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Abstract: Considering the great time and labor consumption involved in conventional hazard
assessment methods in compiling landslide inventory, the construction of a transferable landslide
susceptibility prediction model is crucial. This study employs UAV images as data sources to interpret
the typical alpine valley area of Beichuan County. Eight environmental factors including a digital
elevation model (DEM) are extracted to establish a pixel-wise dataset, along with interpreted landslide
data. Two landslide susceptibility models were built, each with a deep neural network (DNN) and a
support vector machine (SVM) as the learner, and the DNN model was determined to have the best
pre-training performance (accuracy = 88.6%, precision = 91.3%, recall = 94.8%, specificity = 87.8%,
F1-score = 93.0%, and area under curve = 0.943), with higher parameters in comparison to the SVM
model (accuracy = 77.1%, precision = 80.9%, recall = 87.8%, specificity = 73.9%, F1-score = 84.2%, and
area under curve = 0.878). The susceptibility model of Beichuan County is then transferred to Mao
County (which has no available dataset) to realize cross-regional landslide susceptibility prediction.
The results suggest that the model predictions accomplish susceptibility zoning principles and that
the DNN model can more precisely distinguish between high and very-high susceptibility areas in
relation to the SVM model.

Keywords: landslide susceptibility prediction; alpine valley area; deep neural network; support
vector machine; transfer learning

1. Introduction

Landslides are one of the most common geological hazards worldwide, causing severe
natural damage plus socio-economic consequences for affected areas [1]. In our country
(China), the natural environment is characterized by complex topography, a high pro-
portion of hills and mountains, many rivers, and so forth, all of which constitute the
natural factors that breed landslides [2]. Meanwhile, over-exploitation of resources and
irresponsible modification of the environment contribute to this risk as anthropogenic trig-
gers [3]. As a result, landslides and other geological hazards occur frequently in China [4].
With complicated topography and active tectonics, mountainous southwest Sichuan has
prominent earthquake-induced landslides. Notably, post-earthquake geological activity
lasts for 10 to 30 years, resulting in scores of hidden hazards. Such landslides thus have
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an enduring and radical impact on affected areas [5]. Therefore, it is of theoretical and
practical significance to provide academic support for hazard prevention and mitigation,
roadway reconstruction, and resident resettlement through investigation and analysis of the
geological environment of a complex mountain area and the establishment of a landslide
basement dataset of the study area, quantitative evaluation of landslide susceptibility, and
preparation of zonal evaluation maps [6]. Landslide susceptibility prediction methods can
usually be divided into two categories: qualitative evaluation and quantitative evaluation.
Qualitative evaluation is based on the knowledge and experience of experts to identify the
degree of regional landslide susceptibility judgment. This type of evaluation method has
a certain degree of subjectivity present and relies more on the rich empirical knowledge
of experts. Quantitative evaluation is used to establish a probabilistic statistical model of
landslide susceptibility by statistically analyzing the landslide disasters that have occurred
through mathematical knowledge. Statistical modeling, on the other hand, makes it difficult
to dig into the deep information of the data.

A successful machine learning approach to susceptibility assessment modeling is
attributed to the thriving technology of “3S” and machine learning. The term “3S” stands
for remote sensing (RS), geographic information system (GIS), and global positioning
system (GPS) [7]. The application of RS in seismic landslides lies predominantly in identifi-
cation while expanding access to satellite data from Landsat, SPOT, MODIS, etc., enables
theoretical and practical advancement in combinations of computer data and the visual
interpretation of seismic landslides [8]. By relying on its advantages of high mobility,
high response speed, and high image resolution, UAV remote sensing surveys make it
possible to repeatedly acquire images of the study area at short time intervals and with
high image resolution. The detailed deformation characteristics of landslides, mudslides,
and other geological disasters can be effectively recognized by UAV images, which can
provide a scientific basis for the relevant governmental authorities to formulate rapid and
effective emergency response measures after a disaster [9]. The application of GIS in seismic
landslides undertakes not only the establishment of spatial datasets but also susceptibility
analysis and graphing in later stages [10]. Machine learning is the most popular method
for building mathematical assessment models as no prior knowledge, experience, or sta-
tistical model is mandatory for modeling in the study area [11]. However, conventional
machine learning modeling is based on large amounts of data, and relies on a great number
of quality labels, making it difficult to fulfill expectations in areas with insufficient data.
Deep neural networks (DNNs) are deep learning structures with multiple hidden layers
compared to traditional machine learning. DNNs convert the low-level features of the data
into more abstract high-level feature representations through the processing of multiple
hidden layers, which is more conducive to the classification or visualization of features.

Transfer learning has been key to addressing the absence of available data, and aca-
demics in related fields have focused on small-sample transfer learning for many years [12].
Furthermore, deepening research into transfer learning has recently led to achievements in
various fields in China [13,14]. However, such results consist mostly of transfer learning
applied to computer vision (CV) or natural language processing (NLP), yet hardly any
studies have applied this to landslides. Landslide susceptibility prediction based on land-
slide interpretation data comprehensively analyzes regional factors including topographic
and geological conditions, assesses the possibility of landslide occurrence, and generates a
corresponding probability map [15,16]. Evidently, landslide interpretation data are almost
inseparable from susceptibility assessments. As a consequence of the 2008 Wenchuan
earthquake, thousands of seismic landslides took place in Yingxiu town and surrounding
areas. Fallen rock and soil bodies destroyed buildings and blocked waterways, causing
casualties and economic losses. Among all locations, Beichuan County and Mao County
were the most disrupted and were hence selected as the study area of this investigation. The
unique climate pattern of Mao is shaped by great elevation differences, an apparent vertical
and regional climate, a complex local climate, cloudy rainy springs and summers, and
snowy winters. On account of this, limited remote sensing images are available for visually
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interpreting landslide hazards, and the areal database of interpreted landslides in Mao is
incomplete. Meanwhile, the adjacent Beichuan County shares similar topography, geology,
and other environmental conditions with Mao and is subjected to a number of studies on
landslide recognition and susceptibility prediction. Such attributes make Beichuan ideal
for transfer learning on landslide susceptibility prediction.

With the aforementioned starting points, we first use UAV imagery to interpret land-
slides and establish a landslide susceptibility dataset for Beichuan; then, with the dataset,
we pre-train the prediction model on Beichuan and validate pre-training from a basement
model for transfer learning; finally, we transfer the model to Mao to perform landslide
susceptibility prediction and validate predictions with existing incomplete landslide data.

2. Materials
2.1. Study Area

The neighboring counties of Beichuan and Mao, which are located at the junction of
Ngawa Tibetan and Qiang Autonomous Prefecture and have an area of about 6969.6 km2,
were selected for the study area (Figure 1). The terrain tiles from the northwest to the
southeast, with innumerable mountains and hills. The region has a typical alpine valley
landform, with a huge range of elevation from 500 m to 5097 m, and interlaced rivers
and valleys [17]. Complex and variant lithology and complicated neo-tectonic movement,
as well as fragmented rock bodies, the formation of fissures, and severe weathering at
major fracture zones, additionally lead to landslides [18]. When applying deep learning
in landslide susceptibility predictions, a large dataset can provide the required features
for training. Having the greatest number of landslide hazards and types of landslide
formation in the upper reaches of Minjiang River, Beichuan was chosen as a modeling area
to perform susceptibility assessments, and the predictions are to be migrated to Mao which
is a topographically similar county.
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2.2. Data Collection

Data were divided mainly into two categories as required by the research content:
(1) remote sensing images and regional survey data for establishing an interpretation
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dataset of the modeling area (Beichuan) and (2) raw data for building feature datasets of
influencing factors on landslide susceptibility. Data are also labeled with names, types
(raster or vector), uses, and sources, as Table 1 shows.

Table 1. Data name, type, usage, and detailed origin of each input.

Data Name Type Spatial
Resolution Uses of Data Source

UAV Images Raster 2 Landslide
interpretation \

Landslide points Vector \ Test result
verification

Sichuan General Geological and
Environmental Monitoring Station

Geographic data Vector 1:250,000 Extraction of roads
and rivers National Geomatics Center of China

Digital
elevation model Raster 30 Extraction of slopes,

aspects, etc. Geospatial Data Cloud

Geological data Raster 1:250,000 Extraction of
structural line

Bureau of Geological Survey of
Sichuan Province

Based on difference between landslide points and surroundings in spectra, texture,
shape, and indirect interpretation keys, we visually interpreted landslide images of Be-
ichuan. Landslide sites have different reflexivity in comparison to surrounding vegetation
and are always colored bright white; landslide sites are usually dustpan-, strap-, or ellipse-
shaped and can also be irregular; and compared to slide zones, the sediment of landslides
is rougher in texture [19,20]. The interpretation result is shown in Figure 2.
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2.3. Influencing Factors

The proper selection of influencing factors is the first and foremost step in landslide
susceptibility prediction. In other words, the precision of factor selection decides upon
the prediction accuracy of the final model [21]. This study holds the following princi-
ples: (1) relevant experiences of selections by researchers in previous studies and (2) data
accessibility [22]. We classify factors into geological, topographical, anthropogenic, and
hydrological instances, and Figure 3 shows the primary and secondary classifications.
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For topographical factors, secondary factors include elevation, slope gradient, slope
aspect, land surface curvature, etc. Different elevations (Figure 4a) correspond to diver-
gent vegetation and rainfall, with dissimilar human activity that is usually distributed
in steps [23]. Slope gradient (Figure 4b) has the most recognized impact on landslides,
reflected in the varied stability of slopes with each gradient and the fact that larger gra-
dients tend to have sediments sliding downwards due to greater gravitational potential
energy [24]. Slope aspect (Figure 4c) refers to the direction in which the front face of a
slope is facing. Different slope aspects receive different intensities of solar radiation, which
affects the evaporation of water from the slope, the degree of vegetation cover, and so on,
resulting in differences in the degree of weathering and the physicochemical properties of
the rock and soil bodies on the slope [25]. Curvature (Figure 4d) is a topographic factor
that reflects the geometric characteristics of slopes and affects landslides primarily by
controlling erosion processes and surface runoff [26]. Topographic relief (Figure 4e) is
the elevation difference between the highest and lowest points in a particular sector and
describes regional topography at a macroscopic scale [27]. While elevation reflects only
regional changes in altitude, topographic relief represents variation in regional contour and
thus can evaluate the degree of regional earth cut [28].

Distance to tectonic lines (Figure 4f) is a commonly used geological influencing factor
for landslide susceptibility assessments [29]. Within a certain range, rocks closer to the
tectonic line have higher discontinuity and looser soil bodies and so are more likely to lead
to landslides. The hydrological factor of rivers (Figure 4g) affects slopes from three aspects:
erosion from the river to the bank can lead to an overhanging slope toe and reduce stability;
the river also leads to the saturated state of slope soil and reduces the shear strength of
the soil body; and the cyclic rise and fall of the river can cause serious fragmentation of
slopes at the bank. Therefore, the distance to rivers is another popular choice of influencing
factor [30,31]. The spread of landslides on roadways in mountainous areas appears to
be frequent because constructions involving mountain removal alter the stress state of
the slope and disrupt its stability. Hence, distance to roads is considered in susceptibility
investigations and is taken as an anthropogenic factor by this study [32].
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3. Methodology
3.1. Dataset Establishment
3.1.1. Mapping Unit for Susceptibility Modeling

The selection of assessment units is the foundation of building datasets, and it decides
the applicability of the prediction model. Erener and Düzgün (2018) assorted assessment
units into four categories: pixel (grid unit), slope unit, geomorphological unit [33], and
homogeneous condition unit, among which grid modeling took place in about 86.4% of
the studies (Reichenbach et al., 2018) [34]. Furthermore, considering the fact that deep
learning models process pixels fast and efficiently, regular grid units are widely applicable
to heterogeneous data with multiple sources and scales, and as it is the most utilized unit in
susceptibility assessments, a regular grid was chosen as the assessment unit of this study.

Meanwhile, digital elevation model (DEM) data (from which several indicators can be
derived) for use in assessment have a precision of 30 × 30 m. To simplify data processing,
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we zoned the modeling area of Beichuan into 3,416,811 assessment raster units with regular
30× 30 m grids. Then, the vector boundary of landslide hazards in Beichuan from detailed
interpretations was layered over the grids. As Figure 5 shows, each grid with at least 50% of
its area in the landslide boundary is considered as a positive dataset and valued as 1; each grid
with less than 50% of its area in the boundary is labeled as negative and valued at 0. Statistics
on landslide hazards in the region show that for small-scale landslides, the actual area of the
landslide is 1–2 pixels smaller than the estimated area based on pixels, and for large-scale
landslides the actual area of the landslide is 3–4 pixels smaller than the estimated area based
on pixels. Similarly, the testing area of Mao is divided into 4,267,680 grids of 30 × 30 m.
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3.1.2. Construction of the Dataset

As the different prediction models needed to be trained and validated, a dataset for
landslide susceptibility prediction was needed. All of the landslide datasets consisted
of landslide attribute data (landslide or non-landslide) and the attribute values of the
influencing factors of the occurrence of landslides. The impact factors were used as the
model parameters of the susceptibility prediction models, and the occurrence or non-
occurrence of a landslide was the prediction target of the prediction models [35]. For a
balanced dataset, this study counts landslide grids and stochastically selects the same
number of non-landslide grids in Beichuan. The dataset is composed of 39,931 grids of each
category and is divided into training and validation sets by a proportion of 7:3. The training
set with 55,904 grids was for modeling and the validation set with 23,959 grids was for
assessing the model. Figure 6 illustrates the allocation of attributes and the final dataset.
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3.2. Modeling Methods
3.2.1. Support Vector Machine (SVM)

Support vector machine (SVM) is a statistics-based machine learning model, primarily
employed in classifications and regressions [36]. The underlying principle of the SVM is
to draw a hyperplane to classify training data and to maximize separation. A margin in
SVMs refers to the minimum distance from data points to the hyperplane, and a larger
margin infers a more generalizable model [37]. Therefore, the ultimate goal of the SVM is a
classifier with the greatest margin, i.e., the optimal hyperplane.

Assume that training dataset A has a dataset set Xi, in which i = 0, 1, 2, . . . , m and
that Xi contains multi-dimensional vector inputs. Assume yi ∈ {0, 1} as the output and
m as the number of training datasets. SVM training to find the optimal hyperplane can be
expressed as

wx + b = 0, (1)

in which w is the normal vector, x is a point on the hyperplane, and b is a constant. When
w and b are optimized, there is an optimal hyperplane. The optimal hyperplane can be
determined through the following optimization problem:(

minimize
w, b, ξ

)
:

1
2

WTW + C
h

∑
i=1

ξi, (2)

which is constrained by yi
(
wTx + b

)
≥ 1 − ξi. W is the weight vector, controlling the

separating direction of the hyperplane; h is the number of points in the SVM; ξi is the
slack variable; and C > 0 is the punishment parameter, whose value is proportionate to
the punishment. The approaches thus far provide a solution to a training dataset in high-
dimensional space, but the datasets are to be transformed into such a space. On account
of this, the SVM introduces a kernel function of K

(
xi, yj

)
to nonlinearly map the low-

dimensional vector to a high-dimensional space, making it available for linear analyzation
in high-dimensional spaces. Popularly used kernels at present include linear, polynomial,
radial bases, and sigmoid functions.
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3.2.2. Deep Neural Network (DNN)

Deep neural network (DNN) is a deep learning algorithm based on the learning mode
of the human brain, proposed by Hinton et al. [38]. The DNN evolved from the artificial
neural network (ANN) and is distinguished by multiple hidden layers and neuron nodes
rather than only one layer in the ANN [39]. The hidden layers of the DNN perform deep
non-linear transformation on features from the input layer and convert the initial features
to a high-level feature structure; neuron nodes can extract the essential common features of
the entire dataset from a few training datasets and are particularly capable of modeling
complex data [40]. The DNN operates by (1) assigning correct input data to corresponding
targets, (2) introducing a loss function to evaluate deviation between the network prediction
and true targets, and (3) training consecutively for enough epochs to generate weights
minimizing the loss. A DNN is composed of an input layer, hidden layers, and an output
layer. The model of this study has 8 neurons in the input layer, 512, 1024, 1024, 2048, and
2048 neurons in its 5 hidden layers, and 2 neurons in the output layer, with the activation
function of a rectified linear unit (ReLU), as shown in Figure 7.
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3.3. Evaluation of Model Accuracy

After modeling, comparing the accuracy of different prediction models is necessary to
select the one that is most accurate as a base model for upcoming transfer learning. This
study uses the frequency ratio and ROC curve as criteria to comprehensively evaluate
prediction accuracy.

The ROC curve stands for the receiver operating characteristic curve. Taking the binary
classification of this study as an example, four types of outputs are present when putting
the dataset, labeled as positive (P) or negative (N), into the trained model: labeled positive
and predicted positive, i.e., true positive (TP); labeled positive and predicted negative, i.e.,
false negative (FN); labeled negative and predicted positive, i.e., false positive (FP); and
labeled genitive and predicted negative, i.e., true negative (TN) [41–43].

Defining sensitivity, or the true positive rate, as TPR = TP
P ; and specificity, or the true

negative rate, as TNR = TN
N , the ROC curve then displays a quantitative relationship of

sensitivity against the FN rate (FNR = 1 − TNR) at each threshold. Ideally, curves at the
top have a lower FP rate ( FPR = 1 − TPR) [44]. When curves intersect, the area under
curve (AUC) is calculated for evaluation:

AUC =
∫ dTPR

dFPR
, (3)

where the AUC ranges from 0 to 1, and a higher value usually describes better performance.
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3.4. Transfer Learning Theory

A deep learning model improves itself by consecutive training on an input dataset; the
trained model can precisely perform classification or division on the test data, and the level
of optimization directly impacts the test results [45]. Currently, the advancement of deep
learning is limited from three aspects: a large labeled dataset is required for training and
parameter updating, but manual labeling costs a great amount of time and labor in reality;
complete iterations of training based on existing frameworks consume considerable time
and computation due to large parameters; and models recognize by learning the features of
a particular area whereby re-training is necessary once relocated [46,47]. Transfer learning
is thus proposed to enable deep learning models to apply previously learnt knowledge to
relevant tasks with slight adaption and to avoid re-training on basic rules.

Two essential concepts are to be defined before discussions on transfer learning:
domain (D) and task (T). D consists of feature space X and margin distribution P(x), where
x ∈ X. Similarly, T is composed of labeled dataset Y and classifier f (x), where y ∈ Y.
The core of transfer learning is to have source D, source T, target D, and target T, and utilize
knowledge learnt from solving source T in source D, to solving target T in target D [48].

There are approaches to categorizing transfer learning methods from different per-
spectives. From where source and target data are labeled, categories can be refined as [49]:

I. Inductive transfer: the source and target share the same domain, but different tasks;
the source can be labeled or not, and the target needs to be labeled.

II. Transductive transfer: the source and target have different but related domains and
the same task; the source is labeled, and the target is unlabeled.

III. Unsupervised transfer: the source and target have different domains and tasks, usually
for clustering, dimensionality reduction, density estimation, etc.

This study employs transfer learning, and no training on the target assessment model
is carried out. The landslide influencing factor layer is directedly fed into a pre-trained
benchmark model, and the model outputs the prediction of each unit with feedforward.

4. Results
4.1. Covariance Diagnosis

Pre-selected influencing factors are not totally independent from one another, and
covariance can reduce the accuracy of predictions. Therefore, multi-covariance assess-
ment needs to be performed on pre-selected factors before modeling. When there is
multi-covariance, the importance of factors is affected and disrupts the interpretation and
understanding of features; when there is no multi-covariance, the factors can be used for
filtering and training. The assessment involves tolerance (T) and the variance inflation
factor (VIF) [50,51] calculated as

VIF =
1

1 − A2 =
1
T

, (4)

in which A2 is the variance of factors. When VIF > 10 or T < 0.1, there is a covariance
issue in the selection. The covariance is evaluated by SPSS, and T with VIF calculation is
shown in Table 2.

Table 2. Tolerance and variable inflation factor of influencing factors.

Influencing Factor T VIF

Elevation 0.337 2.966
Slope 0.109 9.211

Aspect 0.994 1.006
Curvature 0.996 1.004

Topographic relief 0.109 9.181
Distance to roads 0.141 7.068
Distance to rivers 0.156 6.418

Distance to tectonic lines 0.916 1.092
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Overview of Table 2: the VIF of the eight selected factors ranges from 1.004 to 9.211,
with the maximum on the slope (9.211) and the minimum on the curvature (1.004); the T of
the eight factors ranges from 0.109 to 0.996, with the maximum on the curvature (0.944)
and the minimum on the slope and topographic relief (0.109). The value of the slopes has a
direct effect on the development of landslides. The greater the slope gradient, the greater
the consequent change in stresses within the slope. Also, the slopes control the way the
slope deforms and destroys, affecting the size and type of landslides. Topographic relief,
also known as relative elevation difference, refers to the difference in elevation between the
highest and lowest points in a given area and is a macro-indicator of the characteristics of
topographic change. Slope gradient and terrain relief are of great significance in macro-
scopic studies like landslide susceptibility prediction. Thus, these two factors are retained
in the subsequent modeling. The selected factors have all of their values within the critical
value and so are considered weakly or uncorrelated with one another and participate in
model training.

4.2. Application of the SVM and DNN Models

We coded with PyCharm, an integrated Python development environment (IDE),
and put randomly divided training datasets into the code. When a landslide occurs, the
dependent variable is assigned to 1. Additionally, the detailed hardware and software
environment configuration required for this study is shown in Table 3.

Table 3. Hardware and software platform configuration.

Hardware/Software Parameters

CPU Intel Xeon E5-2680 v3 (Intel, Santa Clara, CA, USA)

GPU NVIDIA GeForce RTX 2080Ti
(NVIDIA Corporation, Santa Clara, CA, USA)

Operating Memory 256 GB
Total Video Memory 60 GB

Operating System Ubuntu 18.04
Python Python 3.6

IDE PyCharm 2020.1 (Professional Edition)
CUDA CUDA 10.0

CUDNN CUDNN 7.6.5
Deep Learning Architecture PyTorch 1.2.0

Among the four aforementioned SVM kernels, the radial basis kernel, also known as
the Gaussian kernel or the squared exponential (SE) kernel, can realize non-linear mapping
with satisfactory performance, can effectively identify both low- and high-dimensional
data, and can maintain excellent classification even when processing only a few samples.
Therefore, the radial basis kernel has the hyperparameters C and γ. Punishment C rep-
resents the tolerance of errors, and a higher value indicates lower tolerance with a better
likelihood of overfitting; γ is a default hyperparameter of the radial basis kernel deciding
on the distribution of mapped data, and a lower value indicates more support vectors with
greater smoothing, affecting the accuracy of both the training set and the test set. On that
account, this study sets the range of C as (2−5, 215) and that of γ as (2−15, 25) and optimizes
them by five-fold cross-validation with grid search to determine the optimal C of 1 and
the optimal γ of 2. Grid search has two strengths: obtaining the global optimum and the
independent C and γ to facilitate parallel computation. The feature weights are shown
in Table 4.

For the DNN model, the overall structure included data input, model construction,
and data output. Model computation minimizes the error between the output probability
value and the labeled value of the input data through a series of iterative operations.
The parameter values are presented by Table 5.
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Table 4. Feature weights calculated by the SVM.

Factor Weight

Elevation 2.241
Slope −5.076

Aspect −0.993
Curvature −6.219

Topographic relief 7.321
Distance to tectonic lines −5.112

Distance to rivers 0.091
Distance to roads 0.547

Table 5. DNN model parameters setting.

Parameters Values

Epochs 500
Dropout 0.5

Learning rate 0.001
Number of hidden layers 5

Dense connection 512/1024/1024/2048/2048/2
Activation function ReLU

Optimizer Adam
Loss function Binary cross-entropy

Every prediction raster layer was treated as a single-band image and converted to
American Standard Code for Information Interchange (ASCII) format, which was input into
the SVM and DNN models to calculate the probability of landslide occurrence in every
image unit, and the results were normalized to obtain landslide susceptibility index maps
(Figures 8a and 9a). The calculated index values were divided into five grades using the equal
interval method. The landslide susceptibility zoning map is shown in Figures 8b and 9b.
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4.3. Validation of Models

The accuracy of the results evaluated by a confusion matrix, as shown in Equations (5)–(9),
which contains precision, accuracy, recall, specificity, and F1-score [52], and higher values
suggest better performance.

Precision =
TP
P

(5)

Accuracy =
TP + TN

P + N
. (6)

Recall =
TP

TP + FN
. (7)

Speci f icity =
TN

TN + FP
. (8)

F1 − score =
2 × (Precision × Recall)

Precision + Recall
. (9)

Validating with randomly selected landslide and non-landslide grids of the same
number in Beichuan, the DNN model (accuracy = 88.6%, precision = 91.3%, recall = 94.8%,
specificity = 87.8%, F1-score = 93.0%, and AUC = 0.943) had the best test results for all of
the indicators (Table 6 and Figure 10).

Table 6. Statistical results of the different models.

Indicators SVM DNN

TP 10,521 11,352
TN 8852 10,516
FP 3127 1463
FN 1458 627

Accuracy (%) 77.1 88.6
Precision (%) 80.9 91.3

Recall (%) 87.8 94.8
Specificity (%) 73.9 87.8
F1-score (%) 84.2 93.0
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the AUC values of the two models are greater than 0.93, which indicates that the model
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evaluation is very good; the AUC values of the two models are 0.878 and 0.943. In order of
smallest to largest: AUCSVM < AUCDNN .

4.4. Prediction of Landslide Susceptibility in Mao County Based on Transfer Learning

This section computes pixelwise landslide susceptibility on Mao with two trained
baseline models (SVM and DNN) by transfer learning. When transferring learning to the
SVM, the raster layer of influencing factors is converted straight to ASCII code and imported
into the model as a test set, while the DNN loads trained weights into the assessment layer
and makes its predictions. Key codes of transfer learning with pre-trained weights are
shown in Table 7, and the susceptibility prediction of Mao is illustrated in Figures 11 and 12.

Table 7. Key codes in the prediction process of deep learning models.

Aim Code Block

Importing factors of Mao data = pd.read_excel(“maoxian.xlsx”)
Reading all data in the set data_model = data.values

Importing the pre-trained model model = load_model(“model_best.h5”)
Model prediction data model predict = model.predict(data model)
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5. Discussions
5.1. Comparison of Susceptibility Zoning Models in Mao

Landslides recorded in the field at the General Station of Geological and Environmental
Monitoring in Sichuan Province, China, were predicted separately from untrained direct
migration to obtain a comprehensive comparison of the prediction results of migration
by the two modeling methods that are presented in this section. We present the overlay
analysis of landslide susceptibility zoning results for Mao County. We can judge whether
the landslide susceptibility evaluation results are reasonable or not by counting the results
of landslide proportion, graded area proportion, and landslide density under each model.
The calculation formula of landslide density is shown below.

This section delivers a full-scale comparison of the prediction results of the two
transferred models. Field records of landslide points from the Sichuan station of the China
Geological Environment Survey are overlay analyzed with comparison to zonal predictions
from the transferred model. We calculated the percentage of landslides and graded areas
of different zoning levels, and evaluated the reasonableness of the prediction result by
calculating the landslide density by:

Ri =
Li
Si

, (10)

where Li is the percentage of the landslide points in susceptibility zone i, and Si is the
ratio of the area of susceptibility zone i to the total area of the study area. Ri is the ratio
of Li over Si, and the values follow the following order: RI < RI I < RI I I < RIV < RV ,
where I is very-low-landslide-susceptibility area, II is low-landslide-susceptibility area,
III is medium-landslide-susceptibility area, IV is high-landslide-susceptibility area, and V
is very-high-landslide-susceptibility area. The results of the zonal statistics for the different
models are presented in Table 8.

Table 8. Zonal statistics for the different models.

Model Zoning Level Percentage of
Landslides (%)

Percentage of
Graded Area (%) Ri

SVM

I 4.4 49.5 0.09
II 13.6 17.1 0.79
III 17.7 11.8 1.5
IV 26 10.6 2.45
V 38.3 11 3.48

DNN

I 1.5 47.7 0.03
II 0.1 3.1 0.03
III 0.3 6.4 0.05
IV 13.3 18.7 0.71
V 84.8 24.1 3.52

From the percentage of field records of landslides in different models, we can summa-
rize that (1) the proportion of landslide field point zoning overall grows in proportion to the
severity of the susceptibility zoning level, and selected models assign fewer areas into level
II and III in comparison with others; and (2) the statistics of zoning results on different test
objects by both models satisfy the qualification requirements of susceptibility zoning, and
the frequency of recorded points increases with the growing susceptibility level. The DNN
demonstrates better performance than the SVM in the very-high-landslide-susceptibility
area and can more finely distinguish in the highly susceptible areas, i.e., it has a smaller
proportion of high-landslide-susceptibility areas and a higher percentage of landslides.
Conclusively, the DNN model is distinctly stable in susceptibility area zoning and is the
most apt model for transfer learning among all of the selected models.
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5.2. Analysis of Landslide Susceptibility Prediction Results in Mao

We take the predicted zonal map of landslide susceptibility in Mao as a foundation of
our study. Given that zoning differs with each baseline model, we took overlapping areas
of two sets of predictions, stochastically generated 10 sampling points in each overlap,
and obtained 50 random points in total for the five levels. Figure 13 displays the spatial
distribution of sampling points.
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We took two sampling points in the overlap of each level score features from the
assessment layer in correspondence to the points (Table 9) and carried out a detailed analysis.

Table 9. Demonstration of the features of some of the sampling points.

Model Longitude Latitude Prediction Susceptibility Zoning

SVM
103◦34′53.4′′ 32◦12′20.952′′

0.002964

Very lowDNN 0.229454
SVM

103◦26′6′′ 32◦10′55.6314′′
0.030296

DNN 0.196198

SVM
103◦53′32.9994′′ 31◦54′3.456′′

0.118348

Low
DNN 0.301761
SVM

103◦51′50.04′′ 31◦51′42.948′′
0.133782

DNN 0.327504

SVM
103◦35′16.08′′ 32◦7′11.7474′′

0.310471

Moderate
DNN 0.47144
SVM

103◦39′8.2794′′ 32◦3′23.6154′′
0.325105

DNN 0.493688

SVM
104◦0′48.24′′ 31◦41′39.264′′

0.524868

HighDNN 0.622887
SVM

103◦44′50.2794′′ 31.70707
0.527368

DNN 0.620217

SVM
103◦42′17.9994′′ 31◦52′3.9′′

0.77524

Very HighDNN 0.91976
SVM

103◦51′18′′ 31◦42′9.324′′
0.7722

DNN 0.880981
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6. Conclusions

This study takes Beichuan County, where landslide disasters are more seriously de-
veloped, as a typical study area in a typical high mountain valley area in northwestern
Sichuan. The landslide susceptibility assessment model was constructed by combining
remote sensing technology (RS), geographic information system (GIS) technology, and
machine learning technology (ML) from both machine learning and deep learning. The
susceptibility assessment model interprets in detail the landslides of Beichuan, and the
model was migrated to the neighboring county of Mao to obtain its susceptibility zoning.
We conclude the following outcomes of this study:

1. The DNN model (accuracy = 88.6%, precision = 91.3%, recall = 94.8%, specificity = 87.8%,
and F1-score = 93.0%) has the best performance in all criteria.

2. The landslide susceptibility of Mao County after transfer learning successfully proves
that the DNN model can improve the zoning of very-high-landslide-susceptibility
areas, provide theoretical support for subsequent landslide investigations, and reduce
the workload involved in fieldwork.

3. The transfer learning method proposed in this paper shortens the work process of
landslide susceptibility evaluation and is an unsupervised prediction tool for areas
without landslide interpretation data, providing new ideas for landslide susceptibility
evaluation. In the future, this research idea can be applied to other areas such as
flooding and fire.
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