

)2
Fa

Ψ
(
κz, κy

)
dκzdκy

= L2 AWCW η2s
[
1 − (κz∆)2

](
qκ2

z + κ2
y

)2(
κ2

z + ηκ2
y + κ2

0

)−u/2
exp

(
− κ2

z+ηκ2
y

κ2
W

)
dκzdκy

(16)

AW = 0.7
〈

Ψ2
〉√ π

aEH
exp

(
−

κ2
0

κ2
W

)
(17)

where AW is approximately a fixed value at a fixed height, as κW is much greater than κ0.
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Based on the polar coordinate system transformation and the confluent hypergeo-
metric function, the closed-form approximations of relative intensity fluctuations can be
obtained, as shown in Equation (18).

σ2
a = L2

2 Γ(3)AW B1CWηκ−u+6
0 U

(
3,−u/2 + 4, κ2

0
κ2

W

)
− L2

2 ∆2Γ(4)AW B2CWηκ−u+8
0 U

(
4,−u/2 + 5, κ2

0
κ2

W

) (18)

B1 =
∫ 2π

0
q(cos θ)2 +

1
η2 (sin θ)2dθ (19)

B2 =
∫ 2π

0
(cos θ)2

[
q(cos θ)2 +

1
η2 (sin θ)2dθ

]
(20)

The first term on the right side of Equation (18) is the stellar scintillation for monochro-
matic waves, and the second term is the effect of dispersion on scintillation. It shows
that dispersion will reduce stellar scintillation. Equation (18) can be further simplified.
When κ0/κW > 50, (κ0/κW)−u+6U

(
3,−u/2 + 4, κ2

0/κ2
W
)

is a fixed value of about 0.85, and
(κ0/κW)−u+8U

(
4,−u/2 + 5, κ2

0/κ2
W
)

is a fixed value of about 0.147. Equation (18) can be
further simplified, as shown in Equation (21). Compared with Equation (9), which is an inte-
gral equation, Equation (21), which is an approximate equation, can more intuitively reveal
the relationship between the parameters of IGWs and the relative intensity fluctuations.

σ2
a =

(
0.61B1κW − 0.31∆2B2κ3

W

)
L2CWη

〈
Ψ2
〉√ π

aE H
(21)

where B1 and B2 are related to height. B1 = 1.75 and B2 = 1.46 at a height of 30 km.
Equation (21) shows that the variance of relative intensity is related to the IGW

structure characteristic and inner scale. The intensity variance is proportional to CW ×
〈

Ψ2
〉

and is influenced by the inner scale κW .
The effect of turbulence on intensity fluctuations can be calculated numerically using

Equation (22). The inner scale of turbulence is approximately 0.1 to 0.5 m in the stratosphere.
Normally, the inner scale κk of turbulence is greater than the Nyquist frequency κN , but
this article does not provide an approximate solution for turbulence.

σ2
i = 2

∫ κN

0

∫ ∞

−∞
Ξ
(
κz, κy

)
Fi

Ψ
(
κz, κy

)
dκydκz (22)

where Fi
Ψ
(
κz, κy

)
is the PSD of the refractivity fluctuations for turbulence.

The intensity fluctuations caused by irregular air density in the stratosphere are

σ2 = σ2
i + σ2

a . (23)

3.2. Refraction Angle Fluctuations

For monochromatic waves, the spectra of phase FS
(
κz, κy

)
on the observed surface [14]

are calculated using Equation (24).

FS
(
κz, κy

)
=

k2

2

{
1 + cos

[
L
k

(
qκ2

z + κ2
y

)]}
FΨ
(
κz, κy

)
G
(
κz, κy

)
(24)
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The refraction angle fluctuations α and β in the z and y directions for the IGWs can be
calculated using Equation (25).

α2
a =

∞∫
−∞

∞∫
−∞

1
k2 κ2

z FS
(
κz, κy

)
dκydκz

β2
a =

∞∫
−∞

∞∫
−∞

1
k2 κ2

yFS
(
κz, κy

)
dκydκz

(25)

Based on the polar coordinate system transformation and the confluent hypergeo-
metric function, the closed-form approximations of refraction angle fluctuations can be
obtained using Equations (26) and (27).

α2
a =

s 1
k2 κ2

z FS
(
κz, κy

)
dκydκz

=
s κ2

z
2

{
1 + cos

[
Lq
k

(
κ2

z + q−1κ2
y

)]}
Fa

Ψ
(
κz, κy

)
dκydκz

≈
s

κ2
z Fa

Ψ
(
κz, κy

)
dκydκz

= AWCWη2s κ2
z

(
κ2

z + ηκ2
y + κ2

0

)−u/2
exp

(
− κ2

z+ηκ2
y

κ2
W

)
dκzdκy

= π
2 ηAWCWκ−u+4

0 U
(

2,−u/2 + 3, κ2
0

κ2
W

)
(26)

β2
a =

s 1
k2 κ2

yFS
(
κz, κy

)
dκydκz

= AWCWη2s κ2
y

(
κ2

z + ηκ2
y + κ2

0

)−u/2
exp

(
− κ2

z+ηκ2
y

κ2
W

)
dκzdκy

= π
2η AWCWκ−u+4

0 U
(

2,−u/2 + 3, κ2
0

κ2
W

) (27)

The sum variance of the refraction angle caused by IGWs is as follows:

ε2
a = α2

a + β2
a (28)

Because the outer scale of IGWs is much larger than the inner scale, U
(
2,−u/2+ 3, κ2

0/κ2
W
)

is a fixed value of about 1.3. Equation (28) can be further simplified, as shown in Equation (29).
Compared with Equation (25), which is an integral equation, Equation (29), which is an ap-
proximate equation, can more intuitively reveal the relationship between the parameters of
IGWs and the refraction angle fluctuations.

ε2
a = 1.43ηCW

〈
Ψ2
〉√ π

aEH
κ−1

0 (29)

Equations (26) and (27) show that the refraction angle fluctuation in the z-direction
is much greater than that in the y-direction, which is caused by the anisotropy of IGWs.
Moreover, the fluctuation of the refraction angle is mainly determined by the outer scale
of IGWs.

The effect of turbulence on the refraction fluctuations can be calculated numerically
using Equation (30). The Nyquist frequency is not considered here because the refraction
angle of the infinite interval, which is caused by turbulence, is very small, as shown in the
next section.

ε2
i =

∞∫
−∞

∞∫
−∞

κ2
z

2

{
1 + cos

[
Lq
k

(
κ2

z + q−1κ2
y

)]}
Fi

Ψ
(
κz, κy

)
dκydκz (30)

The refraction angle fluctuations caused by irregular air density in the stratosphere are

ε2 = ε2
a + ε2

i . (31)
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4. Experimental Results and Analysis
4.1. Experimental Dataset

The scintillation measurements taken by the GOMOS red photometer were used to
retrieve the parameters of the IGWs and turbulence. In low-latitude regions, atmospheric
density fluctuates less, and high-precision navigation can be performed. Ten occultation
events were analyzed in low-latitude regions, as shown in Table 1. The occultation infor-
mation (at 25 km) is shown in Table 1. This article analyzed the impact of the stratosphere
from 25 km to 35 km on star signals. α is the oblique angle.

Table 1. Characteristics of the occultation in 2002.

Num Orbit Star α, ◦ Tangent Point Time Vs, km/s

1 2908 9Alp CMa 67.1 35◦S, 105◦W 20 September 4.3
2 2911 9Alp CMa 67.4 35◦S, 179◦E 20 September 4.3
3 2914 9Alp CMa 67.4 33◦S, 104◦E 20 September 4.3
4 2915 9Alp CMa 67.4 33◦S, 179◦E 20 September 4.3
5 2926 9Alp CMa 68.0 32◦S, 162◦E 21 September 4.4
6 2928 9Alp CMa 68.1 32◦S, 111◦E 21 September 4.3
7 3059 Alp Eri 28.4 26◦N, 50◦E 30 September 2.7
8 3060 Alp Eri 28.3 26◦N, 26◦E 30 September 2.7
9 3067 Alp Eri 28.1 26◦N, 150◦W 1 October 2.6

10 3077 Alp Eri 27.4 26◦N, 42◦W 1 October 2.6

Based on the measured data of GOMOS and the fit method [8], the atmospheric
IGWs and turbulence parameters at different tangent heights were fitted. It is impossi-
ble to retrieve the turbulence inner scale from the GOMOS scintillations due to limited
sampling frequency, and the turbulence inner scale is approximately 0.1 to 0.5 m in the
stratosphere [20]. The turbulence inner scale is assumed to be 0.2 m based on the mea-
sured data.

The fitted parameters are shown in Figures 3 and 4. In ten observations, the parameters
were obtained at different tangent heights. The structure characteristic CW is nearly constant
with height. The turbulent structure characteristic CK grows with height, with an especially
rapid increase at heights of 25–35 km. The average structure characteristic CW of the result
is 4.7 × 10−11 m−2. Furthermore, the average structure characteristic CW of the USSA
standard atmosphere model is about 5 × 10−11 m−2.
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To evaluate the accuracy of the fitted parameters for IGWs and turbulence, these
parameters were substituted into Equations (2), (6), (8), and (23) to numerically calculate
the intensity fluctuation σS. Moreover, σS was compared with the measured intensity fluc-
tuation σM to indirectly evaluate the accuracy of the overall fitting parameters as follows.

pre = 1 − 1
N

N

∑
j=1

(
σS

j − σM
j

)
σS

j
(32)

where N = 5, which corresponds to different heights. σj is the average intensity fluctuation
for ten observations.

To evaluate the error of the closed-form approximation with the numerical solution,
these fitted parameters were substituted into Equations (21) and (29) to obtain the approxi-
mate relative intensity fluctuation σA

a and the refraction angle fluctuation εA
a . These fitted

parameters were substituted into Equations (2), (9), and (25) to numerically calculate the
intensity fluctuation σN

a and the refraction angle fluctuation εN
a . The error of the closed-form

approximation with the numerical solution is defined as follows:
∆σ1 = 1

N

N
∑

j=1

∣∣∣∣ σA
aj−σN

aj

σA
aj

∣∣∣∣
∆ε1 = 1

N

N
∑

j=1

∣∣∣∣ εA
aj−εN

aj

εA
aj

∣∣∣∣ (33)

To evaluate the error of the closed-form approximation with the measured data, the er-
ror of the closed-form approximation with the measured data is defined using Equation (34).
The measured data σM

a were obtained by subtracting the corresponding turbulence scin-
tillation σi from the measured stellar scintillation σM. σi is the numerical scintillation
of turbulence.

∆σ2 =
1
N

N

∑
j=1

∣∣∣∣∣σ
A
aj − σM

aj

σA
aj

∣∣∣∣∣ (34)

4.2. Results and Analysis
4.2.1. Relative Intensity Fluctuations

Based on the fitted parameters and Equations (2), (6), and (23), the relative intensity
fluctuations caused by IGWs and turbulence can be obtained numerically. The average
intensity root mean square (RMS) is shown in Figure 5. It can be seen that as the height
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increases, the relative intensity fluctuations gradually decrease. The average relative
intensity fluctuations were calculated numerically. The measured data are from the GOMOS
data. The relative intensity fluctuation obtained using numerical calculation is consistent
with the measured data. Based on Equation (32), the accuracy index is 96.4%, which
indirectly reflects the fitted parameters’ accuracy. Figure 5 also shows the average relative
intensity fluctuation caused by turbulence.
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Figure 5. Average relative intensity RMS of measured data and numerical solution.

To evaluate the error of the closed-form approximation with the measured data and
numerical solution, Figure 6 shows the average intensity fluctuations calculated via the
closed-form approximation, the numerical solution, and the measured data using solid lines.
The figure also uses dashed lines to show the intensity fluctuations caused by IGWs from
different observations. Based on Equation (34), the error of the closed-form approximation
is 6.3% with the measured data. The error of the closed-form approximation is 7.3%
with the numerical solution. As the height increases, the relative intensity fluctuations
gradually decrease, and these fluctuations are proportional to density and influenced by
internal scales.
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The IGW parameters (occultation event 5) in Figure 2 were used to analyze the in-
fluence of the inner scale on scintillation. Moreover, the proposed approximation was
compared with the approximation of Kan et al. [14]. The latter was derived in the radio
band. The result is shown in Figure 7. As the inner scale increases, the stellar scintillation
decreases, consistent with Equation (21). The error between the proposed approximation
and the numerical results does not exceed 10%, but the error of Kan’s approximation is
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50.4%. The wavelength of radio waves is longer than visible light, and its corresponding
Fresnel scale is far larger than the inner scale of IGWs. The influence of the inner scale on
radio scintillation can be ignored. However, in the visible light range, the Fresnel scale is
about a few meters, and the inner scale must be considered. Therefore, the approximation
of Kan does not apply to the visible light band.
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4.2.2. Refraction Angle Fluctuations

Based on the fitted parameters and Equations (2), (25), and (30), the refraction angle
fluctuations caused by IGWs and turbulence can be obtained numerically. The average
refraction angle fluctuations caused by the stratosphere in different observations were
calculated, as shown in Figure 8. The refraction angle fluctuations caused by the IGWs from
different observations are shown in Figure 9. It can be seen that as the height increases, the
refraction angle fluctuations gradually decrease. The results of the numerical calculations
are consistent with the conclusions obtained from the closed-form approximation (26). The
error of the closed-form approximation is 0.7% with the numerical solution. Based on
different observations, the refraction angle fluctuation caused by turbulence is less than
0.1′′, which is much smaller than that caused by IGWs.
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At a height of 30 km, the refraction angle is approximately 67′′ based on the standard
atmosphere. The refraction angle RMS is 0.74′′ at a latitude of 35◦S in Figure 9, representing
a density fluctuation of approximately 1.1% in the stratosphere [21] based on geometric
optics. Based on the monthly statistical methods in reference [15] and the TIMED/SABER
atmospheric density data from 2002, the fluctuation of atmospheric density is 2.15% at
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a latitude of 35◦S. It may indicate that the IGWs obtained from GOMOS are small-scale,
which reflects the instantaneous characteristics of IGWs.
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The IGW parameters in Figure 2 were used to analyze the influence of the outer scale on
the refraction angle. The proposed approximation was compared with the approximation
of Kan. The result is shown in Figure 10. Whether in the radio band or the visible
light band, the refraction angle is influenced by the outer scales. The changing trend of
the proposed approximations is consistent with that of Kan’s approximation, and both
reveal that the refraction angle is proportional to κ−1

0 . The maximum error between the
proposed approximation and the numerical results is 4.47%. Based on Equation (33), the
mean error of the proposed approximation does not exceed 1%, but the mean error of
Kan’s approximation is 30.1% because the approximations of Kan are derived from the
radio band. The approximations proposed in this paper can better reveal the influence
of various parameters on the refraction angle, providing good guidance for subsequent
navigation simulations.
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The error of the closed-form approximations regarding the relative intensity fluctuation
and the refraction angle fluctuation compared with the numerical solution is shown in
Table 2. Compared with the measured data, the error of the closed-form approximations
for relative intensity is 6.3%. It can be seen that the error of star signal fluctuation obtained
using the closed-form approximations is far less than that of the existing approximations.
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Table 2. The error of closed-form approximations compared with numerical solution.

Proposed Approximation Approximation of Kan

Intensity fluctuation 7.3% 50.4%
Refraction angle fluctuation 1.0% 30.1%

4.2.3. Other Parameter Analysis

In this article, it is assumed that the inner scale of turbulence is 0.2 m. Using numerical
simulation, the effects of different inner scales on turbulence parameters, scintillation, and
refraction angles were analyzed, as shown in Figure 11. These data have been normalized
separately based on the maximum value. Using numerical calculations, it was found that
within the turbulent internal scale range of 0.1–0.5 m, the variation in CK does not exceed
3%, and the impact on relative intensity does not exceed 0.03%. Although the variation in
the refraction angle is about 15%, the refraction angle fluctuation caused by turbulence is
still very small. Within the range of 0.1–0.5 m, the impact of different inner scales on star
fluctuation is not significantly different. Therefore, the inner scale of 0.2 m was chosen.
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5. Conclusions

In order to study the irregular stratospheric air density effects on star signal fluctu-
ations, the influence of the stratosphere from 25 km to 35 km on the fluctuations in star
intensity and refraction angles was analyzed. Compared to existing approximate formulas,
the closed-form approximations can more intuitively reveal the relationships between the
IGW parameters and the statistical characteristics of the star signals. The research in this
article can provide a valuable reference for an application assessment based on starlight
refraction navigation. The calculations in this article are based on the Rytov assumption.
When the height is less than 27 km, strong scintillation is encountered in some occultation
events. In this case, the inversion formula and the related conclusions in this article are no
longer applicable. Moreover, the stratosphere will be analyzed using strong scintillation
theory in the future.
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