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Abstract: Lithium mining has become a controversial issue in the transition to green technologies
due to the intervention in natural basins that impact the native flora and fauna in these environments.
Large resources of this element are concentrated in Andean salt flats in South America, where
extraction is much easier than in other geological configurations. The Pozuelos highland salt flat,
located in northern Argentina (Salta’s Province), was chosen for this study due to the presence of
different evaporitic crusts and its proven economic potential in lithium-rich brines. A comprehensive
analysis of a 5.5-year-long time series of its microwave backscatter with Synthetic Aperture Radar
(SAR) images yielded significant insights into the dynamics of their crusts. During a field campaign
conducted near the acquisition of three SAR images (Sentinel-1, ALOS-2/PALSAR-2, and SAOCOM-
1), field measurements were collected for computational modeling of the SAR response. The temporal
backscattering coefficients for the crusts in the salt flat are directly linked to rainfall events, where
changes in surface roughness, soil moisture, and water table depth represent the most critical
variables. Field parameters were employed to model the backscattering response of the salt flat
using the Small Slope Approximation (SSA) model. Salt concentration of the subsurface brine and
the water table depth over the slightly to moderately roughed crusts were quantitatively derived
from Bayesian inference of the ALOS-2/PALSAR-2 and SAOCOM-1 SAR backscattering coefficient
data. The results demonstrated the potential for subsurface estimation with L-band dual-polarization
images, constrained to crusts compatible with the feasibility range of the layered model.

Keywords: radar remote sensing; synthetic aperture radar (SAR); scattering model; evaporitic
environment; salt flat; salt crust; rough surface; Sentinel-1; ALOS-2/PALSAR-2; SAOCOM-1

1. Introduction

Research on salt flats dynamics has gained much importance in recent years mainly
due to environmental and mining issues. The worldwide increasing demand for lithium
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has put the focus on salt flats, which are the main source of this element, considered strate-
gic and fundamental in the transition to an economy less dependent on fossil fuels [1–5].
The construction of rechargeable, lightweight, lithium-based batteries with a high storage
capacity and its demand in numerous green technologies, such as electric vehicles, turns
lithium into a fundamental resource nowadays [2,6–8]. The Andean highlands shared by
Argentina, Bolivia, and Chile concentrates about 60% of the lithium reserves of the planet
within an area known as the “Lithium Triangle”. From a strategic and economic standpoint,
surveys for lithium exploration in the Andean highlands are complex since they are remote,
difficult-to-access areas, leading to time-consuming and costly field campaigns. The valu-
able capabilities of remote sensors help circumvent these issues, enabling information at
different spatial and time scales through spaceborne platforms, thus avoiding a large num-
ber of field campaigns [9,10]. While optical sensors make use of the reflection properties of
targets, radar sensors can obtain information with a certain degree of penetration under
the Earth’s surface [11,12].

Among the different types of radars, the Synthetic Aperture Radar (SAR) highlights its
spatial resolution of the order of a few meters and its all-weather capabilities. SARs actively
transmit waves onto a linear basis with a single wavelength, being the most common
free-space wavelengths for land applications between 3.8 and 7.5 cm (C-band) and between
15 and 30 cm (L-band). The larger the wavelength emitted by the radar, the greater the
penetration on the land surface [11–15], thus potentially allowing subsurface exploration.
Besides observation geometry and acquisition configuration, the radar response depends
on interface configuration such as roughness, bulk media properties such as composition,
dielectric constant, and the condition of pore saturation. Overall dielectric properties of
saline soils and related implications to radar remote sensing at C- and L-band were the
subject of several studies [16–18].

Dielectric properties of saline water at concentrations up to 188 g/L (grams of solid salt
dissolved in one liter of solution) are successfully modeled by a single Debye relationship
combined with an ionic conductivity term [11,19]. However, when dealing with higher salt
concentrations such as those found in brines, which may exceed the aforementioned limit,
a dedicated semiempirical model that extends the validity range is formulated in [20]. The
model relies on a Cole–Cole relationship for complex permittivity of sodium chloride (NaCl)
solutions from pure water to salt concentrations up to 292 g/L at microwave frequencies
up to 20 GHz and in the range 5 ◦C to 35 ◦C.

Most investigations with spaceborne radars focused on salt flats are two-fold. On one
hand, “snapshot” studies exploit a few radar acquisitions combined with simultaneous
field surveys to interpret radar responses. Pioneering research using satellite microwave
active and passive acquisitions of the Utah Great Salt Lake Desert suggested the influence
of subsurface layers of sediment saturated with brine on the observations [21]. A study
over Lop Nur Lake Basin (China) demonstrated the capabilities of SAR images to recognize
different types of salt crusts by surface roughness parameters using Polarimetric Synthetic
Aperture Radar (PolSAR) with ALOS-PALSAR images [22]. Using field measurements and
co-polar signatures derived from analytical simulations, the influence of soil salinity as a
function of soil moisture on the dielectric constant was assessed for airborne and spaceborne
acquisitions at C- and L-bands in a salt pan in Death Valley, California (USA) [17]. In this
same respect, radar responses of salt-affected soils were modeled for spaceborne imagery
at the C-band over a salty depression located in the Egyptian desert [23]. Existing methods
that rely on evaluating scattering models require certain input parameters, which, in turn,
imply in situ fieldwork. Extrapolation of published datasets might serve as an alternative
to the fieldwork, although their availability on salt pans might be limited. Also, the validity
range of the scattering model might narrow its applicability. However, scattering models
provide a complete characterization of the salt pan by radar waves.

On the other hand, multi-temporal studies make use of long-term, dense sets of radar
acquisitions to monitor salt flat dynamics, usually with the only ancillary information pro-
vided by weather stations and visual information collected on a field visit. As soil moisture
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largely affects dielectric properties of soils, multi-temporal studies become important to
analyze seasonal variations of the SAR response on salt pans, as was demonstrated in
Chott El Djerid playa deposit in Tunisia using multi-temporal RADARSAT-2 C-band full
polarimetric imagery [24,25] and in Salar de Aguas Calientes Sur in Chile using Sentinel-1
and ALOS-2/PALSAR-2 [26]. These investigations contributed to a better understanding
of crust salt flat dynamics and related evaporitic processes. The methods using time series
strongly depend on the availability of satellite platforms and their continuity on image
provision. To date, few satellite missions fulfilled this constraint. On the other hand,
insights gained by multi-temporal studies contribute to a comprehensive understanding of
salt pans.

Penetration capabilities of radar waves were also exploited in a few research studies
using fully polarimetric images. In the same Lop Nur region mentioned above, a study
found some sensitivity in retrieving the depth of the subsurface brine layer with field
measurements using co-polarized phase difference in ALOS-PALSAR L-band images [27].
In 2004, using airborne data over Pyla Dune in Arcachon Basin close to Bordeaux, France,
subsurface moisture information related to wet structures (paleosoils) was detected using
phase signature of polarimetric L-band SAR data [28]. Conclusions drawn from these
studies and from [21] highlight the relevance of modeling subsurface layers of the salt pan,
where the pore saturation with high-salinity brines is a unique feature of these targets.

In understanding the radar response, electromagnetic models can make a difference
by simulating the backscattered power, thus allowing a composite analysis of the different
parameters involved in the characterization of the target. One of them is the Small Slope
Approximation (SSA), which provides a solution for wave scattering both at small and
large scales provided that surface roughness has small slopes (i.e., the ratio of vertical
to horizontal scales is smaller than some function of the wavelength). It is shown that
the obtained approximation offers a unified approach to wave scattering problems by
combining perturbation theory with the tangent plane approximation, thus bridging the
gap between the classical approaches small perturbation method and the Kirchhoff approx-
imation [29,30]. A limitation of this model is that it will only be applicable to the crusts
with the smaller slopes, usually the halite and the smoother earthy crusts. As a counterpart,
the model allows a valuable, coherent, two-layer description of two half-spaces and a third
in-between layer in which the top and below interfaces are rough. In this work, numerical
simulations from second-order, two-layered SSA, as described in [31,32], were used to
model the salt pan configuration.

Baseline information for a deeper understanding of crust dynamics is collected through
a five-year multi-temporal dataset (January 2018–May 2023) with a dense time series of
Sentinel-1 (C-band), ALOS-2/PALSAR-2, and SAOCOM-1 (L-band). Ancillary informa-
tion from an in situ weather station and from a distributed network of bores aided the
interpretation of crust formation and later development. In addition, in situ parameters,
such as crust roughness, horizon configuration, water table depth, and brine salinity, were
collected at sampling sites across the salt pan by means of a field campaign carried out on
28 and 29 May 2023.

This study is aimed at assessing the capabilities of a scattering model in relating the
SAR backscattered signal with the surface and subsurface salt pan configuration of the
Pozuelos salt flat located at Puna Salteña in northern Argentina.

The remainder of this paper is organized as follows. The study area and the fieldwork
are presented in Sections 2.1 and 2.2, respectively. Detailed information on SAR image
processing, crust classification, backscattering models, and the Bayesian approach for
estimating model parameters are presented in Section 2.3 to Section 2.7. The influence
of weather on SAR backscattering over time is described in Sections 3.1 and 3.2. Surface
and subsurface modeling are analyzed in Sections 3.3 and 3.4. Discussion is provided in
Section 4, followed by concluding remarks in Section 5.
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2. Materials and Methods
2.1. Study Area

The Pozuelos salt flat is located at 3760 m.a.s.l. at Puna Salteña in Salta’s Province
(northern Argentina), whose approximate geographical coordinates are 24◦40′S and 66◦45′W
(Figure 1). Its approximate dimensions are 13 km long by 6 km wide in an NE elongated
arrangement with an approximate area of 84 km2 [33]. Within the salt flat boundaries,
a weather station provided daily rainfall from 12 December 2018 to 20 February 2022.
Locations of the crust boundaries, sampling sites covering different crust types, and the
weather station are shown in Figure 1.
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Figure 1. Location of the Pozuelos salt flat study area. A zoomed-in area of the Pozuelos salt flat is
presented in a true color Sentinel-2 product acquired on 30 May 2023, with the location (1 to 16) of
the trenches.

The soil surface is composed of different crusts, each one having different types of
roughness and chemical compositions. According to their roughness, crusts are classified as
smooth, moderately rough, and very rough, whereas according to their compositions, they
are saline or earthy. Saline crusts encompass a halite (NaCl) domain with a smooth surface
and the presence of gypsum and borates, in addition to clastic materials. In general terms,
there are two domains on the surface of the salt flat: saline crusts and earthy crusts. Saline
crusts have a high halite content and low roughness, while earthy crusts are moderate to
very rough and contain a mixture of clastic material composed of clay, silt, fine sand, and
evaporite minerals to a lesser extent [33].

2.2. Field Sampling and Laboratory Measurements

A total of 16 points of interest (IDs) were initially selected based on the different salt
crusts and the feasibility of access. However, sampling site ID-4 was extremely hard to
excavate, and site ID-12 was unreachable due to a loose road. Finally, samples were taken
at 14 sites (Figure 1).

Trenches at each sampling site were made with an excavator. Trench dimensions
are roughly 3.5 m × 1.5 m with 0.15 to 1.0 m depth according to the local water table
depth at each sampling location, enabling a good description of the horizon configuration
(Figure 2a). The water table depth and the soil temperature were measured at the trenches.
This information is important to consider because it sets a limit to the penetration capability
of the radar wave due to the high salinity of the brine in the saturated zones. In addition to
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the measurements mentioned above, samples of the brine were taken for chemical analysis
as well as of the soil for bulk and specific densities. Brine salinity was expressed as the
weight of Na+ and Cl- ions dissolved in a liter of solution. Even though the brine contained
sulfates and other salts in addition to NaCl, NaCl was the principal component with 97%
of the total dissolved solids; therefore, the expressions developed for pure NaCl solutions
were assumed applicable. Table 1 resumes the soil features.
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Figure 2. (a) Illustration of fieldwork on the trench at sampling site ID-1. (b) Photograph sample for
surface roughness calculation at ID-16.

Table 1. Soil features.

Soil Parameter Measurement

Subsurface temperature (T) 2.1–15 ◦C

Average salinity (Sb) (313 ± 2) g/L

Soil bulk density (0.882 ± 0.003) g/cm3

Soil specific density (2.05 ± 0.01) g/cm3

Soil porosity 0.569 ± 0.004

Crusts are composed of halite and clastic rocks, whose relative fractions vary according
to the crust type and were estimated from samples taken at the top 10 cm for each crust.
Halite fraction reached a maximum of 90% for type I crust and decreased to 70%, 55%, and
20% for types II, III, and IV, respectively. For the remaining clastic fraction, sand and clay
percentages (S, C) were (30%, 50%), (17%, 50%), (22%, 44%), and (25%, 25%) for types I to
IV, respectively.

A number of photographs of a gridded board placed at each sampling location were
taken to estimate surface roughness (Figure 2b). Three photographs per site placing
the gridded board in two orthogonal transects and a third at the corresponding angle
bisector were considered. A supervised edge detector rendered the crust profile, and root
mean squared (RMS) height s, correlation length l, and slope s/l were computed [11] as
summarized in Table 2. Skewed or non-Gaussian profiles were disregarded, mostly due to
halite polygonal edge inclusions or issues with the leveling of the board at sites with very
rough crusts. The sample power spectrum of the profiles was determined as exponential
for ID-1, ID-2, and ID-13 (type I) and Gaussian for the remaining sites (types II–IV).
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Table 2. Average roughness parameters were estimated by placing a gridded board onto the soil and
extracting the corresponding contour. Excavator tracks largely disturbed soil crust at site ID-8, so
no photographs were taken. A halite polygonal edge was included in the photographs at site ID-10,
leading to a non-Gaussian height distribution, so roughness measurements there were disregarded.

Sampling Site ID RMS Height s [cm] Correlation
Length l [cm] Slope s/l Crust Type 1

1 0.137 2.01 0.0685 I
2 0.201 3.31 0.0609 I
13 0.125 3.13 0.0401 I
9 4.32 9.62 0.450 II
5 0.992 4.67 0.219 III
7 1.31 5.88 0.214 III
14 0.916 5.51 0.177 III
15 0.841 4.96 0.173 III
16 1.28 6.59 0.197 III
3 3.51 9.89 0.350 IV
6 5.05 8.11 0.630 IV
11 3.74 9.79 0.399 IV

1 See Section 2.5 Field Classification of Crusts.

2.3. SAR Images

For this study, 275 Interferometric Wide Swath (IW) mode, Ground Range Detected
(GRD) Sentinel-1, 22 Fine mode Dual polarization (FBD) ALOS-2/PALSAR-2 and 19 Stripmap
Dual and Quad pol SAOCOM-1 level 1 images were processed. Figure 3 shows the monthly
cumulative number of scenes acquired between January 2018 and May 2023. Scene availabil-
ity from January 2022 was affected by the failure and later end of the Sentinel-1B satellite
mission [34].
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Instrument noise floor diminishes sensitivity for weak backscatters. As for Sentinel-1,
instrument performance for the IW mode has a marked dependence on the incidence
angle [35], with a noise floor better than −28.8 dB at VH at the incidence angle of the
observations. ALOS-2/PALSAR-2 noise floor is −36 dB at HH and −46 dB at HV, far
beyond the lower backscattering coefficients found in the study area [36]. Finally, SAOCOM-
1 performance is better than −28 dB and −34 dB for dual polarization and quad polarization
modes, respectively [37].

2.4. Methodology

Image processing involved the usual preprocessing steps for all images starting with
importing the files, orbit correction and thermal noise removal for Sentinel-1, and spatial
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subset selection. Then, images were radiometrically calibrated, except for SAOCOM-1,
so that images are delivered calibrated. Subsequently, a Lee Sigma filter with a 17 × 17
pixel window was used to improve radiometric quality. Finally, to transform the images
from slant range to ground range, geometric terrain correction was applied by means
of an SRTM 1Sec HTG digital elevation model and cubic-convolution interpolation, re-
sulting in an image with a nominal pixel size of 10 m × 10 m. Finally, output bands of
backscattering coefficients for VV and VH were generated for Sentinel-1, HH, and HV
for ALOS-2/PALSAR-2, HH, and HV for dual-pol SAOCOM-1 and the corresponding
four combinations for quad-pol SAOCOM-1. Local incidence angle bands were generated
accordingly. The methodology flowchart is shown in Figure 4.

The classification of the crusts carried out by [33] in 2020 was refined through a
supervised classification of a Sentinel-2 multispectral image on 30 May 2023 to mitigate
human intervention, such as roads, excavations, etc., ever since.

Field measurements were used for two purposes. Roughness parameters, soil bulk
features, and soil temperature were inputs for the scattering model, whereas brine salinity
and water table depth were used to compare against model parameters retrieved by means
of Bayesian inference.
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2.5. Field Classification of Crusts

Six different crusts (types I to VI) based on surface and chemical features gathered
in situ were classified over the Pozuelos salt flat (Figure 5a). Types I and V are smooth
halite crusts with a typical polygonal edge pattern. Type II is an earthy, very roughed crust
at the depocenter, covered with large, sharp protrusions overlying a halite layer. Type
III is an earthy, moderately roughed, brittle crust with rounded bosses and an overlying
discontinuous halite layer. Type IV is an earthy, angular-shaped crust with large roughness
and a centimeter-scale underlying porous pattern. Finally, type VI is an earthy crust
associated with borates [33]. In optical images (visible range), saline crusts (halite) exhibit
high reflectance (white areas in true color images), while earthy crusts show moderate
reflectance (brown-gray areas in true color images) (Figure 5b). Overall, crust differentiation
is conveyed to the microwave response at C-band VV by means of surface roughness. In
other words, the larger the roughness, the larger the backscattering coefficient displayed in
SAR images. Thus, halite crusts (types I and V) resulted in low backscattered coefficients
(dark areas in SAR images) compared to crusts with moderate or large roughness, such as
types II to IV (bright areas in SAR images) (Figure 5c). However, some differences arise, in
the sense that some crusts’ boundaries classified by the optical image fade off in the radar
one. The opposite is also true, mainly at the L-band (not shown), where some radar features
might not be identified at optical bands. Figure 5c shows the unfiltered radar image with a
clear response of the scatters related to the surface roughness, and Figure 5d displays the
result after applying the Lee Sigma filter to the radar image for speckle reduction.
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Figure 6 corresponds to on-site photographs of the main salt crusts in the Pozuelos
salt flat, where the previously mentioned different roughness can be observed, which are
also visible in the SAR images (Figure 5c,d).
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Figure 6. Four major crust types gathered at fieldwork. IDs refer to the trench locations in Figure 1.
Insets depict crust roughness by comparison with the gridded board. (a) Type I at ID-1. (b) Type II at
ID-9. (c) Type III at ID-7. (d) Type IV at ID-6.

On 29 and 30 May 2023, a field campaign was carried out with the objective of
collecting data relevant to the radar wave scattered by the salt flat. The campaign was
scheduled during this period to coincide with the overpass of ALOS-2/PALSAR-2 satellite
on 30 May, SAOCOM-1 on 1 June, and close to the Sentinel-1 acquisition on 25 May. Table 3
summarizes the average backscattering coefficients for sampling sites ID-1, ID-7, and ID-16
from the mentioned radar images. Related uncertainties have been calculated as 25% and
75% percentiles (i.e., 50% confidence level).

Table 3. Backscattering coefficients at ID-1, ID-7, and ID-16 averaged over a 50-m radius area for
Sentinel-1, ALOS-2/PALSAR-2, and SAOCOM-1 with a 50% confidence level.

Sensor
(Mode)

Acquisition
Date Orbit Pass ID Incidence

Angle HH [dB] HV [dB] VH [dB] VV [dB]

Sentinel-1
(IW GRD) 05/25/23 Ascending

1 40.4 - - −27.9 ± 0.2 −14.85 ± 0.06
7 43.0 - - −20.4 ± 0.3 −9.01 ± 0.09

16 43.3 - - −20.1 ± 0.3 −9.2 ± 0.4

ALOS-2/
PALSAR-2

(FDB)
05/29/23 Ascending

1 33.3 −18.6 ± 0.7 −31.2 ± 0.5 - -
7 36.0 −9.4 ± 0.4 −21.5 ± 0.4 - -

16 36.2 −9.2 ± 0.9 −19 ± 2 - -

SAOCOM-1
(Quad pol) 06-01-2023 Descending

1 26.6 −18.8 ± 0.7 −30.6 ± 0.7 −30.6 ± 0.9 −18 ± 1
7 24.7 −8.7 ± 0.9 −20.5 ± 0.6 −20.9 ± 0.9 −7.5 ± 0.8
16 24.0 −6 ± 1 −17 ± 2 −17 ± 2 −5 ± 1

2.6. Small Slope Approximation and Subsurface Salt Pan Model

The Small Slope Approximation has been derived for wave scattering on rough sur-
faces within the framework of perturbation theory, where the perturbative parameter is the
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surface slope s/l. More precisely, the scattering matrix R for a two-layer lossy media with
rough boundaries can be written as the integral of an unknown functional Φ as

R(p, p0) =
∫

d2rd2r′exp[−i(p − p0) · (r + r′)− i(α(p) + α(p0))(h1(r) + h2(r′))]
×Φ[p, p0; r : r′; [h1(r)]; [h2(r′)]]

(1)

which, by means of a perturbative development, is expanded as an integral power series
via Taylor expansion of Φ on surface heights h1 (upper rough surface) and h2 (bottom). In
(1), r and r′ are the vector coordinates for upper and bottom media, respectively, p and p0
(subscript 0 refers to the incident vector) are the coordinates in momentum space (after
Fourier transform), and α(p) =

√
εk2 − p2, where k = 2πλ.

Then, transforming Fourier on Φ and using the unitary property of the scattering
matrix [38], the unknown coefficients of the Taylor expansion are found solving order by
order the boundary condition at each interface and for each polarization. Up to order 3, as
used in this paper, the expansion of Φ yielded 16 terms, which are explicitly stated in [38],
Equations (92)–(122).

The SSA is a physically based scattering model that includes both surface and volume
scattering mechanisms in the computation of the fully polarimetric backscattering coeffi-
cients HH, HV, VH, and VV [39]. Since mean values of the scattered fields are computed,
the results depend on the surface parameters RMS height (s) and correlation length (l).
Therefore, the scattering model proposed presents seven free parameters: X = {ϵ1, ϵ2, d, s1,
l1, s2, l2}, which represent, respectively, the dielectric permittivity ϵ1 and ϵ2 of the stratified
medium, the average layer thickness d, and the statistical properties of each surface. Specifi-
cally, the SSA implemented in this paper followed references [30,31] with a Gaussian power
spectrum. In the case of the type I crust, this is driven by the fact that with an exponential
power spectrum, no intersection of the contours for Sentinel-1 and SAOCOM-1 occur at all
(see Section 3.2).

Establishing the validity domain of the SSA approximation is an open issue and subject
to current research. Regarding the feasibility range available in [40], slopes corresponding
to type I and III crusts fulfilled the constraints.

Regardless of the different crusts, a common description of the underlying pan config-
uration over the entire salt flat can be made as a two-layer roughed lossy media subject to
be modeled by the SSA. An upper moist layer composed of crystalline halite and clastic
materials at a known proportion is above a semi-infinite saturated earthy layer, where the
water table is the interface between the two layers (Figure 7). With this model at hand, and
the mentioned constraints imposed on the roughness by the SSA, a simulation study on
type I and III crusts was carried out.
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Measurements of complex permittivity at microwave frequencies usually involve fine
techniques, only achievable at the laboratory level. To circumvent this issue, a model for
high-salinity brines, where model parameters are brine salinity Sb, volumetric moisture mv,
and the bulk parameters shown in Table 1, was used to compute complex permittivities
ϵ1 and ϵ2 [20] along with the dielectric mixing model described in [16,19]. Since only
clastic media are covered by [20], wet halite crystal complex permittivity at C- and L-bands
are taken from [17], namely, 7 + 11i and 9 + 31i, respectively, to calculate the dielectric
properties of the halite fraction of the crusts.

Regardless of the different crusts, a common description of the underlying pan config-
uration over the entire salt flat can be made as a two-layer roughed lossy media. An upper
moist layer of height d and roughness parameters s1 and l1 composed of crystalline halite
and clastic materials at a known proportion are above a semi-infinite saturated earthy layer,
where the water table is the interface between the two layers (Figure 7) with roughness
parameters s2 and l2. The lossy features of the media are given by the complex dielectric
constants ϵ1 and ϵ2. With this model at hand, and the constraints imposed on the SSA by
the roughness, type I and III crusts were covered.

2.7. Bayesian Inference

Bayesian inference relies on the use of ancillary or contextual information to constrain
a given scattering model (SSA) to actual spaceborne observations, taking into account the
uncertainties involved in the observations. An expression for the conditional (“posterior”)
probability of measuring a certain set of model parameters, such as the brine salinity Sb
and the average layer thickness d, given measurements of backscattering coefficients HH
and HV under a dual polarization basis can be obtained from Bayes’ theorem:

P(Sb, d|HH, HV) =
PHHHV(HH, HV|Sb, d)PSbd(Sb, d)

PHHHV(HH, HV)
(2)

where PHHHV(HH, HV|Sb,d) is the “likelihood function”, i.e., the probability of measuring a
certain set (HH, HV) of backscattering coefficients given measurements of Sb and d, PSbd is
the corresponding prior joint density function, and PHHHV(HH, HV) is a global normalizing
factor and the probability of a certain (HH, HV) to be measured. Thus, model parameters
are inferred from SAR measurements. The likelihood function is a stochastic version of
the scattering model and measures the degree of compatibility between a certain SAR
measurement and certain model parameters constrained to the given scattering model. The
higher the values of the likelihood, the more likely that the SAR measurement comes from
that specific combination of model parameters.

Due to the model’s complexity and its implicit numerical nature, explicitly solving for
the posterior in (2) is not possible and one must rely on a sampling algorithm to compute it.
Monte-Carlo methods are able to generate samples of the posterior and return a joint plot
for any two of the model parameters. The overall shape of the posterior will depend on the
sensitivity of each parameter to the model, the error distribution for the likelihood, and the
shape of the prior distribution used in the inference. The variance of the posterior at any
given confidence level can be computed afterward.

The likelihood takes into account the SSA model as well as the residual speckle noise
after filtering. When SAR data are on dB scale, radiometric uncertainties are constant and
data distribution can be assumed Gaussian [41], so the likelihood is normally distributed
with mean (SSA(X) − (HH, HV)) and standard deviation given by the observation uncer-
tainties summarized in Table 3. These uncertainties are below 10% (except for ID-16) and
reflect the quality of the speckle filtering technique. In Section 3.3, the precision of the
inference in terms of the backscattering coefficient uncertainties will be discussed.

The parameter vector now coupled with the model in [20] is X = {Sb, mv1, d, s1, l1, s2,
l2}. Within this feature space, Sb, d, s1, and l1 were measured at fieldwork, mv1 roughly
estimated from a 50 MHz dielectric probe and s2, l2 estimated from a visual inspection
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of the overall horizon configuration at the water table depth, resulting in s2 = 2 × s1 and
l2 = l1/2.

Inference ran on subsurface model parameters Sb and d assuming they are independent,
i.e., PSbd= PSb Pd. A Gaussian prior distribution for Sb is possible by means of the dataset
reported in [2]. In fact, a mean of 266 g/L and a standard deviation of 34 g/L are reported
for Pozuelos salt flat therein. A uniform prior distribution for parameter d was chosen,
whose bounds are given by ±20% variations of the minimum and maximum table depth
from a two-year-long time series of a number of bores distributed over the salt pan. Finally,
5000 samples of the posterior were computed with the Sequential Monte-Carlo Sampler
(SMC) [42] of the Python library PyMC3 [43].

3. Results
3.1. Water Dynamics after Heavy Rainfalls

After heavy rainfall events, the salt pan flooded, except for the depocenter, and
gradually dried up in the following days. Water remained longer over the earthy crusts
than over the halite ones, the latter being covered with a waterbed, and displayed in bluish
hues north-, east- and centerward (type I and V crusts) in Figure 8. For those crusts with
a large porous pattern, multiple depolarizations increase the backscattering coefficient at
cross-polarization when they remain partially filled with water.
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heavy rainfall events. (a–c) correspond to a 31 mm rainfall accumulated between 2 January 2019
and 4 January 2019. (d–f) correspond to a 30 mm rainfall accumulated between 14 January 2020
to 21 January 2020. (g–i) correspond to a 69 mm rainfall accumulated from 19 December 2021 to
27 December 2021.
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3.2. Time Series Analysis

The SAR backscatter dynamics are depicted in Figures 9 and 10, where the average
backscattering coefficients for each crust type and the 25th- and 75th-percentile were plotted.
Rainfall was also plotted when available. For type II (orange), III (blue), and IV (green)
earthy crusts, C-band VV-polarized backscattering coefficient temporal evolution depicted
an annual periodic pattern triggered by the summertime rainfalls in January and then
an overall decrease until the end of the year. The type I halite crust (red) exhibited the
opposite dynamics, with a marked drop at the first heavy rainfall around January and
then a steady increase until the end of the year. Among the earthy crusts, type IV had
larger backscattering coefficients, followed by those of type III and type II, respectively.
The aforementioned trend can be explained with the surface roughness slope summarized
in Table 1, where s/l~0.4–0.6 for type IV and s/l~0.2 for type III. Despite the type II crust
having a large slope (s/l~0.45), the C-band scatter relies more on the underlying, moderately
rough surface than on the protrusions, which are many wavelengths in size at the C-band.
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Figure 10. Temporal evolution of cross-polarized backscatter responses of selected crusts in the
Pozuelos salt flat for Sentinel-1 VH (S1), ALOS-2/PALSAR-2 HV (A2P2), and SAOCOM-1 HV (SC)
and daily rainfall [mm].

For the cross-polarized case (Figure 10), the annual pattern is similar to the co-polarized
one, although type II and III crusts exhibited similar VH-polarized backscattering coeffi-
cients, opposite to the co-polarized case where at least a 2 dB difference between those
crusts was observed. Also, the larger differences between these crusts occurred close to
the rainfall events, when the voids below the bosses in type III crust filled with water, thus
enhancing the volume scattering mechanism [11]. In this same respect, the large porous
pattern in type IV crust seemed to be responsible for the large backscattering coefficient
at VH.

Backscatter dynamics at the L-band are depicted in Figures 9 and 10 with colored
triangle and diamond markers. Overall, type I crust is generally lower than the correspond-
ing at the C-band for both the co- and cross-polarized modes. In contrast, type II (orange
triangles) and type IV (green triangles) crusts exhibit the opposite, with the co-polarized
L-band backscattering coefficients for ALOS-2/PALSAR-2 exceeding those at the C-band
as well as most of the SAOCOM-1 ones. For type III, the distinction is less pronounced, at
least in the case of ALOS-2/PALSAR-2 data.
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In some months, namely August 2019, January 2020, and April 2021, ALOS-2/PALSAR-
2 backscattering coefficient for type II (orange triangles) is larger than that of type IV
(green triangles). The same is true in some months for SAOCOM-1 (diamond markers).
This happened mostly for dried-up crusts and could be related to subsurface scattering
mechanisms enhanced by a shallow water table at the depocenter in those months.

At cross-polarization, the backscattering coefficient for types II and IV at the L-band
is consistently larger than that at the C-band as in the case of co-polarization. However,
the ordering of crust types did not reverse and followed that at the C-band: σ0IV > σ0II >
σ0I, and σ0II is usually larger than σ0III. For type III crust, the SAOCOM-1 backscattering
coefficients are lower than those observed with Sentinel-1, with one exception on 5 January
2023 where the different orbit pass may explain that VH at the C-band is less than HV at
the L-band.

Comparing the temporal curves obtained for the different SAR images, it can be
observed that the classification of the crusts is better defined in the co-polarized data
(Figure 9) than in the cross-polarization data (Figure 10), where temporal curves intersect
for type II and type III crusts, clearly evident in the year 2018.

The backscatter dynamics of the different crusts are driven by the precipitation events,
which are very scarce (10 to 50 mm/year in Puna Salteña and 50 to 80 mm/year in Pozuelos
Salt Flat) but concentrated in the summertime from December to February [33,44,45],
leading to high rates of rainfall that affect salt crusts differently. Type I and V crusts
experience a decrease in their backscattering coefficient, reaching a minimum. Water
droplets cause a disruption in the crystalline structure of the halite. When exposed to
rainfall, the crust smoothens as the crystalline structure dissolves, gradually recrystallizing
and increasing its roughness over time.

Figure 11 displays backscattering coefficients for Sentinel-1 ascending (VV and VH)
and ALOS-2/PALSAR-2 ascending (HH and HV), averaged over a circular area with a
50 m radius at each sampling site, and the corresponding depth of the water table. SAR
images and in situ measurements corresponded to the period of the fieldwork. It can be
observed that for type I crust, values for the C-band are greater than those of the L-band.
However, in earthy crusts (II, III, and IV), values for the C-band are either similar or lower.
A subtle correlation of the backscattering coefficient with the depth of the water table is
observed, decreasing as the water table becomes shallower. This is consistent with the large
attenuation of the propagating waves into a highly lossy media due to the high-salinity
brine. When the water table is very shallow, large dielectric contrast onto a very rough
upper boundary, as in the case of type II crust, results in a large backscattering coefficient.
The dependence of SAOCOM-1 backscattering coefficients on water table depth was very
similar to the corresponding ALOS-2/PALSAR-2 shown in Figure 11.

3.3. Upper Layer Roughness from the Two-Layer SSA Model

Considering that the C-band has less penetration depth into the soil than the L-band,
a first attempt to assess the SSA model in retrieving surface parameters s1 and l1 on a type I
(ID-1) and two type III (ID-7 and ID-16) crusts was performed. The SSA model was used,
considering a layer thickness d given by the water table. With the aid of pictures taken on
the soil profile at the trenches, overall observations of the water table inclusions on the soil
led to lower layer parameters s2 = 2 × s1 and l2 = l1/2. A number of model simulations
showed that backscattering coefficients have very low sensitivity to s2 and l2 variations.

Contour levels in Figure 12 show the model computations (thick contours) for Sentinel-
1 (blue) at VV and for SAOCOM-1 (black) at HH. The co-polarized measured backscattering
coefficients (dotted contours) are from Table 3. Intersection of measured contours resulted
in the (s1, l1)-pair combination compatible with the SSA model and the spaceborne observa-
tions. With that intersection close to the measured in situ roughness parameters at the red
crosses, this first attempt at assessing the SSA model yielded satisfactory outcomes. Similar
results were found for the intersection of the cross-polarized backscattering coefficients as
well as the combination of Sentinel-1 and ALOS-2/PALSAR-2. Although type I crust is
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better described by an exponential power spectrum, only a Gaussian one led to intersecting
contours as shown in Figure 12a.
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(b) ID-7, (c) ID-16.

3.4. Subsurface Parameter Estimation

With the SSA enabling the modeling of the backscatter radar response at dual-polarization
(HH and HV) and a Bayesian inference scheme at hand, marginal and posterior distributions
of the subsurface parameters Sb and d constrained to the radar observations can be computed
to assess their compatibility with the measured ones at fieldwork. Figure 13 shows the
joint probability generated by sampling out of the posterior as blue contours, whereas the
marginal distributions for Sb and d are in the diagonal, with their corresponding Kernel
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Density Estimation (KDE) indicated in light gray. The quartiles Q1 to Q3, each representing a
fourth of the distributed sampled population, are shown as vertical dotted lines. The red plus
marks indicate the in situ measurements. Sampling locations are ID-1, ID-7, and ID-16, where
the upper panel corresponds to ALOS-2/PALSAR-2 and the lower panel to SAOCOM-1. The
lowest contour drawn is 0.05, such that the integral over the area within is 0.95.
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Figure 13. Posterior distribution sampled using an MCMC algorithm for HH and HV polarization with
the SSA model. Red cross refers to the measurements at the corresponding sampling locations and
black cross to the Q2 quartile. (a) ID-1 (ALOS-2/PALSAR-2), (b) ID-7 (ALOS-2/PALSAR-2), (c) ID-16
(ALOS-2/PALSAR-2), (d) ID-1 (SAOCOM-1), (e) ID-7 (SAOCOM-1), and (f) ID-16 (SAOCOM-1).

The extent of the posterior is overall related to the variance of the likelihood given
by the uncertainties of the measured HH and HV. Thus, the more precise the measured
backscattering coefficient, the less extended the posterior and, therefore, the more precise
the parameter estimation. Two contrasting cases are given by ID-1 and ID-16, both for
SAOCOM-1. While the posterior computed at ID-1 spanned a small area, the one corre-
sponding to ID-16 spanned an area roughly four times bigger, in accordance with the HH
and HV relative errors for these sites, as readily computed from Table 3. The variance of
the priors for Sb and d are given in [2] and by a two-year-long record of water table depths,
respectively, as stated in Section 2.7.

Overall, the measured parameters are close to the median (Q2 quartile, black cross
marker). Additionally, in those posteriors that are multimodal, they correspond to one
of the maximums of probability. The sharp decrease of the KDE for the parameter d is in
accordance with the bounds of the uniform distribution used prior.
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The estimation of the salt concentration of brine is very precise since the modes of the
probability are vertically aligned with almost no spread. Accuracy computed as (Sb_Q2 −
Sb_insitu)/Sb_insitu ranges from 2% to 5%, with that of ID-16 (SAOCOM-1) being the poorer
agreement. When replacing Q2 with the mode, accuracy slightly improves, ranging from
2% to 4%. Similar results have been found for the remaining sampling sites, with accuracies
ranging from 1% to 8% for both Q2 and mode estimators. On the other hand, the estimation
of water table depth has one or two elongated areas corresponding to the larger contour
levels of the posterior distribution, each one compatible to some extent with the measured
backscattering coefficients.

4. Discussion

The multi-temporal analysis of backscatter variations in SAR imagery over the Pozuelos
salt flat reveals a strong relationship with precipitation data recorded at the on-site weather
station (Figures 9 and 10). A plausible explanation for this observation is the alteration of salt
crust properties due to the interaction between their constituent minerals and liquid water
droplets. The physicochemical characteristics of the diverse salt crusts are likely influenced by
the presence of water, leading to changes in their backscattering behavior.

The backscatter dynamics of the different crusts were driven by the precipitation
events, which are very scarce (10 to 50 mm/year in Puna Salteña and 50 to 80 mm/year
in Pozuelos salt flat) but concentrated in the summertime from December to Febru-
ary [32,43,44], leading to high rates of rainfall that affect salt crusts differently. Type I
and V crusts, mostly composed of halite, underwent a dissolution process due to rainfall,
resulting in a smoother surface, which implied a sharp decrease in the backscattering
coefficient. Remarkably, observed rates of decrease are very similar across the different
summertime periods in 2019–2022, ranging from 0.6 dB to 0.9 dB per 10 mm of daily rainfall.
Subsequent drying led to the growth of salt crystals, which, in turn, increased the surface
roughness and consequently raised the backscatter response [25,46].

In addition to the growth of salt crystals, the formation and later development of halite
polygons led to an increase in the centimeter-scale roughness over time. This contribution
to the overall surface roughness, as seen by the SAR, was not accounted for in the crust
profiles with the gridded board, therefore explaining the mismatch found in the intersection
of the SSA-based contour levels and the fieldwork estimate.

Conversely, earthy crusts (types II to IV) exhibited an increase in their microwave
response, reaching a maximum on the first rainy days after a long dry period (Figures 9
and 10). The rates of increase of the type III and IV crusts are about 0.3 dB to 1.2 dB per
10 mm of daily rainfall. A saturation value slightly above −5 dB at the C-band VV is
consistently reached by the type IV crust. Although naturally rougher than halite crust,
these crusts exhibited a greater resistance to rain due to their hardness. However, they also
contained halite crystals in their composition, and some were covered with a halite layer,
which dissolved upon contact with rainfall, resulting in a layer with increased roughness
due to the formation of pores. Over time, these pores became refilled through the halite
crystallization process [47,48]. In addition, large pores remain filled with water, increasing
the dielectric constant of the surface prior to water evaporation or vertical runoff. The
size and extent of the pores are also related to the amount of backscattering power at
cross-polarization.

The effects of rainfall on salt crusts are discussed in [48], where it is indicated that thick
salt crusts with significant surface relief (>10 cm) are primarily formed by rainfall, which is
consistent with the increase in the backscatter coefficient due to a marked increase in surface
roughness observed in crust types II, III, and IV. A process known as efflorescence, by
which mineral salts crystallize on the surface of a material when the water containing them
evaporates, modifies the surface roughness afterward. This occurs naturally when brine
penetrates and then evaporates, leaving the salts deposited on the surface, thus covering
the underlying relief. Therefore, the surface smoothens and decreases its backscatter.
Efflorescence can appear as a white or crystalline layer on the surface (e.g., Figure 6c).
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Regarding the backscatter response at the L-band, type II crust backscattering coeffi-
cients were above type III, indicating that wavelength–size protrusions at the depocenter
largely contributed to the backscatter. The lack of pores in type II prevented this behavior
from being observed at HV polarization.

Remarkably, co-polarized backscattered power at the L-band was larger than that
of the C-band for the type II and IV earthy crusts, indicating some overall large-scale
roughness superimposed to a small-scale Gaussian power spectrum, despite the different
incidence angles (34◦ for ALOS-2/PALSAR-2 and 41◦ for Sentinel-1). Type III did not
display a clear trend, since it varied below and above the corresponding dynamics at
the C-band. This seemed to be indicative of multiscale roughness. On the other hand,
surface roughness on halite crusts seemed to be of single scale, since L-band backscattering
coefficients were systematically lower with respect to that of the C-band (the normalized
roughness k × s at the L-band is lower than at the C-band for the same roughness s, i.e., for
single scale surfaces). The wavenumber k is defined as 2π/λ. Exponential and Gaussian
power spectrums related to type I and type II to IV crusts, respectively, were indicative of
the different physicochemical processes related to both the halite and earthy crust growing.

Crust classification with a dense time series at the C-band was better suited with the
co-polarized backscatter response (Figure 8) than that of the cross-polarized one (Figure 9),
where differentiation between type II and type III crusts may be misleading. A potential
radar characterization of crusts was first introduced by [26] as the monthly rate of increase
of co-polarized backscattering coefficient at the C-band over large no-rainfall periods. For
the type I crust analyzed in this work, the mentioned rate is around 0.2 dB/month, very
different from the rates of 1–2 dB/month found in [26] corresponding to a soft pan crust
with thrust polygons, possibly indicating different local features such as brine concentration,
water availability, and/or solar radiation patterns. An additional overall feature of crust
dynamics might be the rate of variation around the summertime heavy rainfalls observed
in the backscattering coefficient at the C-band, which seemed very uniform across the
seasons for the halite crust. More research is needed in this regard for the earthy crusts.

Enhanced contrast of the backscattering coefficients among the different crust types
is observed by comparing images acquired around heavy rainfall events, which are con-
centrated in austral summertime. Thus, the optimal period for radar characterization of
highland salt flats is in late December and early March, on a yearly basis.

Inference of the subsurface model parameters brine salinity and average layer thick-
ness were conducted on the posterior. The overall extent of the posterior and, therefore,
the precision of the model parameters that are estimated with, depends primarily on the
variance of the likelihood, which is ultimately related to the speckle filtering technique and
the spatial homogeneity of the backscatter. In effect, backscatter heterogeneity hinders the
efficiency of the speckle filter by adding variance other than the expected from the coherent
illumination of the SAR. Thus, the heterogeneity of the backscatter itself is statistically
different from the one that speckle filters were designed to deal with. To circumvent this
shortcoming, sampling sites over suitable homogeneous areas of the crust surfaces were
taken into consideration. The final uncertainties in the backscattering coefficients were
similar to the 0.5 dB precision (stability) of the radar sensors ALOS-2/PALSAR-2 [49] and
SAOCOM-1 [50].

While the salt concentration of subsurface brine was estimated precisely and with
an accuracy better than 8% when the median (Q2) was considered, a multimodal or elon-
gated posterior anticipated water table depth estimation to be more of a struggle. Besides
dielectric loss driven by the salt concentration of the brine, clay material in the soil com-
position also reduces the penetration capabilities of SAR backscatter at the L-band [47].
Therefore, when considering the water table, a weak correlation between the backscattering
coefficients and the water table depths was expected (Figure 11). Polarimetric observables,
such as the co-polarized phase difference used to gain insight into the feasibility of water
table depth estimation [27], required full-polarimetric SAR images, which are largely less
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available than dual polarimetric images, such as those used in this paper for subsurface
parameter retrieval.

In two-layered media, resonances of the radar wave occur as it repeatedly bounce
between the media boundaries, with a strong dependency on the layered geometry under
study [51]. However, simulation studies on low-loss media showed that attenuation played
a key role in fading the power returned for layer distances beyond half wavelength [39].
Yet, the high loss of the salt pan prevented this resonance effect from happening even in
the case of type I crust with the shallowest water table. Furthermore, this was also related
to the lack of sensitivity of the backscattering power in changing the lower layer roughness
found in the simulation study carried out in this paper.

5. Conclusions

Supported by a dedicated field campaign and the processing of 316 SAR images, the
dynamics of a highland salt flat have been characterized as a yearly cycle closely linked
to summertime rainfalls, which alter roughness configuration depending on the growth
process and chemical composition of the crusts.

C-band co-polarized (VV) long-term backscatter response has proven to be effective in
differentiating crusts, although a quantitative classification in this respect requires more
research. On the other hand, cross-polarization (VH) seems a good proxy for pore patterns
when radar imagery close to rainfall events is available.

This paper also demonstrated the potential for subsurface estimation with L-band
dual-polarization images, constrained to crusts compatible with the feasibility range of
the layered model at hand. Compared with available studies on salt flats with spaceborne
radars, this research provided a new perspective on using microwave scattering modeling
on dual polarimetric SAR data over salt flats and allowed for better exploitation of radar
imagery from existing and upcoming satellite radar missions.

Coupling available multi-sensor SAR data with scattering models allows for the
mapping of surface and subsurface configuration of a highland salt pan in a cost-efficient
way. This integration could be beneficial for lithium exploration in these environments.
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