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Abstract: The emerging technology of rotating synthetic aperture (RSA) presents a promising solution
for the development of lightweight, large-aperture, and high-resolution optical remote sensing
systems in geostationary orbit. However, the rectangular shape of the primary mirror and the
distinctive imaging mechanism involving the continuous rotation of the mirror lead to a pronounced
decline in image resolution along the shorter side of the rectangle compared to the longer side.
The resolution also exhibits periodic time-varying characteristics. To address these limitations
and enhance image quality, we begin by analyzing the imaging mechanism of the RSA system.
Subsequently, we propose a single-image super-resolution method that utilizes a rotated varied-size
window attention mechanism instead of full attention, based on the Vision Transformer architecture.
We employ a two-stage training methodology for the network, where we pre-train it on images
masked with stripe-shaped masks along the shorter side of the rectangular pupil. Following that,
we fine-tune the network using unmasked images. Through the strip-wise mask sampling strategy,
this two-stage training approach effectively circumvents the interference of lower confidence (clarity)
information and outperforms training the network from scratch using the unmasked degraded images.
Our digital simulation and semi-physical imaging experiments demonstrate that the proposed
method achieves satisfactory performance. This work establishes a valuable reference for future
space applications of the RSA system.

Keywords: optical remote sensing; super-resolution (SR); rotating synthetic aperture; masked
autoencoder; vision transformer; rectangular pupil

1. Introduction

Optical remote sensing satellites in geostationary orbit offer the ability for high spatial
and temporal resolution, making them a crucial part of space-based observation technol-
ogy [1–6]. Compared to low-Earth-orbit optical remote sensing satellites, they provide
several advantages: (1) they remain stationary relative to the observed area, allowing for
observations of target regions over extended periods with higher temporal resolution;
(2) by adjusting their direction, they can quickly acquire observational images for the corre-
sponding area, making them particularly suitable for emergency response tasks; (3) flexible
satellite mission planning enables repeated observations of multiple hotspots and large
areas; and (4) compared to line-scan satellites, the array camera has the advantage of a long
integration time, resulting in the acquisition of high-quality images.

Due to the high orbit altitude and the fact that the imaging object distance is tens of
times greater than that of a low Earth orbit, high-orbit remote sensing satellites require a
larger aperture to ensure imaging quality. Various techniques have been developed to over-
come the aperture limitations, such as segmented mirror technology, membrane diffraction
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imaging technology, optical synthetic aperture technology, and rotating synthetic aperture
(RSA) technology. The segmented mirror technology employs segmented sub-mirrors to
assemble into a large aperture primary mirror. The sub-mirrors are folded during launch
and expanded after entering orbit. During the imaging process, it is imperative to guarantee
that each sub-mirror is accurately assembled. The primary mirror expansion and support
structure’s complexity result in elevated expenses [7,8]. The membrane diffraction imaging
technology utilizes thin-film materials to create imaging devices. Under the precondition
of achieving the same resolution ability, the system mass is only one-seventh of that of
a traditional large-aperture single-reflection mirror system, considerably decreasing the
rocket-carrying capacity requirements. The membrane mirror’s surface necessitates lower
precision than a traditional reflection mirror, which reduces manufacturing difficulty and
enables mass production, with potential for significantly lower costs. However, this system
has the disadvantage of color dispersion, with a narrow spectral response range of only
approximately 40 nm, and lower diffraction efficiency, which limits the system’s practical
application to some extent [9–11]. The optical synthetic aperture imaging technology is
based on interferometric imaging principles, employing small-aperture systems to synthe-
size a large-aperture system. Similar to the segmented mirror technology, its advantage
is avoiding the processing of large-aperture lenses and reducing launch costs by using
small-aperture systems. However, the synthesis of the large-aperture must come at the
expense of reducing light flux, resulting in a reduced signal-to-noise ratio. This system must
satisfy the co-phasing condition to attain ideal imaging, and therefore error monitoring and
precise phase adjustment make the engineering implementation of the system extremely
challenging [12–14]. Compared to the methods mentioned above, the RSA system presents
a more advanced alternative. It employs a primary mirror that is rotatable and possesses a
large aspect ratio, as illustrated in Figure 1. Through the rotation of the primary mirror,
a sequence of images is generated, capturing high-resolution information from various
directions. However, this also results in significantly higher resolution along the long
edge compared to the short edge [15–18]. Furthermore, the rotation generates periodic
fluctuations in image quality, making it essential to employ image enhancement techniques
to improve the quality of the imaging system.
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The task of single-image super-resolution (SISR) is to reconstruct a high-resolution
image (HR) from a corresponding low-resolution image (LR). The relationship between
these two quantities is described by the classical degradation model, LR = (HR ∗ k)↓ + n,
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where k represents a blur kernel, and ∗, n, and ↓ denote the convolution operator, additive
noise, and down-sampling operator, respectively. Deep learning-based SISR methods
have demonstrated remarkable performance compared to traditional methods, and have
become the prevailing approach in recent years [19–22]. These methods can be broadly
classified into two categories: explicit methods based on the classical degradation model or
its variants, and implicit methods that leverage the data distribution within the training
dataset [23–25]. Explicit methods aim to directly learn the blur kernel k and additive noise
n in the classical degradation model from the training data. Representative approaches
include SRGAN [26], EDSR [27], SRMD [28], and Real-ESRGAN [29]. Another group
of explicit methods, such as KernelGAN [30], DualSR [31], and DBPI [32], rely on the
internal statistics of patch recurrence. However, the RSA system’s point spread function
(PSF) continuously changes during the imaging process due to the rotation of the primary
mirror, resulting in images with temporal periodicity and spatial asymmetry. Existing
explicit methods do not account for this special characteristic of the blur kernel, leading to
suboptimal performance. On the other hand, implicit methods do not rely on any explicit
parameterization and instead typically learn the underlying super-resolution (SR) model
implicitly through the data distribution within training datasets. Representative approaches
include CinCGAN [33] and FSSR [34]. The general meanings and types of the methods
mentioned above are depicted in Table 1. However, the RSA system presents a challenge for
implicit methods due to the existence of multiple degraded images of the same target scene
resulting from different rotation angles, which makes the data distribution more complex.
Furthermore, the methods mentioned above mostly rely on convolutional neural networks
(CNNs), but the strong long-range dependency of remote sensing images makes it difficult
for CNNs with local inductive bias to meet application requirements. In summary, the RSA
system possesses unique imaging characteristics that make it difficult to apply existing SISR
methods directly. Therefore, it is crucial to conduct research on targeted remote sensing
image SR methods based on the degradation characteristics of the system.

Table 1. Overview of deep learning-based single-image super-resolution methods.

Method General Meaning Type

SRGAN [26] Generative adversarial networks for image super-resolution
Explicit methods rely on external

training datasets
EDSR [27] Enhanced deep residual networks for image super-resolution
SRMD [28] Image super-resolution networks for multiple degradations

Real-ESRGAN [29] Real-world enhanced super-resolution generative adversarial networks

KernelGAN [30] Generative adversarial networks for kernel estimation Explicit methods rely on
internal statistics

DualSR [31] Dual learning for image super-resolution
DBPI [32] Dual back-projection-based internal learning

CinCGAN [33] Cycle-in-cycle generative adversarial networks for image super-resolution Implicit methodsFSSR [34] Frequency separation for image super-resolution

To address this challenge, we begin by examining the non-circular symmetry spatial
distribution and temporal variability of the PSF in relation to the imaging mechanism of
the RSA system. Subsequently, we propose an SISR method based on Vision Transformer
(ViT) [35], which is trained in a two-stage process. In the first stage, we pre-train the network
on degraded images masked along the short edge direction of the rectangular primary
mirror. Then, in the second stage, we perform fine-tuning using unmasked images. This
approach proves to be superior to directly training the network on the original degraded
images without masking. Given the reduced resolution along the shorter edge direction
caused by the non-circular symmetry of the pupil, our primary objective is to compensate
for the substantial loss of information along the shorter side direction, thereby enhancing
the resolution in that direction. Building upon this, the proposed method can further
achieve an increase in resolution across all directions. Additionally, considering the specific
characteristics of remote sensing images, we replace the original Vision Transformer blocks
with rotated varied-size window-based attention blocks [36]. These blocks introduce local
windows with different locations, sizes, shapes, and angles to calculate window-based
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attention. Finally, we validate the effectiveness of our proposed method through digital
simulations experiments as well as semi-physical imaging experiments.

2. Materials and Methods
2.1. Analysis of Imaging Mechanism of the RSA System

The RSA system can be regarded as a diffraction-limited system, in which any point
source (x0, y0) on the object plane emits a diverging spherical wave that projects onto the
entrance pupil. This wave is then transformed by the system into a converging spherical
wave on the exit pupil, which projects onto the image plane at position (xi, yi). In the case
of polychromatic illumination, the diffraction-limited incoherent imaging system is a linear
space-invariant system of intensity transformation. The object–image relationship can be
expressed as (ignoring the constant coefficient):

Ii(xi, yi) =
x ∞

−∞
Ig(x0, y0)hI(xi − x0, yi − y0)dx0dy0 (1)

where Ii represents the intensity distribution of the image plane, Ig represents the intensity
distribution of the geometrical optics ideal image, and hI represents the intensity impulse
response, i.e., the PSF, which denotes the intensity distribution of diffraction spots produced
by point objects.

The equation above demonstrates that when a point source is used as the input
elemental object, it generates an image spot on the image plane with the ideal image point
of geometrical optics at its center. The intensity distribution of the image plane results from
the superposition of the image spots produced by all point sources on the object plane. The
shape of the image spot is described by the PSF. According to Fresnel–Kirchhoff’s diffraction
formula, the PSF is obtained by subjecting the pupil function to Fourier transform and
squaring the resulting modulus. For the RSA system, more specifically, its pupil function at
time t can be expressed as:

P(x, y, t) = rect
(

x cos(wt + ϕ0)− y sin(wt + ϕ0)

a

)
rect

(
x sin(wt + ϕ0) + y cos(wt + ϕ0)

b

)
(2)

where a and b are the length and width of the rectangle, respectively, w is the angular
velocity of the rectangular primary mirror rotation, ϕ0 is the initial phase, and rect(·)
represents the rectangle function, which is defined as:

rect(s) =
{

1 if|s| < 0.5
0 otherwise

(3)

The PSF can be obtained according to the pupil function as follows:

PSF(x, y, t) = absin c(a(x cos(wt + ϕ0)− y sin(wt + ϕ0)))
×sin c(b(x sin(wt + ϕ0) + y cos(wt + ϕ0)))

(4)

Figure 2 reveals that the PSF takes on an elliptical shape if the secondary diffraction
effect is not considered. The length-to-width ratio of the primary mirror’s rectangular
shape determines the form of this ellipse, with the orientation of the longer axis aligned
with the shorter side of the rectangle [15].
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2.2. Overview of the Image Super-Resolution Approach

As stated in Section 1, the rotation of the rectangular pupil introduces temporal varia-
tion in the blur kernel, posing a challenge for accurately estimating the blur kernel by the
model. Additionally, the many-to-one relationship between LR and HR images increases the
difficulty of learning the data distribution for implicit methods. In other words, the unique
imaging mechanism of the RSA system presents obstacles for the deep neural network
to acquire the desired ability, which involves leveraging the high-resolution information
preserved in the image itself in specific directions for super-resolution reconstruction in
lower-resolution directions to significantly enhance the image resolution in the short side
direction of the rectangle. Consequently, these challenges often result in the phenomenon of
uneven resolution in the output reconstructed image, which is not significantly improved.
Nevertheless, the time-sequential imaging method employed in the RSA system offers a
benefit: the images captured within one rotation cycle of the rectangular pupil contain
high-resolution information from various directions. Motivated by the work of [37], our
training methodology involves initially masking the pixels along the shorter side direction
of the rectangle and using a ViT-based super-resolution network to reconstruct them. This
approach aims to effectively leverage the complementary information available across
images captured at various rotation angles of the pupil. Subsequently, we fine-tune the
model using the unmasked images. For the SR reconstruction module implementation,
we employ the sub-pixel convolution layer [38] to upsample the features outputted by the
decoder. The overall process is depicted in Figure 3. We have observed that this two-stage
training approach significantly improves performance. Based on this observation, we
believe that masking the pixels along the lower resolution direction can guide the network
to focus more on the high-resolution information preserved along the longer edge of the
rectangle. Furthermore, considering the presence of objects with varying orientations
and scales in the remote sensing images obtained by the RSA system, we replace global
self-attention with rotated varied-size window-based attention. This modified attention
mechanism introduces shift, scale, and rotation parameters to the original window-based
attention, enabling diversified windows of different locations, sizes, shapes, and angles to
better handle objects with varying orientations and scales.
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between various modules and their outputs, while varying shades are employed to delineate the
features extracted from different patches.

2.3. Encoder

The encoder in our model comprises a stack of rotated varied-size window-based
attention blocks, as illustrated in Figure 4. The feed-forward network is a 2-layer multilayer
perceptron with nonlinear activation functions in between. And the rotated varied-size
multi-head attention will be detailed in Section 2.3.2.
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Figure 4. The structures of the rotated varied-size window-based attention block. It includes
layer normalization (LN) [39], rotated varied-size multi-head attention (RVSA), and a feed-forward
network (FFN).

2.3.1. Masked Autoencoder

The masked autoencoder (MAE) was proposed by He et al. with the aim of recovering
masked parts of an image in the pixel space through an encoder–decoder structure, given
the visible parts of the image [37]. This process involves partitioning the input image
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into non-overlapping patches, followed by masking some patches according to a predeter-
mined ratio. These masked patches are then treated as regions to be reconstructed. The
original MAE utilizes random sampling to select masked patches, whereas we employ a
corresponding mask sampling strategy that accounts for the unique pupil shape of the
RSA system. Our mask sampling strategy involves masking pixels in a striped pattern
along the direction of lower resolution, which is the shorter side of the rectangular pupil.
This strategy serves to remove some of the lower confidence (clarity) priors by masking
more low-resolution information. It can guide the model to focus more on and utilize
high-resolution information along other directions, thereby avoiding interference caused
by the specific degradation process resulting from the asymmetric characteristic of the PSF.
As a simple example, let us consider the two perpendicular directions of edges shown in
Figure 5. By masking along the lower-resolution direction, blurred edges are masked while
preserving more pixels on the sharper edges along the longer side of the rectangle. This
can mitigate the interference of partially blurred pixels, helping the model to reconstruct
sharper super-resolution results and reduce the uneven resolution phenomenon more
effectively. Additionally, ViT has a class token for classification, but since our task is image
enhancement rather than classification, we do not use this token. This is another difference
between our method and the original MAE. According to [37], even without the class token
(with average pooling), the encoder can still work well.
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2.3.2. Rotated Varied-Size Window-Based Attention

Unlike convolution, which possesses a local inductive bias, Transformer can adopt
a more global perspective and exploit correlations between pixels of images through the
attention mechanism. This not only inherently resonates with the goal of leveraging high-
resolution information in specific directions to enhance resolution along the shorter side
of the rectangle but also facilitates the utilization of long-range dependencies in images
captured by the RSA system. In order to reduce computational complexity, ViT mostly uses
window-based attention that differs from standard global self-attention by employing both
a local attention mechanism and a window transfer mechanism [40]. In window-based
attention, the fundamental processing unit is the patch. The network first conducts a patch
partition operation on the input image, which involves partitioning the input image into
non-overlapping patches. Specifically, given an input X ∈ RH×W×C of size H × W × C
(where H, W, and C represent the width, height, and number of channels of the feature map,
respectively), window-based attention first reshapes the input by partitioning it into M×M
non-overlapping local windows, denoted as X ∈ R H

M×
W
M×M2×C, where HW

M2 is the total

number of windows. For each window, the input features are denoted as Xw ∈ RM2×C,
and thus, all input features can be represented as

{
Xwi |i = 1, · · · , HW

M2

}
. Following this,
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standard multi-head self-attention is computed for each window. Let h denote the number
of heads; the query, key and value matrices are represented by Qw, Kw and Vw, respectively:{

Q(j)
wi |i = 1, · · · ,

HW
M2 , j = 1, · · · , h

}
(5)

{
K(j)

wi |i = 1, · · · ,
HW
M2 , j = 1, · · · , h

}
(6)

{
V(j)

wi |i = 1, · · · ,
HW
M2 , j = 1, · · · , h

}
(7)

where i indexes the window and j indexes the head.
The attention calculations are performed within each non-overlapping local window:

Z(j)
wi = Attention

(
Q(j)

wi , K(j)
wi , V(j)

wi

)
= softmax

Q(j)
wi

(
K(j)

wi

)′
√

C′

V(j)
wi (8)

where Q(j)
wi , K(j)

wi , V(j)
wi , Z(j)

wi ∈ RM2×C′ and C′ = C
h .

Finally, the features are concatenated to restore the original input shape.
The original window-based attention operation employs a fixed window size that

is always horizontal and vertical. Using the coordinates (xc, yc), (xl, yl), and (xr, yr) to
represent the center, upper left, and lower right pixels of the window, respectively, we have:

xl
yl
xr
yr

 =


xc
yc
xc
yc

+


xr

l
yr

l
xr

r
yr

r

 (9)

where xr
l , yr

l , xr
r , and yr

r denote the distance between the coordinates of the corner points
and the coordinates of the center point, respectively.

It is well known that remote sensing images often contain various target objects with
arbitrary orientations and different scales. Therefore, a fixed and unchangeable window
is not an optimal design. Unlike the original window-based attention operations, RVSA
(as shown in Figure 6) does not rely on fixed-size window partitions at a fixed orientation.
Instead, it produces windows with different positions, sizes, shapes, and angles by adjusting
learnable shift, scale, and rotation parameters (Ow, Sw, and Θw, respectively). Specifically,
distinct prediction layers can be employed for each window to estimate the shift, scale, and
rotation parameters for key and value tokens, relying on the input features:

OK
w, SK

w, ΘK
w= LinearK(LeakyReLU(GAP(Xw))) (10)

OV
w , SV

w , ΘV
w= LinearV(LeakyReLU(GAP(Xw))) (11)

where GAP is the global average pooling operation.
Afterward, following the parameters mentioned earlier, the initial window undergoes

transformation. The transformed coordinates of the corner points
(

x′l/r, y′l/r

)
are then

calculated using the following formulas:[
x′l/r
y′l/r

]
=

[
xc

yc

]
+

[
ox
oy

]
+

[
cos θ sin θ
− sin θ cos θ

][
xr

l/r · sx
yr

l/r · sy

]
(12)

where ox, oy, sx, sy, and θ denote the shift, scale and rotation parameters. Namely,Ow ={
ox, oy ∈ R1}, Sw =

{
sx, sy ∈ R1}, and Θw =

{
θ ∈ R1}.
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Then, the key and value features are sampled from the transformed windows, which
are then utilized to compute multi-head self-attention. As each head can generate windows
with different positions, sizes, and shapes, RVSA is especially effective in extracting infor-
mation from multiple target objects with diverse scales and orientations. In addition, RVSA
not only reduces computational complexity linearly with respect to the image size, but also
seamlessly integrates with the existing framework since the difference lies in the manner of
attention calculation, which is parameter-free. Therefore, it is highly suitable for the image
super-resolution of the RSA system.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 19 
 

 

Afterward, following the parameters mentioned earlier, the initial window 
undergoes transformation. The transformed coordinates of the corner points ( )/ /,l r l rx y′ ′  
are then calculated using the following formulas: 

//

//

cos sin
sin cos

rc
x l r xl r

rc
y l r yl r

o x sx x
o y sy y

θ θ
θ θ

′

′

 ⋅      
= + +         ⋅−         

 (12)

where ox, oy, sx, sy, and θ  denote the shift, scale and rotation parameters. Namely,

{ } { }1 1, , ,w x y w x yO o o S s s= ∈ = ∈  , and { }1
w θΘ = ∈ . 

Then, the key and value features are sampled from the transformed windows, which 
are then utilized to compute multi-head self-attention. As each head can generate 
windows with different positions, sizes, and shapes, RVSA is especially effective in 
extracting information from multiple target objects with diverse scales and orientations. 
In addition, RVSA not only reduces computational complexity linearly with respect to the 
image size, but also seamlessly integrates with the existing framework since the difference 
lies in the manner of attention calculation, which is parameter-free. Therefore, it is highly 
suitable for the image super-resolution of the RSA system. 

 
Figure 6. Illustration of rotated varied-size multi-head attention. 

2.4. Decoder 
The decoder is also composed of rotated varied-size window-based attention blocks. 

Its input consists of the extracted features of visible tokens and mask tokens, where each 
mask token is a shared, learned vector that indicates the presence of a missing patch to be 
predicted. To enhance its suitability for the image super-resolution task, our decoder 
matches the depth (number of Transformer blocks) and width (number of channels) of the 
encoder. 

2.5. Implementation and Training Details 
We employ the “base” version of the ViT as both the encoder and decoder. 

Specifically, the encoder and decoder have a depth of 12 and a width of 1024 d, 
respectively. The head number, patch size, embedding dimension, and multilayer 
perceptron ratio are set to 12, 16, 768, and 4, respectively. Following the strategy proposed 
by [36,41], we use the original Vision Transformer blocks at the 3rd, 6th, 9th, and 12th 

Figure 6. Illustration of rotated varied-size multi-head attention.

2.4. Decoder

The decoder is also composed of rotated varied-size window-based attention blocks.
Its input consists of the extracted features of visible tokens and mask tokens, where each
mask token is a shared, learned vector that indicates the presence of a missing patch to
be predicted. To enhance its suitability for the image super-resolution task, our decoder
matches the depth (number of Transformer blocks) and width (number of channels) of
the encoder.

2.5. Implementation and Training Details

We employ the “base” version of the ViT as both the encoder and decoder. Specifically,
the encoder and decoder have a depth of 12 and a width of 1024 d, respectively. The
head number, patch size, embedding dimension, and multilayer perceptron ratio are set
to 12, 16, 768, and 4, respectively. Following the strategy proposed by [36,41], we use the
original Vision Transformer blocks at the 3rd, 6th, 9th, and 12th layers, while utilizing
the rotated varied-size window-based attention blocks with a window size of 7 for the
remaining layers.

During pre-training, we set the masking ratio to 75%, which is the same as the original
MAE. To facilitate masking the image, for each image taken at different rotation angles of
the rectangular pupil, we rotate it to the direction of the short side of the rectangle, which
is horizontal or vertical, and perform center cropping. Following the guidelines provided
in [37], the default settings for both pre-training and fine-tuning can be found in Table 2.

To calculate the loss, we use the Charbonnier loss function L =
√
‖R− G‖2 + ε2, with G

representing the ground-truth high-quality image and R representing the SR result. The
value of ε is set at 1 × 10−3. All experiments were conducted on a workstation equipped
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with an Intel i9-12900K CPU and an NVIDIA RTX 4080 GPU, each with a memory size of
16GB. The model underwent training for a total of 400 epochs, with each epoch requiring
approximately 97 min.

Table 2. Training settings.

Config Pre-training Fine-Tuning

Optimizer AdamW [42]
Base Learning Rate 1.5 × 10−4 1 × 10−3

Weight Decay 0.05
Optimizer Momentum β1 = 0.9, β2 = 0.95 β1 = 0.9, β2 = 0.999

Batch Size 256 64
Learning Rate Schedule Cosine Decay [43]

3. Results
3.1. Experimental Setup

To validate the effectiveness of the proposed method, two types of experiments were
conducted: digital simulation and semi-physical imaging simulation. The digital simulation
experiment utilized high-resolution remote sensing images as inputs. These images were
downsampled, and a full-link digital approach was employed to simulate the degradation
of imaging quality in the RSA system [44]. This simulation generated degraded images,
which were then used for constructing datasets. Specifically, we obtained a total of 210 orig-
inal scene images from the WorldView-3 satellite data. For each scene, we conducted 24 sets
of image simulations, encompassing six aspect ratios ranging from 3 to 8, and four primary
mirror rotation angles: 0◦, 45◦, 90◦, and 135◦. As a result, the dataset consisted of a total
of 5040 images. Of these, 90% were allocated for the training set, totaling 4536 images.
Figure 7 illustrates some of the target scenes and their degraded images obtained through
the digital simulation method. These images demonstrate that the resolution of the images
acquired by the RSA system varies significantly in different directions, as evidenced by the
markings on the decks of naval vessels, the edges of shipping containers, airplanes, and
square buildings.
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In the semi-physical imaging simulation experiment, an imaging platform was utilized
to simulate the RSA system’s imaging process for imaging target scenes or resolution
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targets [17]. The captured real images were used for testing purposes. Figure 8 displays the
design scheme diagram, while Figure 9 displays the physical diagram.
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Figure 9. (a) Semi-physical imaging experiment platform; (b) rectangular pupil optical elements;
(c) the primary mirror with a rectangular pupil optical element [44].

As there are currently no other SISR methods specifically designed for the RSA system,
we compared our proposed method with general SISR methods. These methods include
SRGAN, EDSR, SRMD, and RealESRGAN, which are representative explicit methods that
use external training datasets, DualSR, which is an explicit method that uses internal
statistics of images, and FSSR, which is a representative implicit method.

3.2. Experimental Results
3.2.1. Quantitative Results

Table 3 presents a quantitative evaluation of the aforementioned methods, utilizing
two quality metrics, namely, PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural
Similarity) [45]. These metrics gauge the level of resemblance between two images. The
table also includes the results obtained through bicubic interpolation for the purpose of
comparison. It contains the super-resolution results for six different scenes, each with
six different aspect ratios of the rectangular primary mirror. To provide a comprehensive
overview, Table 4 and Figure 10 show the average results for all test images.
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Table 3. Super-resolution results. The unit of PSNR is decibel (dB). The best result for each scene type
and aspect ratio is highlighted in bold font.

Scene
Type Method Aspect Ratio 3 Aspect Ratio 4 Aspect Ratio 5 Aspect Ratio 6 Aspect Ratio 7 Aspect Ratio 8

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Airports

Bicubic 28.63 0.8160 27.68 0.7992 26.87 0.7833 26.09 0.7677 25.73 0.7608 25.15 0.7505
SRGAN 32.46 0.9022 31.41 0.8802 30.46 0.8573 29.37 0.8358 28.82 0.8237 28.07 0.8084
EDSR 32.57 0.9195 31.52 0.8981 30.54 0.8782 29.42 0.8555 28.89 0.8455 28.02 0.8263
SRMD 32.47 0.9228 31.31 0.9027 30.36 0.8841 29.46 0.8660 29.04 0.8580 28.37 0.8462

Real-ESRGAN 32.68 0.9054 31.79 0.8829 30.77 0.8570 29.55 0.8273 28.89 0.8136 28.04 0.7952
DualSR 34.22 0.9517 32.68 0.9294 31.22 0.9044 30.02 0.8812 29.49 0.8709 28.66 0.8553

FSSR 32.28 0.9105 31.07 0.8926 30.13 0.8763 29.25 0.8603 28.85 0.8532 28.20 0.8427
Proposed 35.96 0.9584 34.68 0.9384 32.24 0.9142 30.40 0.8827 29.31 0.8745 28.80 0.8554

Harbors

Bicubic 27.98 0.8351 26.77 0.8193 26.05 0.8073 25.41 0.7982 24.99 0.7914 24.49 0.7847
SRGAN 31.37 0.9333 30.11 0.9156 29.27 0.8997 28.59 0.8891 28.06 0.8806 27.53 0.8732
EDSR 31.40 0.9409 30.17 0.9233 29.26 0.9070 28.62 0.8958 28.16 0.8907 27.61 0.8816
SRMD 31.77 0.9440 30.30 0.9253 29.44 0.9111 28.70 0.9007 28.20 0.8928 27.63 0.8851

Real-ESRGAN 30.65 0.9187 29.48 0.9015 28.72 0.8840 28.02 0.8723 27.60 0.8640 27.05 0.8560
DualSR 34.55 0.9668 31.89 0.9438 30.54 0.9252 29.45 0.9123 28.82 0.9028 28.12 0.8936

FSSR 32.65 0.9433 30.88 0.9253 29.84 0.9109 29.02 0.9009 28.47 0.8932 27.85 0.8857
Proposed 36.38 0.9712 34.59 0.9544 31.79 0.9312 30.57 0.9132 29.39 0.9043 28.55 0.8941

Residential
areas

Bicubic 28.42 0.8031 27.69 0.7853 26.55 0.7636 25.81 0.7436 25.37 0.7326 24.84 0.7219
SRGAN 31.59 0.8844 30.59 0.8669 29.81 0.8394 29.02 0.8181 28.31 0.8168 27.73 0.8055
EDSR 31.92 0.8948 31.04 0.8784 30.14 0.8472 29.30 0.8270 28.74 0.8213 28.07 0.7993
SRMD 32.23 0.9095 31.34 0.8880 30.01 0.8626 29.14 0.8393 28.63 0.8267 28.01 0.8143

Real-ESRGAN 32.15 0.8839 31.32 0.8547 29.85 0.8113 28.73 0.7794 28.04 0.7592 27.22 0.7382
DualSR 33.92 0.9455 32.73 0.9216 30.85 0.8892 29.67 0.8583 29.03 0.8428 28.32 0.8279

FSSR 32.10 0.9006 31.14 0.8807 29.88 0.8579 29.00 0.8362 28.49 0.8243 27.89 0.8128
Proposed 36.36 0.9557 34.85 0.9408 31.83 0.9026 30.35 0.8679 29.52 0.8499 28.48 0.8316

Yards

Bicubic 27.19 0.8143 26.31 0.7987 25.50 0.7833 24.67 0.7677 24.44 0.7629 24.03 0.7563
SRGAN 30.67 0.9140 29.75 0.8937 28.96 0.8715 27.86 0.8415 27.60 0.8453 26.89 0.8268
EDSR 30.73 0.9133 29.80 0.8978 29.01 0.8786 27.90 0.8521 27.65 0.8467 27.04 0.8342
SRMD 30.86 0.9212 29.80 0.9025 28.84 0.8847 27.87 0.8666 27.60 0.8612 27.12 0.8535

Real-ESRGAN 30.22 0.8902 29.44 0.8692 28.81 0.8494 27.58 0.8193 27.33 0.8130 26.58 0.7963
DualSR 32.68 0.9467 27.77 0.9124 29.67 0.9006 28.54 0.8808 28.14 0.8736 27.58 0.8641

FSSR 31.37 0.9145 30.11 0.8969 29.06 0.8806 28.01 0.8642 27.70 0.8590 27.20 0.8519
Proposed 35.63 0.9621 33.47 0.9395 30.87 0.9155 29.18 0.8836 28.46 0.8756 28.14 0.8684

Farmland

Bicubic 32.60 0.8556 31.35 0.8472 30.74 0.8426 29.93 0.8367 29.19 0.8319 28.71 0.8285
SRGAN 36.33 0.9586 34.90 0.9505 34.25 0.9455 33.35 0.9389 32.58 0.9344 32.06 0.9309
EDSR 36.70 0.9620 35.22 0.9534 34.49 0.9472 33.54 0.9406 32.82 0.9360 32.25 0.9326
SRMD 37.05 0.9651 35.52 0.9553 34.81 0.9500 33.85 0.9432 32.98 0.9376 32.42 0.9338

Real-ESRGAN 31.73 0.8473 31.71 0.8376 31.28 0.8308 30.21 0.8221 29.27 0.8110 28.75 0.8076
DualSR 37.43 0.9717 35.78 0.9610 34.91 0.9533 33.88 0.9466 33.00 0.9410 32.46 0.9373

FSSR 35.62 0.9522 34.29 0.9458 33.69 0.9411 32.85 0.9346 32.18 0.9311 31.70 0.9280
Proposed 38.85 0.9766 37.05 0.9645 35.66 0.9590 33.25 0.9483 33.34 0.9430 31.92 0.9292

Forests

Bicubic 30.30 0.7985 29.38 0.7772 28.70 0.7612 27.85 0.7409 27.24 0.7271 27.10 0.7237
SRGAN 33.47 0.8739 31.95 0.8446 31.07 0.8252 29.98 0.8008 29.24 0.7835 29.05 0.7788
EDSR 33.65 0.8828 32.69 0.8533 31.92 0.8299 30.95 0.8037 30.14 0.7803 29.90 0.7706
SRMD 34.34 0.9045 33.22 0.8791 32.43 0.8601 31.43 0.8364 30.73 0.8204 30.57 0.8164

Real-ESRGAN 32.96 0.8610 32.15 0.8276 31.41 0.7998 30.47 0.7710 29.55 0.7402 29.22 0.7248
DualSR 36.65 0.9493 34.52 0.9120 33.44 0.8892 32.12 0.8607 31.25 0.8399 31.00 0.8340

FSSR 33.50 0.8797 32.56 0.8604 31.90 0.8459 31.01 0.8265 30.37 0.8129 30.22 0.8100
Proposed 38.04 0.9530 36.33 0.9313 34.48 0.9005 32.39 0.8650 31.50 0.8427 31.19 0.8341

Table 4. Average super-resolution results. The unit of PSNR is decibel (dB). The best result is
highlighted in bold font.

Scene
Type Method Aspect Ratio 3 Aspect Ratio 4 Aspect Ratio 5 Aspect Ratio 6 Aspect Ratio 7 Aspect Ratio 8

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Average

Bicubic 29.19 0.8204 28.20 0.8045 27.40 0.7902 26.63 0.7758 26.16 0.7678 25.72 0.7609
SRGAN 32.65 0.9111 31.45 0.8919 30.64 0.8731 29.70 0.8540 29.10 0.8474 28.55 0.8373
EDSR 32.83 0.9189 31.74 0.9007 30.89 0.8813 29.95 0.8624 29.40 0.8534 28.64 0.8408
SRMD 33.12 0.9278 31.91 0.9088 30.98 0.8921 30.07 0.8754 29.53 0.8661 29.02 0.8582

Real-ESRGAN 31.73 0.8844 30.98 0.8622 30.14 0.8387 29.09 0.8152 28.45 0.8002 27.81 0.7864
DualSR 34.91 0.9553 32.56 0.9300 31.77 0.9103 30.61 0.8900 29.95 0.8785 29.36 0.8687

FSSR 32.92 0.9168 31.68 0.9003 30.75 0.8854 29.86 0.8705 29.34 0.8623 28.85 0.8552
Proposed 36.87 0.9628 35.16 0.9448 32.81 0.9205 31.02 0.8935 30.25 0.8817 29.51 0.8688
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3.2.2. Qualitative Results

In addition to the quantitative evaluations provided by the full-reference metrics men-
tioned earlier, we present visual results as qualitative evaluations for the scenes depicted in
Figure 7. Figures 11–14 illustrate the super-resolution outcomes for SRGAN, EDSR, SRMD,
real-ESRGAN, DualSR, FSSR, and the proposed method. Additionally, Figure 15 displays
semi-physical imaging experimental images with a primary mirror aspect ratio of 3 and a
rotation angle of 90. Specifically, the local enlargement image is shown in Figure 15a, while
the SR results generated by SRGAN, EDSR, SRMD, real-ESRGAN, DualSR, FSSR, and the
proposed method are displayed in Figure 15b–h, respectively.
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Figure 11. HR and SR results of the test image harbor with a rotation angle of 45◦ and an aspect
ratio of 3. (a) HR; (b) SRGAN; (c) EDSR; (d) SRMD; (e) real-ESRGAN; (f) DualSR; (g) FSSR; and
(h) proposed method.



Remote Sens. 2024, 16, 1508 14 of 18Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 12. HR and SR results of the test image residential area with a rotation angle of 90° and an 
aspect ratio of 4. (a) HR; (b) SRGAN; (c) EDSR; (d) SRMD; (e) real-ESRGAN; (f) DualSR; (g) FSSR; 
and (h) proposed method. 

 
Figure 13. HR and SR results of the test image yard with a rotation angle of 0° and an aspect ratio 
of 5. (a) HR; (b) SRGAN; (c) EDSR; (d) SRMD; (e) real-ESRGAN; (f) DualSR; (g) FSSR; and (h) 
proposed method. 

 
Figure 14. HR and SR results of the test image airport with a rotation angle of 135° and an aspect 
ratio of 6. (a) HR; (b) SRGAN; (c) EDSR; (d) SRMD; (e) real-ESRGAN; (f) DualSR; (g) FSSR; and (h) 
proposed method. 

Figure 12. HR and SR results of the test image residential area with a rotation angle of 90◦ and an
aspect ratio of 4. (a) HR; (b) SRGAN; (c) EDSR; (d) SRMD; (e) real-ESRGAN; (f) DualSR; (g) FSSR;
and (h) proposed method.

Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 12. HR and SR results of the test image residential area with a rotation angle of 90° and an 
aspect ratio of 4. (a) HR; (b) SRGAN; (c) EDSR; (d) SRMD; (e) real-ESRGAN; (f) DualSR; (g) FSSR; 
and (h) proposed method. 

 
Figure 13. HR and SR results of the test image yard with a rotation angle of 0° and an aspect ratio 
of 5. (a) HR; (b) SRGAN; (c) EDSR; (d) SRMD; (e) real-ESRGAN; (f) DualSR; (g) FSSR; and (h) 
proposed method. 

 
Figure 14. HR and SR results of the test image airport with a rotation angle of 135° and an aspect 
ratio of 6. (a) HR; (b) SRGAN; (c) EDSR; (d) SRMD; (e) real-ESRGAN; (f) DualSR; (g) FSSR; and (h) 
proposed method. 

Figure 13. HR and SR results of the test image yard with a rotation angle of 0◦ and an aspect
ratio of 5. (a) HR; (b) SRGAN; (c) EDSR; (d) SRMD; (e) real-ESRGAN; (f) DualSR; (g) FSSR; and
(h) proposed method.

Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 12. HR and SR results of the test image residential area with a rotation angle of 90° and an 
aspect ratio of 4. (a) HR; (b) SRGAN; (c) EDSR; (d) SRMD; (e) real-ESRGAN; (f) DualSR; (g) FSSR; 
and (h) proposed method. 

 
Figure 13. HR and SR results of the test image yard with a rotation angle of 0° and an aspect ratio 
of 5. (a) HR; (b) SRGAN; (c) EDSR; (d) SRMD; (e) real-ESRGAN; (f) DualSR; (g) FSSR; and (h) 
proposed method. 

 
Figure 14. HR and SR results of the test image airport with a rotation angle of 135° and an aspect 
ratio of 6. (a) HR; (b) SRGAN; (c) EDSR; (d) SRMD; (e) real-ESRGAN; (f) DualSR; (g) FSSR; and (h) 
proposed method. 

Figure 14. HR and SR results of the test image airport with a rotation angle of 135◦ and an aspect
ratio of 6. (a) HR; (b) SRGAN; (c) EDSR; (d) SRMD; (e) real-ESRGAN; (f) DualSR; (g) FSSR; and
(h) proposed method.



Remote Sens. 2024, 16, 1508 15 of 18Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 19 
 

 

 
Figure 15. LR and SR results of the semi-physical experimental image with a rotation angle of 0° 
and an aspect ratio of 3. (a) LR; (b) SRGAN; (c) EDSR; (d) SRMD; (e) real-ESRGAN; (f) DualSR; (g) 
FSSR; and (h) proposed method. 

3.2.3. Ablation Study 
We compared two training methods: the “one-stage” method, which involves 

directly training on unmasked degraded images for 400 epochs, and the “two-stage” 
method, which involves first pre-training on images masked with strip-like masks along 
the direction of the rectangle’s short side for 360 epochs, followed by fine-tuning on the 
unmasked images for 40 epochs. Table 5 presents the results of the ablation study, which 
includes the average results of all target scenes with six different aspect ratios ranging 
from 3 to 8. The table also includes a comparison with the results obtained from randomly 
masked images for pre-training. 

Table 5. Ablation study on the three training methods. The unit of PSNR is decibel (dB). 

Training Method One-Stage Two-Stage-Random Mask Two-Stage-Strip Mask 
PSNR 32.07 31.91 32.61 
SSIM 0.9038 0.9024 0.9120 

4. Discussion 
The main objective of image super-resolution for the RSA system is to enhance the 

resolution in the direction of the shorter edge of the rectangular pupil. In contrast, the 
resolution of LR and HR in the longer edge direction is essentially the same. As such, 
experimental results demonstrate that a straightforward ViT model can produce 
outstanding results without requiring overly complex structures. Table 3 lists 36 sets of 
digital simulation test images of six scenes and six aspect ratios. The proposed method 
achieves the best performance in 33 sets of test images according to the PSNR metric and 
in 35 sets according to the SSIM metric. While DualSR outperforms the proposed method 
in some scenes, the proposed method yields significantly superior average results. For 
different aspect ratios of the primary mirror, the proposed method performs exceptionally 
well when the aspect ratio is 3, with a 26.31% improvement in PSNR and a 17.36% 
improvement in SSIM over bicubic interpolation. Similarly, when the aspect ratio of the 
primary mirror is 4 or 5, our proposed method achieves the best results and significantly 
outperforms other methods. Even when the aspect ratio of the primary mirror is 6, our 
super-resolution results still exhibit a PSNR of over 31dB, owing to the proposed method’s 
consideration of the imaging characteristics of the RSA system. However, the performance 
of the proposed method decreases when the aspect ratio is large (greater than or equal to 
7). We attribute this issue to the high degree of blurriness that is prevalent along the 
shorter side of the rectangular pupil. Despite applying strip-shaped masking to the 
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and (h) proposed method.

3.2.3. Ablation Study

We compared two training methods: the “one-stage” method, which involves directly
training on unmasked degraded images for 400 epochs, and the “two-stage” method, which
involves first pre-training on images masked with strip-like masks along the direction of
the rectangle’s short side for 360 epochs, followed by fine-tuning on the unmasked images
for 40 epochs. Table 5 presents the results of the ablation study, which includes the average
results of all target scenes with six different aspect ratios ranging from 3 to 8. The table
also includes a comparison with the results obtained from randomly masked images for
pre-training.

Table 5. Ablation study on the three training methods. The unit of PSNR is decibel (dB).

Training Method One-Stage Two-Stage-Random Mask Two-Stage-Strip Mask

PSNR 32.07 31.91 32.61
SSIM 0.9038 0.9024 0.9120

4. Discussion

The main objective of image super-resolution for the RSA system is to enhance the
resolution in the direction of the shorter edge of the rectangular pupil. In contrast, the
resolution of LR and HR in the longer edge direction is essentially the same. As such,
experimental results demonstrate that a straightforward ViT model can produce outstand-
ing results without requiring overly complex structures. Table 3 lists 36 sets of digital
simulation test images of six scenes and six aspect ratios. The proposed method achieves
the best performance in 33 sets of test images according to the PSNR metric and in 35 sets
according to the SSIM metric. While DualSR outperforms the proposed method in some
scenes, the proposed method yields significantly superior average results. For different
aspect ratios of the primary mirror, the proposed method performs exceptionally well when
the aspect ratio is 3, with a 26.31% improvement in PSNR and a 17.36% improvement in
SSIM over bicubic interpolation. Similarly, when the aspect ratio of the primary mirror
is 4 or 5, our proposed method achieves the best results and significantly outperforms
other methods. Even when the aspect ratio of the primary mirror is 6, our super-resolution
results still exhibit a PSNR of over 31dB, owing to the proposed method’s consideration of
the imaging characteristics of the RSA system. However, the performance of the proposed
method decreases when the aspect ratio is large (greater than or equal to 7). We attribute
this issue to the high degree of blurriness that is prevalent along the shorter side of the
rectangular pupil. Despite applying strip-shaped masking to the images, numerous blurred
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edges remain challenging to conceal. Hence, these blurred pixels may still impede the
model’s super-resolution reconstruction.

From the visual results in Figures 11–15, it is evident that each SR method tends
to exhibit specific visual characteristics in the SR output, which can be classified into
two categories. One category, exemplified by SRGAN and Real-ESRGAN, tends to generate
smoother outputs with clearer visual effects, making them more robust against noise. How-
ever, these methods exhibit subpar performance on objective evaluation metrics. The other
methods tend to produce sharper SR outputs. Furthermore, the visual results show that
when the aspect ratio of the primary mirror is relatively large, the image quality along the
shorter side is significantly reduced. Although some details can be restored, the SR results
may still fall short of meeting the resolution requirements of interpretation applications.
Compared to other methods, our proposed method exhibits reduced susceptibility to the
adverse effects of non-uniform resolution and demonstrates a superior ability to reconstruct
directions with low resolution in the image. This is particularly evident from the outcomes
of our semi-physical imaging simulation experiments shown in Figure 15. In addition, the
fact that the semi-physical experimental test image and the training image were obtained
from different sensors also serves to demonstrate the robust generalization capability of
our method.

The results of ablation experiments demonstrate the advantages of our “two-stage”
training method. As shown in Table 5, the performance of the model pre-trained on
randomly masked images is similar to that of the “one-stage” training method. However,
our “two-stage” training method, which utilizes a strip-wise mask sampling strategy,
improves the SSIM and PSNR by 0.91% and 1.68%, respectively, compared to the “one-stage”
method. This outcome is expected because remote sensing images possess a significant
amount of spatial redundancy, which means that even if some pixels are masked, deep
neural networks are capable of extracting enough information from the images to infer
complex and holistic reconstructions. Furthermore, as explained in Section 2.3.1, masking
along the shorter side of the rectangle can help the model avoid interference from blurred
pixels, resulting in reconstructed images that are sharper and clearer along the shorter edge.

5. Conclusions

In this paper, we conduct an analysis of the imaging characteristics of the RSA system
and put forth a corresponding SISR method. Our proposed method employs an end-to-end
image super-resolution network that is based on the rotated varied-size window-based
attention mechanism. By utilizing window-based self-attention, this mechanism generates
windows with varying locations, sizes, shapes, and angles. Such an approach proves ad-
vantageous in effectively processing objects with diverse orientations and scales in remote
sensing images. To effectively handle the special asymmetric degradation characteristic of
the RSA system, we employ a mask strategy using strip-wise masks along the short side
of the rectangular primary mirror. On this basis, we adopt a two-stage training method
that involves pre-training the model on masked images, followed by fine-tuning using
unmasked images. This approach not only mitigates interference caused by the non-circular
symmetry PSF but also enhances the network’s ability to make more effective use of the
high-resolution information inherent in the remote sensing images themselves. Conse-
quently, our network excels in reconstructing detailed and clear edges and textures in the
direction of the shorter edge of the pupil. Extensive experiments are conducted, which
include six aspect ratios of the primary mirror and six different SR methods, to demonstrate
the superior performance of our proposed method. Specifically, our method outperforms
other methods in objective evaluation for primary mirrors with aspect ratios ranging from 3
to 8, especially in terms of the PSNR metric. Furthermore, our method effectively addresses
the issue of uneven resolution in SR results, showcasing its superiority in image interpre-
tation applications. Through this research, we offer valuable guidance for the practical
implementation of the RSA imaging technology, while also providing significant references
for its future advancements.
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