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Abstract: Automatic and accurate detection of clouds and cloud shadows is a critical aspect of optical
remote sensing image preprocessing. This paper provides a time series maximum and minimum mask
method (TSMM) for cloud and cloud shadow detection. Firstly, the Cloud Score+S2_HARMONIZED
(CS+S2) is employed as a preliminary mask for clouds and cloud shadows. Secondly, we calculate
the ratio of the maximum and sub-maximum values of the blue band in the time series, as well as
the ratio of the minimum and sub-minimum values of the near-infrared band in the time series, to
eliminate noise from the time series data. Finally, the maximum value of the clear blue band and
the minimum value of the near-infrared band after noise removal are employed for cloud and cloud
shadow detection, respectively. A national and a global dataset were used to validate the TSMM, and
it was quantitatively compared against five other advanced methods or products. When clouds and
cloud shadows are detected simultaneously, in the S2ccs dataset, the overall accuracy (OA) reaches
0.93 and the F1 score reaches 0.85. Compared with the most advanced CS+S2, there are increases
of 3% and 9%, respectively. In the CloudSEN12 dataset, compared with CS+S2, the producer’s
accuracy (PA) and F1 score show increases of 10% and 4%, respectively. Additionally, when applied
to Landsat-8 images, TSMM outperforms Fmask, demonstrating its strong generalization capability.

Keywords: Sentinel-2; cloud detection; cloud shadow; time series

1. Introduction

The loss of information due to clouds and cloud shadows is a widespread issue, signif-
icantly impacting various subsequent research applications such as land cover and change
detection, atmospheric variable estimation, and ocean parameter inversion [1–6]. As a
result, the detection of clouds and cloud shadows has become the primary challenge for
many passive remote sensing satellite image production applications [7–10]. The interna-
tional satellite cloud climatology project estimates that the global average annual cloud
cover is as high as 66%. For continuous observation of massive data from satellites such as
Landsat and Sentinel-2 series satellites, archived images often contain numerous clouds
and cloud shadows. Detecting thick clouds or deep shadows is relatively straightforward
due to their high or low reflectivity in the visible light band [7]. However, detecting thin
clouds or shallow shadows poses significant challenges, as their signals closely resemble
those of ground objects and are difficult to distinguish [11–13]. While manual drawing of
clouds and cloud shadows yields high accuracy, it is also extremely time consuming. With
Landsat alone capturing over 1 million photos per month, manual annotation becomes
impractical, especially within the context of “Earth Big Data” [14,15].
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In recent years, numerous methods for cloud and cloud shadow detection have been
proposed. Many classical methods have been applied to satellites such as MODIS, Landsat,
and Sentinel-2, yielding various cloud and cloud shadow products [16]. Cloud and cloud
shadow detection methods can be categorized into three groups based on the number of
images utilized: single-temporal, temporal, and learning models [17]. Single-temporal
methods typically establish thresholds based on the physical characteristics of clouds.
For instance, the MODIS cloud mask [18] utilizes multiple cloud detections to assess the
likelihood of clear skies, employing a series of thresholds to conduct various spectral tests
on pixels, resulting in multiple pixel classifications. The United States Geological Survey
(USGS) has employed the automatic cloud coverage assessment ACCA [19] and the mask
function Fmask [20–22] as the cloud and cloud shadow detection methods for Landsat.
ACCA estimates the cloud coverage percentage in each Landsat image by utilizing multiple
spectral filters, with particular emphasis on the thermal infrared band. On the other hand,
Fmask integrates various bands, including cirrus bands, digital elevation model (DEM),
global water mask, snow detection, etc. Fmask demonstrates accurate cloud and cloud
shadow detection capabilities across various complex scenes in Landsat and Sentinel-2
imagery. The cloud displacement index CDI further supplements the cloud detection
theory [21]. In addition to considering spectral characteristics, CDI also incorporates
Sentinel-2’s systematic observation structure to accurately distinguish bright objects from
clouds based on band parallax. The successful application of CDI in cloud detection
in large urban areas is integrated into the Fmask and Force frameworks. Sen2Cor [23]
was developed by the European Space Agency (ESA) for atmospheric correction of the
Sentinel-2 satellite. The resulting scene classification map (SCL), with identifiers such as
cloud, cloud shadow, cirrus, and snow probability, can also be used for cloud and cloud
shadow detection.

The multi-temporal method incorporates the characteristics of the time dimension,
assuming that the ground objects generally change slowly over seasons or periods [24].
Cloud and cloud shadow recognition is achieved by detecting changes in the time series
of images [25]. Compared with the single-phase method, the time series method benefits
from time information and further enhances the capability of cloud and cloud shadow
detection [20]. Multi-temporal cloud detection (MTCD) [10] combines adjacent temporal
pixels to capture the sharp increase in reflectivity of the blue band for cloud detection. This
method yields good results for thick clouds and demonstrates a certain level of effectiveness
for detecting thin clouds. The multi-temporal mask, Tmask [20], extends the principles of
Fmask by incorporating a green band, near-infrared band, and short-wave infrared band.
The sine–cosine time series model of each pixel is constructed using iterative weighted
least squares, significantly enhancing the detection capability for cloud shadows of thin
clouds. Lin [25] proposed a multi-temporal cloud detection method based on invariant
pixels. The invariant pixels are extracted using weighted principal component analysis.
Luis Gómez-Chova [26] proposed a linear and nonlinear least squares regression method
to minimize both prediction and estimation errors. This method is implemented in GEE
and is suitable for a global scale.

With the development of computer performance and theory, machine learning (ML)
and deep learning (DL) have become increasingly prominent. S2cloudless is a ML method
for automatic cloud detection in single-temporal Sentinel-2 images, based on a gradient
enhancement algorithm. Through semantic segmentation using a convolutional neural
network, the probability of cloud coverage is assigned to each pixel by combining their
spectral features [9]. InterSSIM is a multi-temporal version of S2cloudless, which considers
both the temporal and spatial context and selects the most important features using Light-
GBM. Chai [27] proposed a single-phase deep learning method for cloud and cloud shadow
detection based on deep convolutional neural networks (CNNs). This method treats cloud
and cloud shadow detection as a semantic segmentation problem. The multi-level spatial
and spectral features of the successively convolutional and deconvolutional images are
utilized to achieve detailed segmentation, with each pixel classified as cloud, thin cloud,
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cloud shadow, or clear. Using a Generative Adversarial Network (GAN) for image restora-
tion is a common task in computer vision [28]. Its generator (G) and discriminator (D)
are trained to be consistent with each other and have been successfully applied to cloud
detection [29]. Meng [30] combined GAN with an attention mechanism to fully capture the
characteristics of clouds. In view of the complex cloud distribution, Wu [13] proposed an
extensible boundary network to fuse multi-scale cloud masks, and the differential cloud
masks were obtained by the differential boundary network. Cloud Score+ (CS+) [31] is a
quality evaluation processor developed using a weakly supervised joint spatio-temporal
context video deep learning method with approximately 2.2 million training images. Tem-
poral images of the same location are utilized as video training to generate a clear reference
image for image quality assessment. CS+ has been implemented in Sentinel-2 to generate
cloud products CS+S2, enabling effective detection of both clouds and cloud shadows by
adjusting the quality parameters.

Most existing cloud and cloud shadow detection methods suffer from incomplete
detection of thick-cloud-depth shadows and missed detection of thin clouds and shallow
shadows [22,32]. The current research predominantly focus on cloud detection, with lim-
ited attention given to specific cloud shadow detection methods [6] due to the inherent
difficulty of detecting cloud shadows. In general, single-temporal-based methods rely
solely on spectral features and do not consider spatial features such as texture [33]. Thresh-
olds are set based on human experience, making it difficult to handle complex surface
and cloud types [34]. The method based on the time series model considers the temporal
dimension, resulting in significant improvement compared to the single-phase method.
However, it may mistakenly identify rapidly changing ground objects as clouds or cloud
shadows. While the learning-based method has achieved high detection accuracy, raining
the model requires a large amount of high-quality sample data [35]. Balancing the conver-
gence between training data and sample data necessitates computing resources with high
memory [36]. Furthermore, developing a common paradigm or model to address diverse
clouds poses a challenge. Generalizing the model to various sensors and research domains
is also a significant challenge.

In this paper, the TSMM for cloud and cloud shadow detection, considering temporal
characteristics, is proposed. This method utilizes the blue band and near-infrared band to
estimate the temporal features and incorporates the spatial convolution operation to fully
leverage the complementary advantages of temporal, spatial, and spectral information. This
approach further enhances the accuracy of cloud and cloud shadow detection. Experiments
have shown that this method is not only applicable for cloud and cloud shadow detection
in Sentinel-2 imagery across various underlying surface scenes, but also for detecting
clouds and cloud shadows in remote sensing images captured by other sensors. It can
generate more accurate and comprehensive cloud and cloud shadow products for more
passive sensors.

2. Data
2.1. Sentinel-2 MSI

The Sentinel-2 Multi-Spectral Instrument (Sentinel-2 MSI) comprises Sentinel-2A and
Sentinel-2B. The two satellites are in a 180◦ phase difference, with a revisit period of 5 days,
even up to 2–3 days [37,38]. The Sentinel-2 user product level is divided into Level-1B,
Level-1C, and Level-2A. The Level-1B product represents the radiance at the top of the
atmosphere after radiometric correction in sensor geometry, primarily intended for expert
users. The Level-1C product represents the top-of-atmosphere reflectance after radiometric
correction and spatial registration in cartographic geometry. The Level-2A product is
the surface reflectance after atmospheric correction based on the Level-1C product [39].
Since December 2018, ESA has employed Sen2Cor for systematic atmospheric correction
on Sentinel-2 images worldwide to generate Level-2A products [40]. Level-2A contains
21 bands, an increase of 8 product bands compared to Level-1C [23]. Among them,
AOT, WVP, and SCL are generated based on Sen2Cor. SCL contains 11 scene classifi-
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cation maps, where SCL = 3, 7, 8, 9 are the identifiers of cloud shadow, low-probability
cloud, medium-probability cloud, and high-probability cloud, respectively. In this paper,
Sentinel-2 Level-2A images are selected for the experimental data.

CS+S2 is selected for the auxiliary data in this paper. CS+S2 is a mask product
(resolution 10 m) for assisting Sentinel-2 Level-1C cloud and cloud shadow detection. It
provides two products, cs and cs_cdf. The cs band is an atmospheric similarity score
with clear pixels and is more sensitive to haze and cloud edges. The possible cs value
of the cs_cdf band cumulative distribution function is not sensitive to small changes in
spectral values or terrain shadows. We selected the cs_cdf band for the experiment, with a
recommended quality parameter of 0.65 [31].

2.2. S2ccs Dataset

S2ccs is a self-made dataset of cloud and cloud shadow imagery encompassing seven
Chinese research areas (Figure 1). Table 1 shows the case of the S2ccs dataset, providing
additional examples of rare multi-temporal cloud and cloud shadow datasets in the field.
Clouds include thick clouds and thin clouds, and cloud shadows include deep shadows
and light shadows. The land cover types include vegetation, water, city, farmland, wetland,
and gobi beach. The temporal resolution of each region is approximately 2–3 days, and the
image set is uniformly cropped to around 557 × 558 pixels. Two scenes were selected from
each study area, for a total of 14 scenes. The proportion of clouds and cloud shadows in
these scenes ranged from 3% to 88%. After expert visual interpretation, the author manually
assigned labels of 1 (clear), 2 (cloud shadow), and 3 (cloud), respectively, to create one of
the verification datasets used in this paper.

Table 1. The study area included in the S2ccs dataset and the proportion of cloud and cloud shadows.

Code Study Area Center Coordinates Timing Image Date (2022) Label Date and Proportion of
Cloud and Cloud Shadow (2022) Main Type

A Changchun (125.39, 44.34) 23 April–3 June
12 May–22 June

05.13 (15%)
06.02 (26%) Farmland

B Dunhuang (99.64, 40.17) 27 February–7 April
13 June–23 July

03.17 (8%)
07.03 (30%) Gobi beach

C Chengdu (104.17, 30.81) 9 April–19 May
5 July–25 July

04.29 (85%)
07.25 (15%) Buildings

D Wuhan (114.25, 30.59) 2 April–12 May
11 July–21 August

04.22 (26%)
07.31 (32%) Buildings

E Ningbo (21.23, 30.37) 9 July–19 August
31 August–10 October

07.29 (42%)
09.20 (39%) Wetlands

F Hangzhou (119.11, 29.58) 4 March–14 April
15 August–25 September

03.24 (3%)
09.05 (88%)

Water and
vegetation

G Hong Kong (114.24, 22.25) 4 January–14 February
22 February–2 April

01.24 (38%)
03.12 (43%)

Vegetation
and ocean
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Figure 1. Seven study areas of S2ccs dataset.

2.3. CloudSEN12 Dataset

CloudSEN12is a large global dataset (about 1 TB) for cloud semantic understanding,
consisting of 49,400 image blocks [41]. These image patches are evenly distributed over
all continents except Antarctica. Covering 509 × 509 pixels, each scene was shot from
2018 to 2020. It contains 1C- and 2A-level data from Sentinel-2. Each region of interest has
five image blocks on different dates. The cloud and cloud shadow contents correspond
to no clouds (0%), almost clear (0–25%), low clouds (25–45%), medium clouds (45–65%),
and cloudy (>65%). CloudSEN12 contains 10,000 high-quality label images with label
types of 0 (clear), 1 (thick cloud), 2 (thin cloud), and 3 (cloud shadow). In this paper,
1000 scenes are randomly selected as the second verification dataset. Figure 2 shows
images of representative features in seven regions.
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3. Method

TSMM first masks the sequence images based on CS+S2. Then, TSMM composites the
maximum value of the blue band and the minimum value of the near-infrared band in the
time series. We remove the time series noise by counting the proportion of the maximum
and sub-maximum values of the blue band in the time series and the proportion of the
minimum and sub-minimum values of the near-infrared band in the time series. Finally,
the clear blue band and the near-infrared band after noise removal are used to detect
clouds and cloud shadows, respectively. The misclassified pixel of the detection results is
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optimized through convolution operations, and we further extract the complete clouds and
cloud shadows. In the mask process, the cloud mask is given the highest priority, followed
by the cloud shadow mask, with the lowest priority. The specific technical flowchart is
depicted in Figure 3.
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3.1. Preprocessing

First, we prepare the Sentinel-2 Level-2A image It(m × n) detected at time t. The
length of each time series before and after It is T days (5 ≤ T ≤ 60, recommended T = 20),
and they are compiled into a time series image dataset D. D contains a total of d images.
We use the CS+S2 cs_cdf band as the mask to obtain the initial cloud and cloud shadow
mask file M0 for each phase. Using Formula (1), we apply M0 to the time series image D to
obtain the preliminary mask time series image Dpre:

Dt
pre = Dt × Mt

0, t = 1, 2, . . . , t, . . . , d − 1, d. (1)

where Dt
pre represents the image at time t of Dpre, Dt represents the image at time t of D,

and Mt
0 represents the image at time t of M0.

3.2. Maximum and Minimum Value Composite

Considering that clouds are most sensitive in the blue band and cloud shadows are
most sensitive in the near-infrared band, we chose the blue band for cloud detection [10]
and the near-infrared band for cloud shadow detection [7]. We composited the sorted
sequence images of the blue band and the near-infrared band to select the maximum and
sub-maximum values of the blue band, as well as the minimum and sub-minimum values
of the near-infrared band.

To ensure the maximum removal of clouds and cloud shadows in the composite
image, we conducted noise removal. The purpose of the maximum and minimum value
composite was to identify the extreme value range of each pixel in the time series, with
values exceeding this range considered as the cloud or cloud shadow pixels. However, due
to the imperfections of cloud and cloud shadow products, a significant amount of cloud
noise may still have been present in the maximum composite image (Figure 4a,b). But the
sub-maximum composite image was almost clear (Figure 4c). In this paper, we compare
the ratio between the maximum and sub-maximum composite image of the blue band pixel
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by pixel. If the ratio exceeds the specified multiple ratio σ (recommended σ = 1.2), the
maximum value is likely to be a cloud pixel.

Similarly, the existing cloud shadow detection methods cannot completely detect
cloud shadows; the shallow cloud shadow boundary is especially difficult to determine. It
is rare for the same cloud shadow to appear in the same location at different times. The
minimum composite image usually contains cloud shadow noise (Figure 4e,f), and the
sub-minimum composite image is almost clear (Figure 4d). This paper compares the ratio
between the sub-minimum and the minimum composite image in the near-infrared band. If
the ratio is greater than σ (recommended σ = 1.2), the minimum value is likely to be a cloud
shadow pixel. After comparison, we replace the maximum value identified as the cloud
pixel with the sub-maximum value, and replace the minimum value identified as the cloud
shadow pixel with the sub-minimum value. The maximum (including sub-maximum) and
minimum (including sub-minimum) composite images can better represent the extreme
value of each pixel in the time series. Therefore, we define the processed images as the
maximum image ABlue_max in the blue band and the minimum image ANIR_min in the
near-infrared band.
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3.3. Cloud and Cloud Shadow Extraction

To detect the cloud and cloud shadow of It, we compare the blue band It
Blue and

the near-infrared band It
NIR to ABlue_max and ANIR_min of It, respectively. Through the

discrimination of Formulas (2) and (3), we obtain the cloud mask Mt
cloud and cloud shadow

mask Mt
shadow of It:

Mt
cloud(i, j) =

{
1, It

Blue(i, j) > ABlue_max(i, j),
0, It

Blue(i, j) ≤ ABlue_max(i, j),
i = 0, 1, . . . , m; j = 0, 1, . . . , n. (2)

Mt
shadow(i, j) =

{
1, It

NIR(i, j) < ANIR_min(i, j),
0, It

NIR(i, j)≥ ANIR_min(i, j),
i = 0, 1, . . . , m; j = 0, 1, . . . , n. (3)

where Mt
cloud(i, j) represents the cloud file, Mt

shadow(i, j) represents the cloud shadow file,
It
Blue(i, j) represents the pixel value of row i and column j of the blue band of the image,

It
NIR(i, j) represents the pixel value of row i and column j of the near-infrared band of the

image, 1 represents cloud or cloud shadow pixels, and 0 represents clear pixels.



Remote Sens. 2024, 16, 1392 8 of 21

Although the above steps accurately identify the cloud and cloud shadow pixels
and their boundaries, the results may exhibit misclassified pixels. The main reason is
that some clear, bright pixels are identified as cloud pixels, while some clear, dark pixels
are identified as cloud shadow pixels. For example, during periods of high temperature
and cloudy weather, the reflectivity of certain ground objects may exceed the maximum
value due to prolonged irradiation. Similarly, in the aftermath of rain, the water content
of some ground objects increases, leading to lower reflectivity than the minimum value.
Considering the spatial characteristics, areas surrounding a cloud pixel center are more
likely to be cloud pixels, while areas surrounding a clear pixel center are more likely to
be clear pixels. To remove the misclassified pixels, this paper introduces the convolution
kernel K to convolution the cloud mask and cloud shadow mask, respectively. Through
the discrimination of Formulas (4) and (5), we calculate the mean value of the center pixel
neighborhood. When the mean value is greater than or equal to µ (recommended µ = 0.3),
the center pixel is cloud or cloud shadow, and the discriminant value is 1. Otherwise, it is a
clear pixel, and the discriminant value is 0. The convolution cloud mask Mt

cloud_conv and
the convolution cloud shadow mask Mt

shadow_conv are obtained as follows:

Mt
cloud_conv(i, j) =

1, mean(M t
cloud ∗ K

)
(i, j) ≥ µ,

0, mean(M t
cloud ∗ K

)
(i, j) < µ,

i = 0, 1, . . . , m; j = 0, 1, . . . , n. (4)

Mt
shadow_conv(i, j) =

1, mean(M t
shadow ∗ K

)
(i, j) ≥ µ,

0, mean(M t
shadow ∗ K

)
(i, j) < µ,

i = 0, 1, . . . , m; j = 0, 1, . . . , n. (5)

4. Experiment
4.1. Sensitivity Experiments
4.1.1. Time Series Length and Max–Min Magnification

The number of time series images varies according to their time series characteristics,
and the ratio of maximum to minimum values within sequences of different lengths also
exhibits varying characteristics. An appropriate time series length means reasonable
temporal variation characteristics. To achieve optimal temporal characteristics, TSMM
proposes the time series length of T days and the maximum magnification σ as the first
set of parameters. As shown in Figure 5, the X axis represents T, the Y axis represents σ,
and the Z axis represents the accuracy index. The three parameters form a combination
of (T, σ, accuracy index). The time series length range of T is 5~60, and the interval is 5.
The value range of σ is 1~2, and the interval is 0.1. The trend of accuracy evaluation of
cloud detection is almost identical to that of cloud and cloud shadow detection, as the
proportion of cloud is greater than that of cloud shadow. From OA and F1, we observe that
when T ranges from 5 to 20, the accuracy of TSMM shows rapid improvement. In the range
of 20 to 30, TSMM performs well. However, when T exceeds 30, the accuracy of TSMM
decreases slowly. When σ increases from 1 to 1.2, the accuracy of TSMM increases rapidly.
In the range of 1.2 to 1.4, the accuracy of TSMM remains stable. However, when σ > 1.4, the
accuracy of TSMM decreases slowly. The optimal cloud and cloud shadow F1 with T = 20
and σ = 1.2 are selected as the recommended parameters.
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the accuracy evaluation of clouds, the second row is the accuracy evaluation of cloud shadows, the
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accuracy evaluation. The accuracy evaluations were OA, UA, PA, and F1, respectively. The red point
coordinates are expressed as the parameters with the highest accuracy.

4.1.2. Convolution Kernel Size and Neighborhood Mean

To reduce misclassified pixels, TSMM introduces a convolution kernel to calculate the
neighborhood mean of the mask. We take the convolution kernel size k and the average
threshold µ as the second set of parameters. As shown in Figure 6 the X-axis represents k,
the Y-axis represents µ, and the Z-axis represents the accuracy index. The three parameters
form a combination of (k, µ, accuracy index). The value range of k is from 1 to 13, with
an interval of 2. The value range of µ is from 0.1 to 1, with an interval of 0.1. When k
ranges from 1 to 3, only a small amount of spatial information is utilized, resulting in a
low accuracy of TSMM. However, when k ranges from 5 to 13, its computational field of
view gradually increases, leading to a stable and excellent performance of TSMM. When µ
ranges from 0.1 to 0.4, the spatial information is fully utilized, allowing TSMM to achieve
stable, high-precision performance. However, when µ is greater than 0.4, the accuracy
of TSMM gradually decreases. The optimal cloud and cloud shadow F1 with k = 11 and
µ = 0.3 are selected as the recommended parameters.
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4.2. Qualitative Assessment

To better verify the effectiveness and advancement of the proposed method, we
selected TSMM to compare with five other advanced methods or products.

MSK_CLDPRO is the official global cloud product band of Sentinel-2A with a resolu-
tion of 20 m. CDI is an excellent detection algorithm integrated in the Fmask and Force
framework, and CDI is its cloud product. S2cloudless is an excellent machine learning
algorithm, and the probability band is its cloud product. CS+ is one of the most advanced
algorithms for Sentinel-2A, and CS+S2 is its cloud and cloud shadow product. Sen2cor
is the official quality processor, and SCL is its product. It is divided into high-probability
clouds (SCL = 9), medium-probability clouds (SCL = 8), low-probability clouds (SCL = 7)
and cloud shadows (SCL = 3). Note that only Sen2cor and TSMM provide separate cloud
and cloud shadow detection; CS+ detects cloud and cloud shadow together, and other
methods only provide cloud detection. In the S2ccs dataset, the manual labels are 1 (clear),
2 (cloud shadow), and 3 (cloud). Labels are used as the basis for the classification of truth
values and accuracy evaluation.
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Figure 7 shows the results of the S2ccs dataset, while Figure 8 shows the results of seven
representative regions from the CloudSEN12 dataset. MSK_CLDPRO has more missed
detections, as it focuses on detecting thick clouds and tends to ignore thin clouds. CDI has
more false detection, as it detects the cloud and expands outward. It often misidentifies
cloud shadows as clouds, and is not effective in detecting thin clouds. When appropriate
cloud probability parameters are selected, S2cloudless demonstrates powerful cloud de-
tection ability. However, this method often misidentifies a large number of highlighted
scenes as clouds, resulting in significant noise. CS+ demonstrates powerful performance,
with the results closely matching the labels. However, CS+ lacks the ability to distinguish
between clouds and cloud shadows separately, resulting in missed detections of some thin
clouds and shallow shadows. Although Sen2cor provides separate cloud and cloud shadow
detection, both are mediocre, and Sen2cor often misses thin clouds and cloud shadows.
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In the S2ccs dataset (Figure 7, specifically shown in Appendix A, Figure A1), TSMM
performs very stably in complex scenarios. For example, when there are thin clouds over the
city (D1), other methods are almost ineffective, while TSMM detects most of the thin clouds.
Similarly, at the junction of cities, wetlands, and farmland (E1, E2), the edge details of TSMM
detection results are more accurate. On the CloudSEN12 dataset (Figure 8, Specifically
shown in Figure A2), TSMM performs better in mountainous and multi-shadow scenes.
For example, when there are thin clouds (H2) over the mountain area, other methods often
miss it, while TSMM provides more accurate detection results. Similarly, in the case of
large shadows on farmland (M1), other methods are almost ineffective, whereas TSMM
can capture shadows effectively. Based on the performances of the two datasets, TSMM
can accurately distinguish ground objects and effectively separate thick clouds from thin
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clouds across different latitudes, seasons, ground feature elements, and types of clouds
and cloud shadows. Furthermore, the detection results of clouds and cloud shadows are
more consistent with the real distribution. In simple terrain scenes, such as farmland
(A, H) and vegetation (G, L), the reflectance changes slowly during the growth process.
TSMM can easily capture the maximum and minimum values. The boundaries between
clouds and cloud shadows detected by the method are very clear, and thin clouds and
shadows, which are often missed by other methods, can even be detected accurately in
scenarios with high water content, such as wetlands (E, K), lakes (F), and islands (G). The
spectral response of dark pixels of water bodies is low, which greatly affects the detection
of cloud shadows. Many methods produce discontinuous detection results, while TSMM
can capture short-term temporal variation characteristics and accurately detect clouds and
cloud shadows. In bright scenes with low water content, such as gobi desert (B), bare land
(I), and cities (C, D, J, N), the spectral characteristics are like clouds, making it difficult to
distinguish between clouds and bright features. This difficulty has also become a limitation
of many cloud detection methods. In terms of temporal variation, the reflectivity of bright
objects is stable and lower than that of most thin clouds. Based on this feature, TSMM can
accurately distinguish bright objects and clouds. Additionally, cloud shadows are projected
onto bright surfaces, causing a significant decrease in reflectivity. Therefore, TSMM can
also accurately detect cloud shadows in highlighted scenes.

4.3. Quantitative Evaluation

To better illustrate the advancement of our method, we selected four indicators for
quantitative evaluation: overall accuracy (OA), user accuracy (UA), producer accuracy (PA),
and F1 score (F1). OA represents the proportion of correctly classified samples in the total
sample, which is used to evaluate the global accuracy of the method. PA is the proportion
of the number of correctly classified samples predicted by the method as the number of
correctly classified samples, which is used to evaluate the accuracy of the method. UA is the
proportion of the number of correctly classified samples in the actual number of correctly
classified samples, which is used to evaluate the recall rate of the method. PA and UA are
often contradictory, and F1 is the weighted harmonic average accuracy of the two, which
is the comprehensive evaluation index of the method. F1 can better illustrate the balance
of the method, and the higher the value, the more effective the method. The classification
types are divided into three categories: cloud (thick cloud and thin cloud), cloud shadow
(deep shadow and shallow shadow), and clear. Clarity represents clear pixels (not cloud or
cloud shadow pixels), and the purpose of the clarity type is to prevent overfitting of clouds
and cloud shadows.

Table 2 displays the quantitative comparison results of the S2ccs dataset. Among the
16 groups of experiments, 13 were optimal, with the remaining indicators also ranking
at the forefront. Table 3 displays the quantitative comparison results of the CloudSEN12
dataset. Among the 16 sets of indicators, 12 were the best, with the remaining indicators
also ranking at the forefront. MSK_CLDPRB rarely missed, resulting in high cloud UA
and clear PA. For both CDI and S2cloudless, the parameters were default values. In many
complex surface environment scenarios, methods are prone to misclassification, and their
cloud detection index results are not top-notch. CS+ has strong and stable performance.
It performs well in CloudSEN12 and has obtained six optimal indicators. However, this
method often misses points, resulting in a low UA. TSMM takes into account the balance of
clouds, cloud shadows, and clarity, and achieves a leading position. When clouds and cloud
shadows are detected together, in the S2ccs dataset, OA reaches 0.93 and F1 reaches 0.85.
Compared with the most advanced CS+, they were increased by 3% and 9%, respectively.
In CloudSEN12, compared with CS+, PA and F1 increased by 10% and 4%, respectively. For
cloud shadow detection, determining the boundary of cloud shadow can be challenging,
especially for dark and confused pixels. Moreover, the confidence level of cloud shadow is
the lowest. Despite these challenges, the performance indicators for cloud shadows may be
lower, but they are still at the leading level. On the S2ccs dataset, the cloud shadow OA
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reaches 0.96, and the cloud shadow F1 reaches 0.62. Compared with Sen2cor, they were
increased by 4% and 20%, respectively. In the CloudSEN12 dataset, TSMM is more stable
and efficient. Compared with Sen2cor, Cloud Shadow F1 increased by 24%.

Table 2. The accuracy evaluation table of classification Cloud, Cloud shadow, Clouds and cloud
shadow , Clear by different methods (S2ccs dataset).

Method Type OA UA PA F1

MSK_CLDPRB
Cloud 0.84 0.95 0.34 0.47

Clear 0.75 0.7 1 0.8

CDI
Cloud 0.83 0.59 0.78 0.61

Clear 0.81 0.82 0.89 0.83

S2cloudless
Cloud 0.87 0.7 0.77 0.7

Clear 0.81 0.8 0.84 0.79

CS+
Cloud and cloud shadow 0.9 0.94 0.68 0.76

Clear 0.9 0.86 0.95 0.89

Sen2Cor

Cloud 0.82 0.9 0.36 0.47

Cloud shadow 0.92 0.54 0.47 0.42

Cloud and cloud shadow 0.76 0.7 0.44 0.52

Clear 0.76 0.73 0.92 0.79

TSMM

Cloud 0.95 0.88 0.89 0.88

Cloud shadow 0.96 0.65 0.63 0.62

Cloud and cloud shadow 0.93 0.86 0.86 0.85

Clear 0.93 0.91 0.9 0.9

Table 3. The accuracy evaluation table of classification Cloud, Cloud shadow, Clouds and cloud
shadow , Clear by different methods (CloudSEN12 dataset).

Method Type OA UA PA F1

MSK_CLDPRB
Cloud 0.76 0.69 0.3 0.36

Clear 0.67 0.56 0.9 0.64

CDI
Cloud 0.79 0.6 0.56 0.52

Clear 0.78 0.64 0.81 0.68

S2cloudless
Cloud 0.85 0.71 0.57 0.58

Clear 0.8 0.62 0.8 0.65

CS+
Cloud and cloud shadow 0.87 0.78 0.57 0.62

Clear 0.87 0.7 0.87 0.75

Sen2Cor

Cloud 0.76 0.69 0.36 0.41

Cloud shadow 0.91 0.32 0.08 0.11

Cloud and cloud shadow 0.69 0.71 0.33 0.4

Clear 0.69 0.55 0.82 0.61

TSMM

Cloud 0.86 0.68 0.66 0.63

Cloud shadow 0.92 0.49 0.33 0.35

Cloud and cloud shadow 0.87 0.71 0.67 0.66

Clear 0.87 0.73 0.72 0.69
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5. Discussion
5.1. The Application Potential of Long Time Series and Large Area

TSMM generates the maximum and minimum values of the image to be detected
using time series data from the blue band and near-infrared band, as well as cloud and
cloud shadow products. Since the maximum and minimum values capture the temporal
characteristics of these time series images, they can be effectively utilized for the fast
and precise detection of clouds and cloud shadows across time series images. Limited
by the memory of the GEE platform, this paper focuses on studying single-phase image
blocks. However, TSMM has the potential to process large-area images with long time
series. We can use local or server computing to increase the number and area of one-time
processed images.

5.2. The Generalization of TSMM

Other optical satellites, such as the Landsat series, also provide data including blue
bands, near-infrared bands, and cloud and cloud shadow products. Based on the idea of
TSMM, we conducted experiments on Landsat-8 and used the QA band produced by Fmask
as an initial cloud and cloud shadow product. The results show that TSMM can accurately
detect clouds and cloud shadows in Landsat-8 images. From the visual effect (Figure 9),
the ability of TSMM to detect thick clouds and cloud shadows is comparable to Fmask.
However, for some small clouds and thin clouds, as well as their shadows, Fmask may
choose to ignore or exaggerate them, while TSMM will detect clouds and cloud shadows
more accurately. Moreover, the boundaries depicted by TSMM are more consistent with the
distribution of clouds and cloud shadows, indicating that TSMM is reliable and exhibits
excellent generalization.
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5.3. The Limitation of TSMM

The basic requirement of TSMM is to have a cloud and cloud shadow product as
prior information. TSMM will incorrectly detect cloud-like pixels, such as haze, smoke,
and dense aerosols, because their spectral characteristics are almost similar. Similarly, the
spectral characteristics of topographic shadows and cloud shadows are very similar, which
makes TSMM prone to misclassification in areas with large topographic relief. The accuracy
of TSMM decreases in high-brightness scenes, especially when covered with thin clouds.
For example, the reflectivity of cities, deserts, ice, and snow is usually close to that of
clouds, which makes it difficult to distinguish them from clouds. Similarly, some cloud
shadows are projected onto these highlighted scenes, and their reflectivity is still high,
making it difficult for the method to capture cloud shadows. Because TSMM assumes that
ground objects change slowly or periodically, some spectral values undergo significant
changes over time and with the solar elevation angle, leading to changes in spectral values
across all regions. For example, the instantaneous spectral values and texture features of
the sea surface change with the time of the sea breeze, which results in high reflectivity
and complex texture features of the wrinkled sea water. They are easily seen as clouds or
cloud shadows. Therefore, this method makes it difficult to work on the rapidly changing
sea surface.

6. Conclusions

This paper provides a novel method for the fast and precise detection of clouds and
cloud shadows in Sentinel-2 time series images, leveraging the advantages of time, space,
and spectrum. Firstly, TSMM is based on a time series images of the existing cloud and
cloud shadow product CS+S2 masks. Secondly, the maximum value of the blue band
and the minimum value of the near-infrared band in the TSMM composite time series are
considered. Then, TSMM counts the ratio of the maximum and sub-maximum values of the
blue band in the time series, as well as the ratio of the minimum and sub-minimum values
of the near-infrared band in the time series, to remove the time series noise. Finally, the clear
blue band maximum and the near-infrared band minimum after noise removal are used
to detect clouds and cloud shadows, respectively. The misclassified pixel in the detection
results is optimized via convolution calculation of the neighborhood mean, and we then
obtain fine and complete clouds and cloud shadows. In this study, the verification data
consisted of manually made dual-temporal Sentinel-2 Level-2A labeled images of 14 scenes
in seven regions of the country, as well as 1000 randomly selected label images from the
global dataset CloudSEN12. Compared with the other five methods and products, TSMM
excels in detecting clouds and cloud shadows, especially in the case of cloud shadows. The
TSMM idea is simple, yet effective, with the potential for large-scale application with long
time series. Moreover, TSMM demonstrates strong generalization and can be applied to
Landsat-8 for the detection of clouds and cloud shadows across sensors. However, for
some highlighted scenes and rapidly changing areas, TSMM also needs to consider other
information to improve the detection accuracy, which will be the focus of the next work.
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Figure A1. From top to bottom, there are seven research areas in the S2ccs dataset. Fourteen images
and their cloud and cloud shadow detection classification maps, which are divided into cloud (red),
cloud shadow (yellow), cloud and cloud shadow (orange), and clear (light blue), are presented. A–G
represents the images of the seven regions in Figure 1, A1 represents the shooting date, A2 represents
the shooting date, and other codes also represent the time relationship.
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