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Abstract: Accurate identification and segmentation of individual tree points are crucial for assessing
forest spatial distribution, understanding tree growth and structure, and managing forest resources.
Traditional methods based on Canopy Height Models (CHM) are simple yet prone to over- and/or
under-segmentation. To deal with this problem, this paper introduces a novel approach that com-
bines marker-controlled watershed segmentation with a spectral clustering algorithm. Initially, we
determined the local maxima within a series of variable windows according to the lower bound
of the prediction interval of the regression equation between tree crown radius and tree height to
preliminarily segment individual trees. Subsequently, using this geometric shape analysis method,
the under-segmented trees were identified. For these trees, vertical tree crown profile analysis was
performed in multiple directions to detect potential treetops which were then considered as inputs for
spectral clustering optimization. Our experiments across six plots showed that our method markedly
surpasses traditional approaches, achieving an average Recall of 0.854, a Precision of 0.937, and an
F1-score of 0.892.

Keywords: marker-controlled watershed; individual tree segmentation; spectral clustering; tree
crown profile delineation; LiDAR point clouds

1. Introduction

Forests represent one of Earth’s most invaluable natural assets, serving a pivotal role
in maintaining ecological equilibrium, regulating climate, safeguarding land and water
resources, and offering secure habitats for rare and endangered species, among other vital
functions [1–4]. However, with the expansion of human activity and the influence of
climate change, forests are under increasingly serious threats. In light of these challenges,
ensuring enhanced protection and efficient management of forest resources has become
of paramount importance [5,6]. The traditional forest resources inventory method highly
depends on site surveying [7,8]. This method is time-consuming and labor-intensive,
making it challenging to be applied to a large-scale forest inventory. However, the Light
Detecting and Ranging (LiDAR) technology can acquire tens of millions of tree points
in a few seconds, thereby making it an ideal technology for accurate forest resource
surveys [9,10]. LiDAR can acquire large-scale three-dimensional terrain and vegetation
structure data [11,12], and this process is not susceptible to the influence of climate or
topographical limitations. Therefore, the application of LiDAR cannot only improve the
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efficiency of data collection but also substantially improve the data precision while minimiz-
ing missing data. Individual trees are the elementary units of forest resources. Attributes
of individual trees, such as tree species, location, height, diameter of breast height (DBH),
crown width, and other relevant metrics, serve as a solid basis for quantifying forest
spatial distribution, assessing forest biodiversity, and estimating forest biomass [13–17].
Therefore, LiDAR-based forest inventory at the individual tree level relies highly on the
accurate segmentation of individual trees from large-scale forest point clouds, which con-
stitutes a prominent area of interest in the remote sensing, photogrammetry, and computer
vision communities.

The segmentation of individual tree points from LiDAR point clouds can be roughly
categorized into three methodologies: CHM (Canopy Height Model)-based method, point-
based method, and deep learning-based method.

1.1. CHM-Based Method

The CHM-based method initially involves converting the 3D point cloud into a 2D
CHM image. It then identifies the treetops by searching from local maxima in the image and
proceeds to segment the crown area with the CHM using image segmentation techniques.
The most frequently used individual tree segmentation methods using the CHM images
are the watershed method [18] and the region growing method [19]. The most critical step
in both of these methods is the search for local maxima from the CHM images, which relies
heavily on the size of the search window. For example, Hyyppa et al. [20] utilized the local
maxima within a fixed-size 3 × 3 search window as seed points for a subsequent region
growing method to segment individual trees. Yang et al. [17] used the local maxima within
a fixed-size 5 × 5 search window as the marker points to conduct the watershed individual
tree segmentation algorithm. To accurately identify the local maxima within the CHM
images, Gaussian smoothing has been applied to the CHM images prior to performing
watershed segmentation.

Due to the various sizes and shapes of tree crowns, the use of a fixed-size search
window can potentially result in over- and/or under-segmentation. To deal with this
problem, Popescu and Wynne [21] detected the local maxima from the CHM image using
a strategy of a sequence of variable window sizes, which are derived based on the linear
regression between the size of tree crown radius and tree height. Similarly, Chen et al. [22]
established a nonlinear regression equation between the tree crown and height to determine
the sequence of variable window sizes according to a lower bound of the prediction interval
of the regression model. Subsequently, they employed a marker-controlled watershed
algorithm to segment individual trees. In a similar approach, Zhen et al. [23] have proposed
the searching of local maxima within the variable windows as the seed points of the region
growing algorithm. Recently, Hui et al. [24] estimated varying crown widths of trees by
analyzing gradient magnitudes to identify diverse treetops corresponding to different
crown sizes. They used the treetops-guided watershed segmentation method to segment
tree crowns.

In summary, the CHM-based method proves to be a simple and efficient approach
for segmenting dominant tree crowns within complex forest environments. However, it
is noted that the generation of the CHM images through rasterizing 3D point clouds can
inevitably result in a substantial loss of information. This loss makes it challenging to detect
subdominant tree crowns within the rasterized 2D CHM images. In general, the CHM-
based method is well-suited for segmenting forests with a simple canopy structure and
clear crown boundaries, such as coniferous forests. However, when applying this method
to broad-leafed forests characterized by intricate canopy structure, high vegetation den-
sity, and significant occlusion of adjacent tree crowns, over- and/or under-segmentation
may occur.
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1.2. Point-Based Method

The point-based method aims to explore the potential geometric features of individual
trees from LiDAR point clouds of trees. The representative algorithms, including various
clustering algorithms [25–28] and Graph-cut optimization methods [29,30], have been
extensively utilized to recognize each individual tree within large-scale tree point clouds.
For instance, Gupta et al. [31] compared the effectiveness of the K-means in selecting
seed points randomly versus using local maxima strategies within normalized Digital
Surface Models (nDSM). Their performance evaluation results have shown that individual
tree segmentation supported by the local maxima K-means outperforms random seed
point selection. The K-means algorithm, a centroid-based clustering algorithm, calculates
the distance from each individual tree point to a centroid for appropriate tree instance
assignment. This method is simple to implement and works effectively for segmenting
trees with simple, non-overlapping crown structures, such as those present on the sides
of streets. However, it does not perform well with trees having complex structures and
non-convex crown contours.

In contrast, the Meanshift algorithm is better suited for irregular tree shapes. For exam-
ple, Dai et al. [32] initially used the Meanshift algorithm for individual tree segmentation.
In particular, they estimated the kernel bandwidth from the spatial distribution of indi-
vidual tree point clouds and then refined it using geometric and spectral information of
tree points. This approach improved segmentation, particularly for under-segmented
tree clusters, but did not work well with non-uniform tree crown sizes. To address this
issue, Yan et al. [33] developed an adaptive Meanshift individual tree points segmentation
approach that estimated the kernel bandwidth automatically by analyzing multi-directional
canopy vertical structures and shapes beginning from the global maximum. Furthermore,
Lei et al. [34] improved this by employing an adaptive kernel bandwidth Meanshift al-
gorithm. In particular, they determined the kernel bandwidths for both horizontal and
vertical directions based on the correlations between crown width and tree height, as well
as between crown height and tree height.

Unlike the K-means and Meanshift methods, the spectral clustering algorithm is not
so much constrained by the shapes of tree clusters and the spatial distribution of point
clouds. Motivated by this, Heinzel et al. [28] initially identified tree trunks depending
on morphology and then applied the spectral clustering algorithm to individual tree
segmentation, taking the extracted tree trunks as a prior. However, the high computational
complexity of the spectral clustering algorithm poses challenges for its use in large-scale
forest point clouds. To address this issue, Pang et al. [35] presented a novel Nyström spectral
clustering algorithm tailed for voxelized tree points, thereby significantly enhancing the
computational efficiency.

Graph-cut optimization offers a robust solution to detect and distinguish individual
trees from canopy point clouds. Williams et al. [29] introduced a multiclass graph-cut
technique to delineate tree crowns from airborne LiDAR point clouds. This method utilized
local 3D geometric and density information, combined with knowledge of crown allome-
tries, for segmenting tree crowns. It effectively identified trees in the upper and middle
layers of the canopy but struggled to recognize smaller trees. Yang et al. [30] presented a
hierarchical minimum cut method to discriminate individual trees from terrestrial laser
point clouds of five plots in a boreal coniferous forest. Their first step was to identify trunk
and non-trunk seed points, using them to construct an undirected, weighted graph. Tree
crown segmentation was then achieved through a global optimization based on this graph.

1.3. Deep Learning-Based Method

This method utilizes deep learning feature encoding to infer individual trees from for-
est images or tree point clouds. Recently, it has garnered increased attention for individual
tree segmentation, demonstrating precise tree recognition in complex scenarios [36–38]. In
fact, the region-based convolutional neural network (R-CNN) has been considered a pio-
neering solution for object detection which provides crucial technical support for extracting
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individual trees from forest images and LiDAR point clouds. For instance, Wang et al. [39]
combined Faster R-CNN with a traditional region growing algorithm to segment indi-
vidual rubber trees. Firstly, they have rasterized front and side tree trunk point clouds
within a certain size of the voxels into two-dimensional depth images. Then, the Faster
R-CNN was utilized to identify the locations of each individual rubber tree, followed by
fined-grained individual tree segmentation using the region growing algorithm. Similarly,
You et al. [19] employed Faster R-CNN to detect each individual tree in mangrove forests
using unmanned aerial vehicle (UAV) point-derived images, including vertical density,
maximum height, and average intensity to train their model. However, the usefulness of
their method was limited to tree detection rather than detailed instance segmentation [40].
To accurately capture crown contours, Dersch et al. [41] introduced a new instance tree
segmentation model called DETR with the Transformer architecture using CHM images,
point density images, and average intensity images for training. However, these models
often overlook the 3D vertical structure information of the point clouds. To deal with
this problem, Luo et al. [42] primarily sliced the point cloud vertically, creating images
for each slice with density, height, and local height gradient. After that, they presented
a multi-channel representation to encode the image information of each slice. By fusing
multi-channel features, they proposed a multi-branch network to achieve individual tree
point segmentation in UAV LiDAR point clouds. In a different approach, Chen et al. [43]
employed PointNet to directly encode point cloud features. In particular, they used the
voxels to organize the raw point clouds based on tree crown width. After training PointNet
to identify tree crowns within each voxel, they refined crown boundaries by analyzing
height gradient.

Although the deep learning-based individual tree segmentation surpasses CHM-
based and point-based methods in precision and accuracy [41,43,44], most works require
converting 3D point clouds into 2D images. This conversion leads to a significant loss
of point cloud information and weakens the quality of spatial feature representation.
Additionally, deep learning models typically require extensive labeled datasets for training,
while acquiring large-scale and high-quality single tree labels is time-consuming, labor-
intensive, and costly. Another challenge is the difficulty in adapting these models to forests
with diverse species, shapes, and sizes. For example, Windrim et al. [45] demonstrated
that in the high point density Carabost dataset, the CHM-based watershed segmentation
algorithm outperformed the R-CNN method. Similarly, You et al. [19] found no significant
performance differences between Faster R-CNN segmentation and CHM-based watershed
segmentation or region growing algorithms in high-density forest stands. CHM-based
methods need to rasterize point clouds to CHM images, which leads to a significant loss of
3D structural information. Furthermore, inappropriate settings for CHM resolution and the
search window for local maxima can lead to under- and over-segmentation. Although the
point-based methods can directly process point clouds, they usually require high time and
space complexity, making them less suitable for large-scale forest scenarios.

1.4. Studies Objectives and Expected Results

In this paper, our goal is to accurately differentiate individual trees within broad-
leafed and coniferous forest scenes using airborne LiDAR point clouds while addressing
the challenge of over- and/or under-segmentation. To accomplish this, we propose a hybrid
method that integrates a Canopy Height Model (CHM)-based marker-controlled watershed
method with a point-based spectral clustering optimization method. Our approach is
designed to tackle the intricate task of segmenting individual trees from airborne laser
point clouds, capitalizing on the 3D forest structure information inherent in point clouds
and the efficiency of CHM-based methods. The marker-controlled watershed method
obtains initial individual tree clusters, and subsequently, spectral clustering is employed
to refine these clusters. This refinement process specifically targets under-segmented
clusters, thereby enhancing the accuracy of individual tree segmentation in both coniferous
and broad-leafed scenes. The proposed hybrid method synergizes the strengths of 3D
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forest structure information and the effectiveness of CHM-based techniques, contributing
to an improved and robust individual tree segmentation approach for airborne LiDAR
point clouds.

2. Methodology
2.1. Datasets

In this study, we have selected two publicly available datasets, namely, NEWFOR and
OpenTopography, for experimentation. NEWFOR [46] is a project funded by the Alpine
Space Program, which primarily aimed at obtaining forest resource information through
LiDAR and UAV remote sensing. Subsequently, this information was utilized to optimize
forest resource management using Geographic Information System (GIS) techniques. This
dataset encompasses 14 sample plots from four European countries within the Alpine
region, covering diverse forest types and structures. All sample plots provide airborne
LiDAR point clouds collected by different sensors, Digital Terrain Models (DTMs) with
spatial resolutions of either 0.5 m or 1.0 m, and ground reference data containing individual
tree position and height.

OpenTopography [47] is another dataset sponsored by the National Science Founda-
tion (NSF) in the United States of America. It provides high-resolution terrain data acquired
through airborne LiDAR and photogrammetric technology. This dataset primarily supports
research related to Earth sciences, such as geomorphology, GIS, and land use dynamics.
Specifically, the LiDAR dataset created from the 2018 Yosemite Illilouette Creek LiDAR
Survey was collected by the National Center for Airborne Laser Mapping (NCALM). This
dataset covers 75.68 km2 of Yosemite National Park, California, with a data point density
of approximately 20.97 pts/m2.

NEWFOR comprises seven plots with a data point density of around 10 pts/m2, one
plot with around 20 pts/m2, and six plots with 30 pts/m2 or higher. Considering the
balance and complementarity of point density among the sample plots, we have selected
two plots with a density of around 10 pts/m2, one plot with about 20 pts/m2, and two plots
with 30 pts/m2 or higher from the NEWFOR. Additionally, one plot with about 20 pts/m2

is obtained from the OpenTopography, resulting in a total of six experimental plots. These
plots are categorized into three complexity levels—simple, medium, and complex—based
upon their point cloud densities. In addition, although NEWFOR has provided the field
measurement data such as tree locations and tree heights, they do not perfectly match
with the actual point clouds. Previous research efforts have shown that there will be more
significant errors within the given field measurement data for a sample plot characterized
by low overall point cloud density but high trunk density [5]. To ensure more reliable vali-
dation results, we have obtained the reference data (location, height, and crown diameter)
by manually segmenting the individual trees in the open source software CloudCompare
(https://www.cloudcompare.org/ (accessed on 5 February, 2024)). Relevant information
about the sample plots is detailed in Table 1.

Table 1. Tree information data for the six sample plots.

Plot Study Area Forest Class Density
(pts/m2) Complexity Number

of Trees

Height(m) Crown Width(m)
Source

Min Max Avg. Min Max Avg.

Plot_1 Cotolivier,
Italy ML/M 11 Simple 64 9.2 30.8 18.1 3.3 16.3 8.7 NEWFOR

Plot_2 Asiago,
Italy ML/M 11 Simple 146 6.6 34.8 26.9 3.3 11.2 6.7 NEWFOR

Plot_3 Montafon,
Austria ML/C 22 Medium 66 4.0 37.1 26.0 1.6 10.5 6.3 NEWFOR

Plot_4 California,
United States ML/C 20.97 Medium 207 2.4 57.4 24.6 0.8 17.5 5.1 Open

Topography

Plot_5 Leskova,
Slovenia SL/M 30 Complex 100 3.0 41.4 28.5 1.7 12.6 7.6 NEWFOR

Plot_6 Pellizzano,
Italy ML/M 95–121 Complex 127 5.5 39.1 23.7 2.8 13.8 7.7 NEWFOR

Note: SL or ML represents single- or multi-layered forest, and M or C represents mixed forest or coniferous forest.

https://www.cloudcompare.org/
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2.2. Workflow Description

We propose a method for individual tree point segmentation, which combines marker-
controlled watershed segmentation with a spectral clustering algorithm. The complete
workflow of the proposed methodology is illustrated in Figure 1 and consists of two
steps, namely, marker-controlled watershed coarse segmentation and spectral clustering
optimization. In the first step, we identify local maxima within the rasterized CHM image,
using variable window sizes to explore the distinct location of treetops. The identified
treetops are fed into the marker-controlled watershed segmentation module to obtain the
coarse segmentation of individual trees. During the second step, we address the issue of
severe under-segmentation by optimizing the coarse segmentation results. Within each
under-segmented region, we perform a vertical tree crown profile analysis in multiple
directions to infer the potential treetops. These inferred treetops serve as seed points
for subsequent spectral clustering optimization. After the optimization process, the non-
dominant small trees can be detected within the under-segmented regions.

Figure 1. Illustration of the workflow of the proposed methodology.

2.3. Marker-Controlled Watershed Segmentation of Individual Tree Points

The watershed algorithm [48] is a widely used method for image segmentation, imple-
mented based on mathematical morphology and initially applied in the field of computer
vision. Its underlying principle can be described as follows. The image is considered
as a topographic surface, where the grayscale values of image pixels are interpreted as
elevations on the surface, and it assumes that each region with a lower elevation has a
water source. As water continuously rises until it is about to converge in adjacent regions,
dams are constructed between them to prevent merging, forming what is known as a wa-
tershed [49]. The watershed divides the entire topographic surface into multiple catchment
basins, where each basin corresponds to the segmented cluster in our case.

It is noted, however, that by directly applying the watershed algorithm to CHMs for
individual tree segmentation, this may lead to significant over-segmentation, especially
when dealing with irregular tree crown structures in broad-leafed forest. Despite the
Gaussian smoothing applied during the preprocessing stage to reduce some noise and
local maxima, over-segmentation issues can still persist. The marker-controlled watershed
segmentation algorithm [22] is an effective solution to address this problem, as it segments
each tree cluster guided solely by the provided markers, rather than considering all local
maxima in the CHMs image, thereby mitigating over-segmentation.

In our study, we identify local maxima within variable window sizes in CHM images
to serve as markers for individual treetops. To be specific, we initially determine a sequence
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of variable windows based on the relationship between tree crown radius and tree height.
After that, morphological dilation operations are employed to search the local maxima
in CHM images, progressing from the largest sliding window to the smallest. The local
maxima derived from the different sliding windows are aggregated and considered as
the set of markers for treetops. The relationship between tree crown radius and tree
height for variable sliding windows is determined through regression analysis using
tree height and crown observations from sample plots. To identify the most appropriate
regression models, we develop both linear and nonlinear models, including quadratic,
power, exponential, and logarithmic models. The optimal model is then selected based on
the best fit to observations. Here, the quadratic model performed best, achieving an R2 of
0.56. The regression models relating tree height to crown radius for our six sample plots
are listed in Table 2.

Table 2. The regression equation and the fitted equation for the lower prediction interval.

Plot Regression Model Lower Bound Curve Prediction Interval

Plot_1 y = −0.301 + 0.344x − 0.005x2 y = −4.781 + 0.470x − 0.008x2 99%
Plot_2 y = 2.759 − 0.078x + 0.004x2 y = 0.707 − 0.059x + 0.003x2 99%
Plot_3 y = 0.223 + 0.212x − 0.003x2 y = −1.864 + 0.216x − 0.003x2 99%
Plot_4 y = 0.620 + 0.097x − 0.0006x2 y = −1.168 + 0.099x − 0.0006x2 95%
Plot_5 y = 1.344 + 0.090x − 0.0001x2 y = −0.765 + 0.098x − 0.0003x2 99%
Plot_6 y = 3.061 − 0.052x + 0.003x2 y = 0.065 − 0.042x + 0.003x2 99%

It should be noted that the quadratic regression model estimations of tree crown radius
presented in Table 2 can effectively make a trade-off between under- and over-segmentation.
This relationship is illustrated in Figure 2, taking the 64 reference trees in Plot_1, for example,
where the red curve illustrates the relationships between tree crown radius and tree height.
However, the scattered sample points beneath the red curve exhibit predicted tree crown
values slightly larger than their actual observations. In this case, under-segmentation
may occur. This implies that each segmented region may contain multiple trees, thereby
resulting in the omission of some non-dominant trees. To mitigate this problem, inspired by
the work of Chen et al. [22], we utilize the lower bound of the prediction interval indicated
by the dashed blue curve in Figure 2 as our final estimations. Moreover, if the predicted
value is negative, we substitute it with the minimum crown radius observed in the sample
plot. It is important to underline that the tree crown estimation represented by the dashed
blue curve decreases as the prediction interval widens, potentially increasing the risk of
over-segmented regions. Therefore, the selection of a suitable prediction interval is very
critical. We design five prediction intervals corresponding to the confidence levels of 80%,
85%, 90%, 95%, and 99%. For each of them, the CHMs with a resolution of 0.3 m, 0.4 m,
0.5 m, and 0.6 m are, respectively, generated based on the raw point cloud. Additionally,
we sequentially apply the Gaussian filter with kernel sizes of 3 × 3, 5 × 5, and 7 × 7 to
smooth CHMs with different resolutions. Finally, the optimal prediction intervals for the
six sample plots are chosen based upon the accuracy of the segmented results, as was also
detailed in Table 2.

The treetops can be identified by the morphological dilation operations within variable-
sized sliding windows. These windows are determined by regressing the different sizes
of tree crowns using the proposed quadratic regression model. Guided by these treetop
markers, the Figure 3 presents the results of coarse individual tree segmentation achieved
through the mark-controlled watershed segmentation algorithm. Figure 3a illustrates the
detected treetops represented by the red point set in the Gaussian-smoothed CHM (GCHM)
images. Subsequently, we invert the GCHM, where the treetop markers become local
minima. We perform marker-controlled watershed segmentation based on the inverted
GCHM images, as shown in Figure 3b. It should be noted that the marker-controlled
watershed CHM segments should be transformed into the original 3D tree point clouds
according to the rasterization relationship between the point clouds and pixels within the
GCHM, as illustrated in Figure 3c,d.
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Figure 2. Crown radius vs. tree height performance for Plot_1 data.

Figure 3. The marker-controlled watershed segmentation result for Plot_1. Subfigure (a) represents
the identified treetops, highlighted with red points. In subfigure (b), the segmented results of the
inverted GCHM images are depicted using the marker-controlled watershed segmentation algorithm.
Subfigures (c,d) showcase the individually segmented tree points.

2.4. Segmented Patch Recognition

After marker-controlled watershed segmentation, tree point clouds are segmented into
a set of patches categorized into three semantic groups, namely, over-segmented patches,
under-segmented patches, and correctly segmented patches. In this paper, we adopt a
hierarchical strategy to discern the semantics of these patches. To be specific, we initially
distinguish the correctly segmented patches and over-segmented patches, followed by the
identification of under-segmented patches. To improve the quality of the three patch types,
the following three recognition strategies have been employed.

(1) Correctly segmented patches: The complete individual tree exhibits an almost conical
shape, with the treetop positioned centrally within the tree crown, denoting its highest
point. This characteristic is particularly evident in needle-leaf trees [24]. When the tree
point clouds are projected onto the XOY plane, the contour of the projected 2D point
clouds resembles nearly a circle [17,32]. Additionally, the tips of trees are positioned
approximately at the centers of these circular-like shapes. In contrast, the contours of
projected under-segmented patches, encompassing multiple trees, tend to resemble
an elliptic shape [17,32]. In such cases, the projected points of the tree tips noticeably
deviate from the intersection of the short and long axes of the ellipse, as demonstrated
in Figure 4.
To accurately describe the projected contour shapes, we utilize the principal com-
ponent analysis (PCA) to derive the dominant direction dirdomi and its orthogonal
counterpart dirorth for the projected patch points on the XOY plane, as illustrated in
Figure 5. After that, we establish a new coordinate system with dirdomi as the X-axis
and dirorth as the Y-axis. The projected highest point indicated by the red point serves
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as a pivotal point within the patch, allowing us to vertically and horizontally divide
the patch into four regions. As shown in Figure 5, four parameters, namely, r1, r2, r3,
and r4, easily characterize the shapes of these four areas. In addition, two parameters,
denoted as ldomi and lorth, represent the length and width of the axis-aligned bounding
box of the patch. Based on the above shape parameters, for a correctly segmented
patch, the contour of the projected patch points should approximate a circle, and the
highest point representing the treetop should be approximately at the circle’s center.
This implies that ldomi and lorth, r1 and r2, as well as r3 and r4 should be approximately
equal. The value of |ldomi − lorth| is used to determine whether the patch contour is
circular. The expressions of |r1 − r2| and |r3 − r4| are employed to determine if the
treetop points are suited at the center of the projected patch. In other words, a coarsely
segmented patch can be classified as correctly segmented if it satisfies the condition
|r1 − r2| < T &&|r3 − r4| < T &&|ldomi − lorth| < T , where T is the threshold for
these three types of distance differences.

Figure 4. The differentiation in shapes is evident between correctly segmented patches and under-
segmented patches. Subfigures (a,b) represent the correctly segmented patch in 3D and projected
2D views. Subfigures (c,d) illustrate the under-segmented patches in a 3D and 2D projection. Note
that blue points represent tree point clouds, red points signify treetops, and the red circle or oval
delineates the outer contour of the projected tree crowns.

Figure 5. Descriptions of segmented patch shapes are provided through PCA-derived geometric
parameters. The red point within each segmented patch signifies the highest elevation, while the black
dashed rectangle indicates the minimum bounding box aligned with the two dominant PCA-derived
directions of the projected segmented patches.

(2) Over-segmented patches: In our marker-controlled watershed algorithm, treetops
are systematically identified in a hierarchical manner using a sequence of variable-
sized sliding windows, ranging from the largest to the smallest. Once a treetop is
identified within a large window, no other treetops are sought within the region of



Remote Sens. 2024, 16, 610 10 of 28

the current window, even in the subsequent iterations with smaller sliding windows.
This masking strategy proves particularly effective in preventing over-segmentation.
Additionally, as previously mentioned, the Gaussian smoothing strategy is employed
before implementing the CHM segmentation, thereby noticeably reducing the oc-
currence of the over-segmented patches. As a result of these, our coarse segmented
patches exhibit a limited ratio of over-segmented patches. As shown in Figure 6, these
instances predominantly show at the periphery of tree crowns, typically attributed to
branches protruding from the edge of large trees. As a result, each over-segmented
patch contains only a small number of point clouds. Therefore, we construct a his-
togram for the patches based on the number of enclosed point clouds within each
patch. Through histogram analysis, patches that fall below a specified threshold
of included tree points are identified as over-segmented patches. Due to the rela-
tively small number of points within over-segmented patches generated during the
watershed segmentation stage in our proposed method, their impact on the final
segmentation evaluation can be considered negligible. However, in our practical
implementation, points from over-segmented patches are assigned to their nearest
correctly segmented patches based on a nearest-neighbor principle.

Figure 6. Illustrations of experimental over-segmented patches. The top row comprising subfigures
(a–d) represents the projected patches, while the bottom row encompassing subfigures (e–h) denotes
the 3D segmented patches. The over-segmented patches, denoted by the red points, are mistakenly
classified as individual trees. However, they should be associated with their adjacent blue patch as
an integral part of the adjacent patch.

(3) Under-segmented patches: Once correctly segmented and over-segmented patches
have been correctly identified, the remaining patches are categorized as under-
segmented patches. In our paper, we refine these under-segmented patches through
spectral clustering optimization, as detailed in Section 2.5. It is noteworthy that under-
and over-segmentation constitute the primary factors influencing the accuracy of
individual tree segmentation. For our study here, because the minimal number of
over-segmented patches generated during the watershed segmentation stage in our
proposed method, their impact on the final segmentation evaluation is relatively
negligible. Consequently, we do not optimize these over-segmented patches in this
study.
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2.5. Spectral Clustering Optimization of Under-Segmented Patches

To refine the segmentation of under-segmented patches, we employ a spectral cluster-
ing optimization algorithm to infer the potential small trees within these regions. This in-
volves determining the number and the positions of potential trees within under-segmented
patches, which are then employed as prior knowledge to guide the spectral clustering opti-
mization process.

2.5.1. Treetop Identification Based on Vertical Tree Crown Profile Analysis in
Multiple Directions

We use the vertical tree crown profile analysis to determine both the number of trees
and their respective treetops within each under-segmented patch. Taking as an example
the tree crown profile on the XOZ plane, as depicted in Figure 7, we initially project the tree
point clouds within each under-segmented patch onto the XOZ plane, resulting in a set of
projected 2D patch points, as illustrated in Figure 7a. The projection extent of these 2D patch
points along the X-axis is divided into predefined fixed intervals. Within each interval,
the highest 2D patch point on the Z-axis is considered the corresponding z-coordinate
for that interval. Repeating this process for each interval yields a sequence of 2D points,
which produces the vertical crown profile on the XOZ plane by connecting these points in
sequential order, as depicted in Figure 7b. We further apply Gaussian filtering to smooth
the vertical crown profile and then use the zero-crossing of the first derivative method to
identify potential treetops from this profile.

Figure 7. Treetop identification by analyzing tree crown profile within the under-segmented patch.
Subfigure (a) represents the projected point clouds onto the XOZ plane within the under-segmented
patch. Subfigure (b) denotes the generated tree crown profile on the XOZ plane. Note that the yellow
and green stars indicate two peaks/treetops of the profile.

A single vertical tree crown profile is insufficient for identifying potential treetops
within under-segmented patches. To address this problem, treetop identification is com-
prehensively analyzed using two [50] or multiple [17] tree crown profiles to enhance the
reliability of detected trees. Inspired by these approaches, we propose a strategy of an-
alyzing vertical tree crown profiles in multi-directions to minimize projection occlusion
and improve treetop detection accuracy. Specifically, we generate a sequence of vertical
projection planes by rotating around the central axis, ranging from 0◦ to 180◦ according to a
fixed rotation angle interval denoted as t. These planes serve as the canvas onto which we
project under-segmented patch point clouds, with the expectation of extracting tree crown
profiles. Through the decomposition of these canopy profiles and a comprehensive analysis
of the results from each, we identify the real potential trees with each under-segmented
patch. It is worth noting that the number of projection directions is determined by the angle
interval t. As t increases, the number of projection directions decreases. To evaluate the
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impact of the number of projection directions on the optimized segmentation, we conduct
experiments setting t at 90◦, 60◦, 45◦, 30◦, and 15◦.

Taking t = 45◦ as an example to illustrate the entire process, as shown in Figure 8, four
projection planes are generated by rotating a fixed angle of 45◦ with the pivot point at “O”.
Notably, the tree crown profiles from the 0◦ and 45◦ generation planes reveal a solitary
treetop. Conversely, the distinctive feature of hosting multiple trees becomes pronounced
in the 90◦ and 135◦ canopy profiles. Two components, indicated by the positions of two
red stars, are accurately identified. The analysis of profiles from multi-directional planes
contributes significantly to the discovery of non-dominant trees, which are challenging to
identify when using a limited number of projection planes, such as XOZ or YOZ planes.

Figure 8. Analysis of profile based on multi-directional crown projection. Subfigure (a) represents
the 3D point cloud of an under-segmented patch. Subfigure (b) depicts a 2D top view illustrating
multi-directional crown projection. Blue points represent the 2D point cloud, red dashed lines denote
various projection directions, and red arrows indicate the projection process at a 45◦ angle. Subfigure
(c) demonstrates the analysis of tree crown profiles in four projection planes. Gray points depict the
projected point cloud, green points represent profile points, and red stars highlight potential treetops.

Although we have conducted a meticulous analysis of tree crown profiles derived
from multi-directional projection planes, we still encounter the problem of the presence
of pseudo treetops. Failure to appropriately eliminate these pseudo treetops poses the
risk of over-segmentation during subsequent under-segmented patch optimization. To
deal with this problem, we calculate two metrics, namely, horizontal intra-Euclidean
distance Dintra and marginal Euclidean distance Dmargin to remove these pseudo treetops.
The intra-Euclidean horizontal distance refers to the distance from the dominant tree’s
treetop to any other detected non-dominant treetops, while the marginal Euclidean distance
denotes the minimum distance from the detected non-dominant treetops to their 2D patch
boundary/edge.

In practice, if the intra-Euclidean distance is considerably smaller than a predefined
threshold, the non-dominant treetops are deemed pseudo points and are thus consequently
eliminated. Meanwhile, if the margin Euclidean distance is less than another predefined
threshold, the non-dominant treetops are considered pseudo points and are also removed.
Figure 9 illustrates this process, showing the identification and removal of a pseudo
treetop through the analysis of a 90◦ tree crown profile, as demonstrated in Figure 9b.
By the proposed two-threshold metric comparison, pseudo trees are combined with their
corresponding dominant tree points (see Figure 9d), thereby effectively preventing over-
segmentation in the subsequent spectral clustering optimization.
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Figure 9. Illustration of the pseudo treetops removal by comparing two metrics, Dintra and Dmargin,
against their predefined thresholds. Subfigure (a) represents patch point clouds. Subfigure (b) shows
tree crown profiles are generated from four directional planes. Subfigure (c) demonstrates pseudo
treetop P

′
removal by comparison of the two metrics. Subfigure (d) indicates the combination of

pseudo tree point clouds with their corresponding dominant tree points.

2.5.2. Spectral Clustering Optimization

Spectral clustering, stemming from spectral graph theory and originally implemented
in computer vision [51] to tackle 2D image segmentation issues [52], has evolved to address
the segmentation of 3D point clouds in contemporary applications [35]. The spectral cluster-
ing method effectively transforms the clustering problem into a graph partitioning problem.
Initially, an undirected weighted graph is constructed, wherein each point represents a
vertex, and the similarity value between any pair of points is utilized as the weight of the
connecting edge. Subsequently, the optimized process facilitates the segmentation of the
undirected weighted graph into multiple disconnected subgraphs. In our specific method,
to reduce the computational complexity, we employ voxelization on the under-segmented
patch point clouds. Only non-empty voxels are utilized to construct the weighted graph de-
noted as G = G(V, E, W), where V represents the set of nodes consisting of the non-empty
voxels, E denotes the set of edges connecting any two voxels, and W represents the set of
weights indicating similarity between any two voxels. Considering the potential tree-like
shapes within under-segmented patches, we utilize the Gaussian similarity function to
mathematically represent the graph weights as:
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where wij represents the weight between two voxels i and j; DXY
ij and DZ

ij represent the

horizontal and vertical distances between any pair of voxels i and j; and DS
ij is determined

as max(DXY(i, treetopi), DXY(j, treetopj)), where DXY(i, treetopi) and DXY(i, treetopi) indi-
cate the horizontal distance from i and j to their respective individual treetops treetopi
and treetopj. σxy, σz, and σs serve as weighting coefficients for the distances DXY

ij , DZ
ij , and

DS
ij, allowing control over the sensitivity of the weights. The parameter r represents the

maximum horizontal distance. If the distance between two voxels exceeds r, their similarity
is considered zero, i.e., wij = 0. The values of σxy, σz, and σs are set to the maximum
values of DXY

ij , DZ
ij , and DS

ij. Distinct values of r are assigned for different under-segmented
patches based on the radius/size of the patches.

The goal of spectral clustering is the partitioning of the graph into multiple dis-
connected subgraphs, with the aim of maximizing similarity among voxels within each
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subgraph while minimizing it between different subgraphs. We divided G into k subsets,
denoted as {Ci}i∈1,2···k, by utilizing multi-way normalized cut. The corresponding objective
function (2) is as follows:

min Ncut(C1, C2, · · ·Ck) =
1
2

k

∑
i=1

W(Ci, C̄i)

vol(Ci)
=

k

∑
i=1

cut(Ci, C̄i)

vol(Ci)
(2)

where C̄i is the complement of Ci, W(Ci, C̄i) = ∑
u∈Ci ,v∈V

wuv represents the sum of the

weight of nodes in Ci and C̄i, and vol(Ci) = ∑
u∈Ci ,v∈V

wuv represents the sum of the weight

of nodes in Ci and all the nodes in the graph. Unfortunately, minimizing Equation (2) is
an NP-hard problem, and as a result, only approximate solutions are employed [52,53].
Following the optimization of the under-segmented patches, distinct non-dominant trees
are revealed, as illustrated in Figure 10.

Figure 10. Illustration of the spectral clustering optimization process for under-segmented patches.
Subfigure (a) represents the marker-controlled watershed segmentation result (Plot_1), with the
dashed box indicating the under-segmented patch. Subfigure (b) shows vertical tree crown profiles
are extracted at multi-directional planes. Through the analysis of these profiles, two treetops are dis-
covered, as denoted in subfigure (c). After spectral clustering optimization, two trees are successfully
identified within the under-segmented patch, as denoted in subfigure (d).

2.6. Evaluation Metrics

Evaluation of each tree segmentation is performed at the individual tree level by
matching the trees detected by the proposed method with the trees in the reference dataset.
The evaluation metrics are calculated based on the numbers of True Positives (TP), False
Positives (FP), and False Negatives (FN). TP refers to the detected trees that are correctly
matching with the reference trees, indicating correct segmentation. FP refers to a reference
tree being incorrectly segmented into multiple individual trees in the experimental result,
indicating over-segmentation. FN refers to a reference tree being incorrectly segmented as a
part of the adjacent trees, indicating under-segmentation. If the number of reference trees is
denoted as Nre f and the detected trees as Ndet, then TP + FN = Nre f and TP + FP = Ndet.
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Utilizing these values, four evaluation metrics, Extraction rate(Er), Recall, Precision, and
F1-score [17,30,54,55] have been calculated as follows:

Er = Ndet
Nref

= TP+FP
TP+FN

Recall = TP
Nref

= TP
TP+FN

Precision = TP
Ndet

= TP
TP+FP

F1-score = 2 × r×p
r+p


(3)

where Er denotes the tree extraction rate, measuring the capability to detect trees; Recall
signifies the ratio of correctly extracted trees to all reference trees, offering an indirect insight
into the extent of under-segmentation. Precision indicates the ratio of correctly extracted
trees to all detected trees, providing an indirect measure of the degree of over-segmentation.
F1-score considers both Precision and Recall, representing the overall accuracy of individual
tree segmentation. The ranges for Recall, Precision, and F1-score are from 0 to 1, where
higher values signify higher accuracy in tree segmentation.

3. Performance Evaluation Results
3.1. Quantitative Evaluation of Marker-Controlled Watershed Individual Tree Segmentation

To quantitatively assess the performance of the marker-controlled watershed segmen-
tation, we calculated the evaluation metrics for the segmentation results of the six plots,
and the specific outcomes are listed in Table 3. As indicated in the table, the average
F1-score for the six plots is 0.860, with a maximum of 0.919 and a minimum of 0.785. Overall,
both Er and Recall are relatively low, especially the Recall, with an average of only 0.780,
suggesting a notable presence of under-segmentation during the watershed segmentation
stage. It is important to note that the Precision for each plot is quite high, averaging 0.965.
This implies that in the stage of watershed segmentation, the detection of most potential
trees is achieved, and the occurrence of over-segmentation is rare.

Table 3. Performance evaluation of the watershed segmentation results across six plots.

Complexity Plot Forest Class Er Recall Precision F1-Score

Simple Plot_1 ML/M 0.875 0.828 0.946 0.883
Plot_2 ML/M 0.884 0.842 0.953 0.895

Medium Plot_3 ML/C 0.879 0.864 0.983 0.919
Plot_4 ML/C 0.792 0.778 0.982 0.868

Complex Plot_5 SL/M 0.750 0.710 0.947 0.811
Plot_6 ML/M 0.672 0.656 0.977 0.785

Avg. / 0.809 0.780 0.965 0.860

3.2. Evaluation of Semantic Recognition for Segmented Patches

Following the individual tree segmentation using the marker-controlled watershed
algorithm, we conducted semantic recognition on the segmented patches and categorized
them into correctly segmented patches, over-segmented patches, and under-segmented
patches. The optimization phase merely focuses on the under-segmented patches; therefore,
we combine the correctly segmented patches and over-segmented patches into non-under-
segmented patches. The recognition results for Plot_1 are shown in Figure 11. The patches
in Figure 11a represent 56 individual trees segmented through the marker-controlled
watershed algorithm, while Figure 11b illustrates 24 identified under-segmented patches.
Additionally, Figure 11c depicts the confusion matrix for under-segmented patches and
non-under-segmented patches classification results. The Accuracy of Plot_1 stands at 0.714.
The reason for the relatively lower Accuracy is due to some non-under-segmented patches
being categorized as under-segmented patches. However, it is noted that the Recall of
under-segmented patches has reached up to 0.9. This indicates that the proposed semantic
recognition method exhibits a strong capability in identifying genuinely under-segmented
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patches, providing an opportunity for these under-segmented patches to be optimized in
the subsequent phase.

Figure 11. Illustration of the performance results for the semantic recognition (Plot_1). Subfigure (a)
represents the result of marker-controlled watershed segmentation. Subfigure (b) shows the recog-
nized under-segmented patches. Subfigure (c) denotes the confusion matrix for under-segmented
patches and non-under-segmented patches classification (US stands for under-segmented patches,
Non_US stands for non-under-segmented patches).

3.3. Quantitative Evaluation of Individual Tree Segmentation after Spectral
Clustering Optimization

After identifying under-segmented patches, we utilized vertical tree crown profile
analysis in multiple directions to determine the numbers and locations of potential treetops
within these patches. Subsequently, the spectral clustering algorithm was employed to
optimize the under-segmented patches. Figure 12 illustrates the segmentation result
of Plot_1 and provides a comparison of selected under-segmented patches before and
after optimization.

Figure 12. Illustration of the final individual tree segmentation result (Plot_1). The left shows the
initial segmentation result of the marker-controlled watershed. The middle displays a comparison of
some under-segmented patches before and after spectral clustering optimization. The right exhibits
the final segmentation result.
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Figure 13 displays the segmentation results obtained by the proposed method across
six different plots. Table 4 outlines the four evaluation metrics for the segmentation
results. The average value of each metric is greater than 0.85, with an average F1-score of
0.892. It is evident that satisfactory segmentation results were achieved for all six plots.
The average Er of the six plots is 0.913, indicating that the proposed method does not
result in significant over-segmentation. This is further evident from the Precision. Metric
as the average Precision is 0.931, with a minimum value of 0.889, indicating an extremely
low occurrence of over-segmentation in the results of all plots. Some plots exhibit Recall
lower than Precision, indicating a higher occurrence of under-segmentation compared
to over-segmentation. These instances of under-segmentation are primarily observed in
Plot_4, Plot_5, and Plot_6, mainly due to the presence of understory vegetation. Particularly
in Plot_6, the number of understory trees constitutes 20% of the total trees.

Figure 13. The segmentation results of six plots (different trees displayed in random colors). Subfig-
ures (a–f) represent Plot_1 to Plot_6, respectively.

Table 4. Evaluation metrics of segmentation results for six plots.

Complexity Plot Forest Class Er Recall Precision F1-Score

Simple Plot_1 ML/M 1.000 0.938 0.938 0.938
Plot_2 ML/M 1.007 0.925 0.918 0.922

Medium Plot_3 ML/C 0.940 0.909 0.968 0.938
Plot_4 ML/C 0.841 0.821 0.977 0.892

Complex Plot_5 SL/M 0.900 0.800 0.889 0.842
Plot_6 ML/M 0.789 0.734 0.931 0.821

Avg. / 0.913 0.854 0.937 0.892

We further evaluated the individual tree segmentation results of different forest types.
In the six plots, Plot_3 and Plot_4 represent coniferous forests, while the remaining four
plots consist of mixed forests containing both coniferous and broad-leafed tree species.
Table 3 displays the initial segmentation accuracy metrics during the watershed segmenta-
tion stage for the six plots. The average Recall for the two coniferous forest plots is 0.821,
the Precision is 0.983, and the F1-score is 0.894. For the four mixed forest plots, the average
Recall is 0.759, the Precision is 0.956, and the F1-score is 0.845. Similarly, Table 4 presents
the segmentation accuracy metrics after spectral clustering optimization for the six plots.
The average Recall for the two coniferous forest plots is 0.865, the Precision is 0.973, and the
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F1-score is 0.915. On the other hand, for the four mixed forest plots, the average Recall
is 0.849, the Precision is 0.919, and the F1-score is 0.881. It is evident that, whether in
the initial segmentation stage or after optimization, every accuracy metric for coniferous
forests surpasses that of mixed forests. This indicates that the segmentation performance in
coniferous forests is superior to that in mixed forests. The relatively lower Recall in mixed
forests can be attributed to the presence of substantial understory forests in these two plots.
The lower Precision in mixed forests is influenced by two factors. Firstly, the complex
tree crown structures of broad-leafed tree species in mixed forests affect the detection
of tree treetops, and secondly, the irregular crown shapes of broad-leafed tree species
impede the recognition of under-segmented patches, as discussed in detail in Section 4.4.
Although the segmentation performance of the proposed method is comparatively lower in
mixed forests, the method performs significantly better in handling mixed forests contain-
ing broad-leafed tree species compared to the other two well-known methods of individual
tree segmentation, as it will become evident in Section 4.5.

Similarly, we compared the individual tree segmentation results of different plot
complexities. Figure 14 illustrates the corresponding evaluation metrics. It can be observed
that the accuracy metrics generally exhibit a declining trend. Specifically, as plot complexity
increases, the accuracy of individual tree segmentation decreases. The F1-score decreases
from 0.930 to 0.832, Er decreases from 1.003 to 0.845, and Recall decreases from 0.931 to
0.767. Notably, the decrease in Recall is close to 20%, indicating that as plot complexity
increases, there are more under-segmented patches. It is worth noting that Precision initially
increases and then decreases. Specifically, medium plots exhibit the highest Precision,
and the complex plots exhibit the lowest Precision. This is primarily because medium
plots (Plot_3 and Plot_4) are both coniferous forests, where the conical-shaped tree crown
profiles are distinct, enabling accurate detection of treetops. Conversely, the complex plots
(Plot_5 and Plot_6) are both mixed forests, where the complex tree crown structures of
broad-leafed trees affect the detection of treetops.

Figure 14. Comparison of accuracy for different plot complexities.

4. Discussion and Comparisons
4.1. Impact of Variable Window on Watershed Segmentation

To determine the appropriate variable window size for marker-controlled watershed
segmentation, we designed five prediction intervals with confidence levels of 80%, 85%,
90%, 95%, and 99%. Sensitivity analysis was conducted on how the lower bound of each
prediction interval, acting as a window radius, affected the watershed segmentation results
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under different configurations. As mentioned in Section 2.3, the different configurations
include varying resolutions of the CHMs and different sizes of Gaussian smoothing win-
dows. Table 5 presents the results of the marker-controlled watershed individual tree
segmentation for Plot_1.

Table 5. Segmentation results of marker-controlled watershed (Plot_1).

Prediction
Interval

Filter
Window 3 × 3 5 × 5 7 × 7

Pixel/m Recall Precision F1-Score Recall Precision F1-Score Recall Precision F1-Score

80%

0.3 0.703 0.489 0.577 0.672 0.860 0.754 0.656 1.000 0.792
0.4 0.656 0.750 0.700 0.625 0.976 0.762 0.625 0.976 0.762
0.5 0.609 0.975 0.750 0.578 1.000 0.733 0.578 1.000 0.733
0.6 0.563 0.947 0.706 0.547 1.000 0.707 0.547 1.000 0.707

85%

0.3 0.781 0.455 0.575 0.719 0.780 0.748 0.688 1.000 0.815
0.4 0.734 0.701 0.718 0.703 1.000 0.826 0.688 0.936 0.793
0.5 0.688 0.863 0.765 0.641 0.976 0.774 0.641 0.976 0.774
0.6 0.641 0.953 0.766 0.578 1.000 0.733 0.578 1.000 0.733

90%

0.3 0.844 0.422 0.563 0.797 0.750 0.773 0.734 0.979 0.839
0.4 0.797 0.699 0.745 0.719 0.979 0.829 0.688 0.978 0.807
0.5 0.719 0.868 0.786 0.703 0.957 0.811 0.703 0.978 0.818
0.6 0.641 0.953 0.766 0.594 1.000 0.745 0.594 1.000 0.745

95%

0.3 0.859 0.344 0.491 0.875 0.757 0.812 0.766 0.961 0.852
0.4 0.891 0.695 0.781 0.781 0.909 0.840 0.719 0.939 0.814
0.5 0.813 0.852 0.832 0.734 0.959 0.832 0.719 0.958 0.821
0.6 0.734 0.887 0.803 0.656 0.977 0.785 0.656 0.977 0.785

99%

0.3 0.953 0.235 0.377 0.938 0.682 0.789 0.828 0.946 0.883
0.4 0.938 0.526 0.674 0.859 0.902 0.880 0.797 0.944 0.864
0.5 0.906 0.784 0.841 0.781 0.893 0.833 0.781 0.909 0.840
0.6 0.813 0.852 0.832 0.719 0.939 0.814 0.703 0.978 0.818

From the results presented in Table 5, we have summarized the average evaluation
metrics of watershed segmentation results based on different prediction intervals, as shown
in Figure 15, where it can be observed that as the prediction interval increases, Recall con-
tinues to ascend, while Precision steadily descends. Moreover, the F1-score initially ascends
and subsequently stabilizes. The 95% and 99% prediction intervals exhibit the highest
F1-score values. This implies that window sizes determined by the lower bounds of the 95%
and 99% prediction intervals, derived from the non-linear regression between tree crown
radius and tree height, both yield optimal segmentation results. The conclusion drawn from
the lower bound of the 95% prediction interval aligns with the works of Chen et al. [22] and
Zhen et al. [23]. However, what is different is that the 99% prediction interval lower bound
we designed also acquires favorable segmentation results. As shown in Table 5, the largest
F1-score reaches up to 0.883, falling within the 99% prediction interval. Among these six
sample plots, five of them indicate the 99% prediction interval as the optimal interval,
with only one favoring the 95% prediction interval, as detailed in Table 2. It is important
to note that as the prediction interval increases from 80% to 95%, the trends of Recall and
Precision are reversed. Moreover, Recall remains lower than Precision, suggesting a higher
proportion of under-segmentation than over-segmentation in the segmentation results
within these prediction intervals. Within the 99% prediction interval, even though the
average Recall is slightly higher than the average Precision, all the Recall corresponding to
the larger F1-score (greater than 0.840) are lower than Precision. Due to the second phase of
the proposed method focusing on the under-segmentation optimization, the initial segmen-
tation results with a higher proportion of under-segmentation than over-segmentation are
advantageous to the proposed method.
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Figure 15. The average accuracy with different lower bounds of prediction intervals as the win-
dow radius.

To demonstrate the effectiveness of the variable window, we further compared the
watershed segmentation results based on variable windows with those based on fixed
windows. The specific comparison results of the six plots can be found in Table 6. Fixed
windows of sizes 3 × 3, 5 × 5, and 7 × 7 are employed. The quantitative comparison in
Table 6 reveals that within the fixed window, except for Plot_2, the F1-scores of the other
five plots gradually increase as the window sizes increase. This indicates there is an overall
improvement in the accuracy of individual tree segmentation with the increase in window
size. Although the F1-score from the variable window is comparable to the optimal F1-score
in the fixed window, the Precision for each plot in the variable window is notably high,
ranging from a minimum of 0.946 to a maximum of 0.983. In other words, within the
segmentation results based on the variable window, the proportion of over-segmentation
for each plot is very minimal. In the proposed method, the goal of marker-controlled
watershed segmentation is to accurately segment the majority of individual trees rapidly,
rather than directly obtaining the segmentation results. Therefore, our requirement for
watershed segmentation is to minimize the proportion of over-segmentation, while the
under-segmented patches will be optimized through spectral clustering. Consequently,
for the proposed method, choosing a variable window proves superior to a fixed window.

Table 6. Performance comparison results between variable window and fixed window approaches.

Plot
3 × 3 5 × 5 7 × 7 Variable Window

Recall Precision F1-Score Recall Precision F1-Score Recall Precision F1-Score Recall Precision F1-Score

Plot_1 0.938 0.455 0.612 0.953 0.604 0.739 0.906 0.773 0.835 0.828 0.946 0.883
Plot_2 0.925 0.918 0.922 0.884 0.970 0.925 0.822 1.000 0.902 0.842 0.953 0.895
Plot_3 0.939 0.756 0.838 0.939 0.849 0.892 0.909 0.938 0.923 0.864 0.983 0.919
Plot_4 0.821 0.742 0.780 0.797 0.825 0.811 0.758 0.918 0.831 0.778 0.982 0.868
Plot_5 0.790 0.581 0.669 0.780 0.729 0.754 0.740 0.881 0.804 0.710 0.947 0.811
Plot_6 0.750 0.793 0.771 0.727 0.877 0.795 0.688 0.957 0.800 0.656 0.977 0.785
Avg. 0.861 0.708 0.765 0.847 0.809 0.819 0.804 0.911 0.849 0.780 0.965 0.860

4.2. Impact of Projection Directions on Treetops Detection

As described in Section 2.5.1, the proposed method detects treetops through vertical
tree crown profile analysis in multiple directions, where the number of projection directions
is determined by angular intervals. We have summarized the four evaluation metrics for
the segmentation results of Plot_1 with different angle intervals (90◦, 60◦, 45◦, 30◦, and 15◦),
as shown in Figure 16. It can be observed that the Recall remains nearly unchanged across
different angular intervals. This suggests that the number of correctly extracted treetops
remains consistent. When t ≥ 60◦, with the reduction of the angle interval, Er decreases,
while Precision and F1-score increase. This indicates that the decrease in the number
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of extracted pseudo treetops leads to a reduction in over-segmentation. When t ≤ 60◦,
with the reduction of the angle interval, Er continuously increases, while Precision and
F1-score continuously decrease. This suggests that with smaller angle intervals, more
pseudo treetops are extracted, resulting in more over-segmentation and thereby reducing
the overall segmentation accuracy. When t = 60◦, the segmentation result performs best,
with maximum Precision and F1-score.

Yan et al. [50] identified potential treetops based on tree crown profile analysis at
two directions (t = 90◦) and used these treetops as input into the Normalized Cut (NCut)
algorithm to optimize the under-segmented patches. Our research shows that using
only two directions does indeed result in better Recall, reducing the proportion of under-
segmentation. Nevertheless, a moderate increase in the number of projection directions
can more effectively describe the crown profile of the under-segmented patches, thereby
improving the overall segmentation accuracy. Due to the inconsistent spatial distribution
of individual trees and varying tree crown structures within different plots, the occlusion
of adjacent tree crowns differs across different projection directions. It is challenging to
determine which projection directions can better describe the crown profile of the under-
segmented patches. Therefore, a vertical tree crown profile analysis in multiple directions
is necessary. However, it is crucial to judiciously select the number of projection directions,
as an excessive increase in the number of projection directions may elevate the risk of over-
segmentation.

Figure 16. Evaluation metrics based on different angle intervals (Plot_1).

4.3. Impact of Treetops Detection on Spectral Clustering Optimization

Aside from high computational complexity, a pivotal challenge restricting the applica-
tion of the spectral clustering algorithm is the accurate selection of the number of clusters.
The eigengap heuristic method is specifically devised to determine the optimal number of
clusters in spectral clustering, relying on disparities among the eigenvalues derived from
the similarity matrix [29,35]. Specifically, if the first k eigenvalues are all small, and there is
a significant difference between the (k + 1)-th eigenvalue and the k-th eigenvalue, then the
number of clusters is chosen as k. In this paper, we determined the potential treetops of
the under-segmented patches by vertical tree crown profile analysis in multiple directions.
To evaluate the effectiveness of the proposed method, we performed a further quantitative
comparison between our method and the eigengap heuristic in spectral clustering opti-
mization for under-segmented patches. Table 7 presents the results of the two methods.
It is observed that except for Plot_5, the F1-scores of treetops-guided spectral clustering
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are higher than those of eigengap heuristic spectral clustering across the other five plots.
In other words, between the two methods, the proposed treetops-guided spectral clustering
performs better during the optimization phase. This is primarily because after watershed
segmentation, the under-segmented patches tend to exhibit intersecting tree crowns, re-
sulting in less distinct differences in eigenvalues. This, in turn, affects the accuracy of
the eigengap heuristic in selecting the number of individual trees. The proposed method,
however, directly conducts tree crown profile analysis on the under-segmented patches,
accurately determining the potential treetops and enhancing the segmentation accuracy.

Table 7. Performance of eigangap heuristic and treetops-guided spectral clustering.

Plot
Eigengap Heuristic Treetops-Guided

Recall Precision F1-Score Recall Precision F1-Score

Plot_1 0.912 0.925 0.919 0.938 0.938 0.938
Plot_2 0.917 0.083 0.910 0.925 0.918 0.922
Plot_3 0.924 0.924 0.924 0.909 0.968 0.938
Plot_4 0.821 0.971 0.890 0.821 0.977 0.892
Plot_5 0.750 0.962 0.843 0.800 0.889 0.842
Plot_6 0.711 0.910 0.798 0.734 0.931 0.821

4.4. Analysis of Failed Optimization Segmentation

The proposed method has successfully resolved the majority of under-segmented
patches, as depicted in Figure 17, where these under-segmented patches have been accu-
rately segmented. However, there are still some under-segmented patches that were not
effectively segmented in the optimization phase. These failure cases primarily include the
following scenarios:

(1) The potential treetops were not detected, resulting in no change in under-segmented
patches before and after optimization (see Figure 18a,d).

(2) The detected pseudo treetops resulted in over-segmentation (see Figure 18b,e).
(3) The potential treetops were successfully detected, but the under-segmented patches

were not optimized correctly(see Figure 18c,f).
Table 8 presents statistical data for the three failure cases across all plots. It is evident

that Case (1) constitutes a primary aspect of failed optimization segmentation. These
failures are attributed to the undetected potential treetops within the under-segmented
patches. These patches often consist of a small tree beneath a larger tree or a small tree
positioned closely adjacent to the crown edge of a larger tree. After projection, these
under-segmented patches often exhibit only one peak in the fitting curve of the projected
profile. Consequently, there is no change in these patches before and after optimization
(see Figure 18a,d). The plots where Case (1) occurs more frequently are Plot_4, Plot_5,
and Plot_6. The failures in Plot_4 primarily arise from the treetops of the small trees
being adjacent to the edges of the large tree crowns. The failures in Plot_5 and Plot_6 are
due to the presence of understory forests. Case (2) is primarily due to the irregularity of
the tree crown structure. In some broad-leafed tree species, certain protruding branches
within the tree crown are often mistakenly identified as treetops. Even with the addition
of two threshold metrics, these pseudo treetops cannot be entirely avoided. It is worth
noting that within the over-segmented patches during the optimization phase, a portion
of them stem from originally independent trees (see Figure 18b,e). This occurs because
these individual trees fail to meet the shape parameter requirements outlined in Section 2.4
and are mistakenly identified as under-segmented patches during the semantic recognition
phase. This also indicates that the extraction results of under-segmented patches have a
certain impact on the optimization result. Cases (1) and (2) encompass 99% of the failure
cases, primarily due to the inadequate detection of potential treetops within the under-
segmented patches. In other words, if the potential treetops are accurately identified,
spectral clustering can effectively achieve accurate segmentation of these patches. However,
due to the irregular spatial distribution of the point cloud and the non-convex tree crowns,
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some under-segmented patches cannot be correctly optimized. Consequently, Case (3) may
still arise (see Figure 18c,f), with a very low probability.

Figure 17. Illustration of typical optimization results for under-segmented patches. The top row en-
compassing subfigures (a–d) represents under-segmented patches, while the bottom row comprising
subfigures (e–h) denotes segmentation results after optimization.

Figure 18. Illustration of typical optimization failures. Subfigures (a,d) correspond to Case (1).
Subfigures (b,e) correspond to Case (2). Subfigures (c,f) correspond to Case (3).

Table 8. Statistics of failure cases.

Type Plot_1 Plot_2 Plot_3 Plot_4 Plot_5 Plot_6 Total Percentage

(1) 4 11 6 37 20 34 112 86.8%
(2) 1 2 1 1 6 5 16 12.4%
(3) 0 1 0 0 0 0 1 0.8%

/ 129 /
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4.5. Method Comparison

To validate the effectiveness of the proposed method, we tested two other meth-
ods for individual tree segmentation and compared the results with those of our pro-
posed method. These two methods include the marker-controlled watershed algorithm
(MCWA) and Nyström-based spectral clustering (NSC). MCWA was initially introduced by
Chen et al. [22], and we implemented it using the MATLAB programming language. NSC,
described by Pang et al. [35], is an improved spectral clustering on the supervoxelized
point cloud, and the algorithm is implemented in the Python programming language.

The comparison of the average evaluation metrics for different methods is shown in
Table 9. It is evident that the proposed method demonstrates higher Recall and Precision
compared to the other two methods. This indicates that employing the proposed method
results in the least amount of under-segmentation and over-segmentation. Notably, the Precision
of the proposed method is 20% higher than the average Precision of the other two methods,
effectively reducing the occurrence of over-segmentation in the results. Although the values
of Er of these three methods are around 1, the proposed method exhibits the highest Recall
and Precision, suggesting a tendency in the other two methods to extract more erroneous
trees. Regarding the F1-score, the proposed method achieves the highest value, surpassing
the average of the other two methods by 15%. In summary, compared to the other two
methods, the proposed method can achieve better individual tree segmentation results.

Table 9. Comparison of average evaluation metrics for the different methods.

Methods Er Recall Precision F1-Score

MCWA 0.979 0.821 0.849 0.837
NSC 1.177 0.692 0.602 0.636
Ours 0.913 0.854 0.937 0.892

Figure 19 illustrates the Er, Recall, Precision, and F1-score of different methods across
the six sample plots. In terms of Er, as shown in Figure 19a, our newly proposed method
and MCWA exhibit similar performance, outperforming NSC significantly. NSC tends to
inaccurately segment more trees in Plot_1, Plot_2, and Plot_3. In terms of Recall, as shown
in Figure 19b, the proposed method performs slightly better than MCWA in all plots except
Plot_6 and outperforms NSC in all plots except Plot_2. Therefore, the average Recall of the
proposed method is higher across all plots compared to the other two methods. In terms
of Precision, as shown in Figure 19c, the proposed method obtains the highest Precision,
indicating its ability to maintain the lowest rate of false positives in all six plots. In terms of
F1-score, as shown in Figure 19d, it is evident that our method attains the highest F1-score in
each plot, with all F1-score exceeding 0.8. These findings highlight the significant advantage
of the proposed method in individual tree segmentation.

Figure 19. Comparison of the three methods in six plots. Subfigure (a) represents Er. Subfigure
(b) represents Recall. Subfigure (c) represents Precision. Subfigure (d) represents F1-score.

To better evaluate the proposed method, we further compared the implementation
efficiency of these three methods. All the methods were executed on the same laptop
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computer with an AMD Ryzen 7 5800H CPU and 16 GB RAM, running the 64-bit Windows
11 operating system. The comparative result is shown in Table 10. We can find that MCWA
exhibits the shortest processing time among the six plots. This is primarily attributed
to the watershed algorithm operating on the rasterized CHM, which is highly efficient
in handling pixel-to-pixel relationships. NSC has the longest processing time, primarily
because it directly segments the point cloud. Particularly, the Mean Shift voxelization
process requires multiple iterations to compute the density gradient of each data point.
Compared to NSC, the proposed method demonstrates a faster processing speed. This is
because most individual trees are already extracted during the marker-controlled watershed
segmentation phase, and only a small amount of under-segmented patches require spectral
clustering optimization. Although the processing time of the proposed method is a bit
longer than MCWA, our segmentation results surpass those of MCWA, as observed from
Table 9.

Table 10. Efficiency comparison for different methods (measured in seconds).

Methods Plot_1 Plot_2 Plot_3 Plot_4 Plot_5 Plot_6 Avg.

MCWA 0.97 1.35 1.18 7.30 3.26 12.14 4.37
NSC 45.96 46.65 38.44 223.22 80.25 240.37 112.48
Ours 12.79 3.31 4.44 11.61 8.75 32.76 12.28

5. Conclusions

In this study, an individual tree segmentation method based on ALS data was proposed
and its performance was thoroughly evaluated. It consists of three stages involving a
individual tree point segmentation by marker-controlled watershed algorithm, semantic
recognition of segmented patches, and spectral clustering optimization segmentation
focusing on under-segmented patches. Six sample plots of three different point densities
were selected as a case study. Various performance evaluation results have shown that the
proposed method can achieve a highly precise individual tree segmentation. Compared
to the other two classic segmentation methods, our method possesses the highest Recall
of 0.854, Precision of 0.937, and F1-score of 0.892. By leveraging the efficiency of the CHM-
based method and the advantages of the point-based method in capturing point cloud
features, satisfactory segmentation results can be attainable across sample plots with diverse
point densities and structures.

However, some limitations persist. Firstly, in the stage of marker-controlled watershed
segmentation, treetop markers were searched using variable window sizes calculated by
a regression equation between tree crown radius and tree height. The specific regression
equation may not be generalizable to other sample plots or different types of forests.
Secondly, after watershed segmentation, the correctly segmented patches were recognized
based on the shape feature of horizontal projection profiles, which might be limited by
complex canopy structures or broad-leafed forests with significant vertical spatial variation.
Lastly, achieving satisfactory segmentation for the understory of multi-layered forests
remains challenging. Future studies might consider incorporating morphological features
of individual trees from various projection directions to improve semantic recognition
accuracy. Additionally, leveraging deep learning to extract deep features from the canopy
point cloud could aid in scenarios with complex vertical structures.
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