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Abstract: Vertical greenery systems (VGS) have been proposed as a nature-based solution to mitigate
the adverse effects of urban heat islands and climate change in cities. However, large-scale VGS are
costly and require ongoing maintenance, typically carried out manually through trial and error based
on professional experience. Advanced management is essential for the sustainability of VGS due to its
limited accessibility and associated costs. To address these challenges, we examined the use of remote
sensing methods for outdoor VGS monitoring as a basis for a precision agriculture approach for VGS
management and maintenance. This study presents the first ongoing monitoring of real-scale VGS
using thermal, hyperspectral, and RGB vegetation indices. These indices were employed for the early
detection of vegetation stress, focusing on two case studies exhibiting visible yellowing symptoms.
Through the application of unsupervised classification techniques, stressed pixels were successfully
detected 14–35 days before visual yellowing, achieving an accuracy of 0.85–0.91. Additionally,
the thermal index provided valuable information regarding the spatial distribution of watering
along the VGS. Stress maps based on noninvasive methods were demonstrated, forming the basis
of a spatial decision support system capable of detecting issues related to plant vitality and VGS
irrigation management.

Keywords: vertical greenery systems (VGS); green wall; monitoring VGS; VGS maintenance; nature-
based solution; VGS health

1. Introduction

Vertical greenery systems (VGS) have gained popularity in recent decades as a nature-
based solution and adaptation method for the adverse effects of urbanization and climate
change [1]. In addition to their aesthetic benefits, VGS contribute to both indoor and
outdoor environments by improving air quality [2–4], creating a milder microclimate [5,6],
reducing energy consumption [6–8], and noise pollution [9,10]. Furthermore, VGS may
enhance the psychological well-being of building residents or users [11,12].

However, covering buildings with VGS presents significant challenges. The instal-
lation, operation, and maintenance of VGS can be complex and costly [13]. Issues such
as irrigation problems or plant damage may necessitate specialists’ expertise and the use
of cranes, further escalating expenses [14]. Moreover, poorly maintained VGS can lead to
dissatisfaction among residents and passersby and can increase fire risk [15], undermining
the potential benefits of using VGS as an adaptive solution. Therefore, the continuous
monitoring of VGS is crucial, especially since the plants are often difficult to access, and
conditions may vary significantly along the VGS [16]. In situ sensors provide valuable
continuous monitoring of VGS, but the spatial distribution of the vegetation status cannot
be easily achieved [17].

The growing demand for efficient VGS monitoring methods to facilitate proper main-
tenance has arisen as VGS becomes more prevalent in urban areas, along with other
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green and blue infrastructures [18]. Currently, irrigation in commercial VGS is often deter-
mined through trial and error, and VGS health monitoring is primarily based on expert
observations conducted periodically [19]. To address the complexities of large-scale VGS
maintenance, information technologies (IT), the Internet of Things (IoT), and advanced
monitoring technologies may offer valuable assistance [20].

Adopting remote sensing and precision agriculture methods for VGS can greatly
improve ongoing plant monitoring and aid in the early detection of plant stress. Early
detection of changes in plant health is critical for successful agricultural growth [21].
Hyperspectral (HS) and thermal (TIR) imaging are well-established methods in agriculture
and natural areas [22–24]. The interaction of objects with light at different wavelengths
determines their spectral characteristics. For instance, plant pigments exhibit distinct
features, such as chlorophyll absorption bands in the blue and red regions. Healthy
plants generally have lower reflectance in the visible bands and higher reflectance in
the near-infrared (NIR) bands than plants under stress. HS imaging can identify subtle
differences in vegetation that may not be visible to the human eye. This technique has been
successfully applied to various crops, including estimating biochemical and biophysical
properties; evaluating nutrient and stress status; classifying or detecting crop types, weeds,
and diseases; and investigating soil characteristics [25,26]. Nevertheless, HS cameras are
expensive, and analyzing tens to hundreds of bands in the visible and near-infrared regions
can be computationally intensive and time-consuming. Therefore, vegetation indices (VIs)
are commonly used to quantitatively and qualitatively highlight specific vegetation features,
such as chlorophyll and water content, based on a combination of reflectance at two or
more wavelengths in the electromagnetic spectrum [27]. TIR imaging is often employed to
assess temperature differences indicating stress derived from diseases [28] or water deficits
in crops [29]. Furthermore, TIR imaging allows targeted interventions and optimization of
irrigation strategies [30–32].

The increasing focus on vertical farming has spurred the advancement of IoT smart
sensing technology. This includes a range of sensors implemented to track variables such
as room temperature, light intensity, humidity levels, and soil nutrition [33]. Additionally,
cable-driven robot prototypes have been developed to monitor and care for vegetation
in hard-to-reach areas [14,34]. Some studies have also demonstrated the application of
image processing techniques to identify fruits [34], employ Machine Learning Algorithms
for detecting tomato diseases [35], and support decisions on whether the plant can be
harvested or not using a simple NDVI threshold [36]. Nonetheless, progress in monitoring
outdoor VGS remains limited.

Gunawardena and Steemers [20], conducted a study on the main maintenance chal-
lenges in outdoor VGS based on 12 European case studies. They found that real-time stress
detection, and automated response mechanisms were not operational in any of the installa-
tions inspected, despite the evident need for such capabilities. While several studies have
estimated the water requirement for VGS irrigation management [19,37,38], the utilization
of remote sensing in VGS studies is limited. Pérez-Urrestarazu et al. [37] found that using
a thermal camera could be valuable in determining substrate moisture to optimize VGS
irrigation. Nevertheless, in VGS studies, thermal imaging was primarily performed to
assess the wall and foliage skin temperatures [39,40], which could affect the outdoor and
indoor microclimate [6].

While some studies have explored the use of hyperspectral imaging in green roofs [41,42], its
application in VGS is still at a preliminary stage. Yuan et al. [43] monitored the water stress
of an indoor green wall using the “triangle method”, which includes surface temperature
and the normalized difference vegetation index (NDVI). Helman et al. [17] used HS and TIR
cameras for spatially continuous monitoring as part of an integrated system that examines
the benefits of an indoor green wall. They utilized HS imaging to separate plant species
through supervised classification and established correlations between the HS VIs and
plants’ CO2 assimilation rate. They also demonstrated a negative correlation between
TIR images and stomatal conductance. To the best of our knowledge, except for a few
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studies that monitored VGS skin temperature, remote sensing tools in VGS studies have
been applied only to indoor environments, which are much more homogenous in terms of
illumination and climate.

Continual monitoring of VGS holds paramount importance for maintenance, encom-
passing vegetation health and the fine-tuning of irrigation and fertilization systems [20].
Automated monitoring can enhance performance and facilitate decisions in managing VGS.
Detecting issues early in vegetated walls can avert irreversible situations necessitating
extensive plant replacement. The primary objective of this study is to deploy ground-based
remote sensing methods for the assessment of outdoor VGS health. While hyperspectral
and thermal cameras offer advanced capabilities, our focus is on demonstrating the practical
potential of these methods for monitoring VGS. This approach involves the establishment
of a time series comprising RGB, HS, and TIR indices. Furthermore, we used unsupervised
classification to detect stressed vegetation in early stages as a basis for a spatial decision
support system for real-scale VGS. This study highlights the potential use of remote sensing
in enhancing VGS monitoring.

2. Materials and Methods
2.1. Study Area

The study was conducted on real-scale VGS as part of the BIU-VGS project at Bar
Ilan University (32.067, 34.842) in Mediterranean climate Ramat Gan, the central region
of Israel (Figure 1). The study site comprised three identical buildings in the southern
campus, which replicated two east–west oriented street canyons. Each building consisted
of five floors, with an overall height of 20 m. The canyons had concrete walls facing north
and south. During the period from 3 to 18 November 2019, planters were installed on two
parallel vertical walls in one of the canyons, covering approximately 450 m2 of vegetated
area for each wall. Two VGS technologies were utilized—a green/living wall (GW) on the
eastern shafts and a vertical forest (planter boxes attached to the wall) on the remaining
walls and the western shafts. The GW was constructed using plastic modules containing a
blended soil substrate for planting (40% peat, 40% coconut, and 20% perlite). The case study
focused on the GWs located on two vertical concrete walls—one facing north (building 212)
and the other facing south (building 213), as shown in Figure 1b. Each GW had dimensions
of 11 m in height and 2.7 m in width, covered with plant species Viola hederacea (Figure 1c)
and Hedera helix (Figure 1d).
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Figure 1. The study site. (a) Location (yellow star) of the BIU-VGS project in the eastern Mediterranean.
(b) Close-up of the study site. The location of the north and south-facing GWs, as well as air
temperature (Ta) and relative humidity (RH) sensors (in red circles) are indicated. (c) GW species
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Viola hederacea. (d) GW species Hedera helix. (e) Weekly water accumulation of the six irrigation pipes
at the north-facing (212) and south-facing GWs (213) and weekly mean air temperature (Ta) at the
center of the canyon (dotted red line).

The irrigation and fertilization of the GW were provided through an automated system
based on scheduled programs planned by an irrigation expert. Each GW contained six
irrigation lines, with drippers placed every 15 cm along the width of each line. Irrigation
was applied at midnight either every one day (during summer) or every two days (during
winter). Figure 1e presents the weekly average water accumulation during the study
period. The quantities were adjusted based on seasonal variations and, in rare instances, an
expert made decisions to decrease or increase water amounts based on direct observations
made on-site. The average weekly quantities during May–October were 1.18 m3 (north-
facing GW) and 1.56 m3 (south-facing GW), while irrigation significantly decreased during
November–December to weekly average quantities of 0.16 m3 (north-facing) and 0.23 m3

(south-facing).

2.2. Data Acquisition

This study was conducted over 8 months between May and December 2020. GWs
were monitored every 1–3 weeks using HS and TIR cameras. The cameras were mounted
on a 1.5 m height tripod and manually operated from a fixed point on the ground, approxi-
mately 15 m away from the GW (Figure 2a,b). All images were collected during midday
(11:00 A.M.–2:00 P.M. LT) under clear sky conditions.
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Figure 2. Data acquisition at the study site. (a) Locations (rectangles) of the HS and TIR shooting
of the north (blue) and south (orange) facing GWs. (b) The thermal camera on a tripod toward the
north-facing GW at the study site. (c) The timing of the data acquisition in this study, including
the yellowing events that were studied for early detection of stress (see Section 2.4) and COVID
quarantines that affected mainly the collection of TIR data.
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The HS images were obtained using a Specim IQ® camera (Specim–Spectral Imaging,
Oulu, Finland) with a spectral resolution of 7 nm and 204 bands across the wavelength range
of 397–1003 nm. Each image from the Specim IQ® camera was a square of 512 × 512 pixels
with a field of view (FOV) of 31◦, providing a spatial resolution of 3 cm/pixel at the GW.
All images were normalized using a 99% barium sulfate white reference (provided with the
camera). Due to the vertical alignment, large scale, and limited accessibility of the VGS, the
camera operated in “custom” mode, where the white reference was recorded and saved to
the camera before the actual VGS recordings. The white reference was placed at the lower
area of each GW and recorded every 15 min.

A FLIR A655sc (FLIR Systems, Wilsonville, OR, USA) camera was used for collecting
TIR images. This camera is an uncooled microbolometer with 640 × 480 pixels, sensitive
to radiation in the range of 7.5–14.0 µm. It is equipped with a lens with a FOV of 45◦ and
provides a spatial resolution of 4 cm/pixel at the GW. The camera has a noise equivalent
temperature difference (NETD, i.e., thermal sensitivity) of less than 30 mK and a thermal
accuracy of ±2 ◦C or ±2% of the reading. The temperature values acquired by the cam-
era were adjusted using FLIR Research IR software (version 4.40.9.30) by setting the air
temperature (Ta), relative humidity (RH), and target distance. An emissivity of 0.95 was
used to correct all thermal images. Due to technical issues with the thermal camera during
COVID-19 quarantine restrictions, intermittent gaps occurred in the TIR time series data.
Ta and RH were measured at 30 min intervals using HMP 155 Vaisala sensors with an accu-
racy of ±0.2 ◦C for Ta and ±1% for RH. These measurements were stored in cloud-based
storage. Sensors were placed in three locations: 10 m from the GWs in the middle of the
street canyon and 1 m near each GW (see red circles in Figure 1b). The timing of the data
collection during this study is presented in Figure 2c.

2.3. Image Processing

Figure 3 illustrates the image processing stages. The pre-processing of HS and TIR
images involved their projection to each other using ArcGIS Pro software (version 3.0) and
the extraction of Regions of Interest (ROIs) of approximately 13.5 m2 using the raster clip
tool. The two plant species in the GW were separated (classified) due to their different
phenological cycles, canopy closure characteristics, and vegetative properties. We employed
the spectral angle mapper (SAM) supervised classification in ENVI software (version 5.6.1)
to create a species mask for each GW (Figure 4). An image with a full green cover and
without visible stress symptoms was selected for this purpose (north-facing: 14 September;
south-facing: 24 August). Later, this mask was utilized to separate species in the HS
and TIR time series analysis. After these pre-processing stages, the image processing
flow was carried out using Python. The HS images were normalized (as described in
Section 2.3.1), and all images (HS and TIR) were resized based on the smallest pixel found
in each orientation time series.

2.3.1. Hyperspectral (HS) Image Processing

In the HS images, the white reference was positioned at the lower part of the GW. To
eliminate illumination differences along the GW, a pixel-based spectrum normalization
(sometimes referred to as Norm-1) was performed as follows:

R̂p
i = R

p
i /∑204

j=1 Rp
j (1)

where p is the pixel, and i and j are the bands. In the normalization process, each spectral
band of a pixel is divided by the sum of all the pixel’s spectral bands, ensuring that the
sum of all bands for a given pixel is equal to 1. This allows for relative comparisons and
analysis of spectral information for the entire image, considering the proportion of each
spectral band within a pixel.

For each species, 12 vegetation indices (VIs) were calculated, as shown in Table 1.
The VIs were organized into categories based on their sensitivity (pigment; leaf structure;
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water content) and their band’s range (VIS-RGB; VIS-HS; NIR + VIS; NIR). For further
analysis, two separate branches were pursued. (a) In the first branch, a kernel technique
was employed. For each VI image, the standard deviation (“STD kernel”) was computed
within 10 × 10 pixels moving window. This process involved iterating over the entire
image, extracting data from each window, and generating a time series of the average STD
kernel values for all VIs separated into species. These time series were used for the ongoing
monitoring of the GWs. (b) In the second branch, a time series of VIs was built. For noise
reduction in each VI image, Gaussian Blurring (size of 5 × 5 pixels) was applied. This is a
smoothing method that removes noise generated by Gaussian distribution [44]. These time
series presented the average value for each VI, separated into species, and were used for
the ongoing monitoring of the GWs and later to examine the potential of early detection of
vegetation stress in VGS (see Section 2.4).

Table 1. Vegetation indices separated into categories according to the VIs sensitivity.

Category Range Index Name Equation Reference

Pigment
VIS (RGB)

r red/(red + green + blue) [45]
G (GRVI) (green − red)/(green + red) [46]

VIS (HS)
PRI ((R531 − R570)/(R531 + R570)) [47,48]

NPQI (R415 − R435)/(R415 + R435) [49]

Leaf structure NIR + VIS

SIPI ((R800 − R445)/(R800 − R680)) [50]
mSR705 (R750 − R445)/(R705 − R445) [51]

RVI nir/red [52]
REIP 700 + 40 × ((((R670 + R780)/2) − R700)/(R740 − R700)) [53]
NDVI (nir − red)/(nir + red) [54]
OSAVI (1 + 0.16) (nir − red)/(nir + red + 0.16) [55]

Water content NIR
WBI R900/R970 [56]

NWI-2 (R970 − R850)/(R970 + R850) [57]
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Figure 4. Masks based on SAM classification for plant separation (ROI in red; mask contour in
magenta) were used in the HS (NDVI, left) and TIR (∆T, right) time series analysis (see Sections 2.3.1
and 2.3.2). (a) North-facing GW (14 September) and (b) south-facing GW (24 August).

2.3.2. Thermal (TIR) Images Processing

Water stress is known to be correlated with stomatal closure, resulting in reduced
transpiration and elevated leaf temperatures above the ambient temperature [58,59]. The
canopy-to-air temperature difference (∆T) is widely used as an indicator of plant health,
heat stress tolerance, or drought stress in crops [60], and is calculated based on the TIR
images as follows:

∆T = Tcanopy − Ta (2)

where Tcanopy is the temperature of vegetation at each pixel and Ta is the air temperature
measured in situ, 1 m from each GW. Generally, if a plant has sufficient water, ∆T ≤ 0,
whereas under water stress, ∆T > 0. Gaussian Blurring (5 × 5 pixels) was applied to the ∆T
images to reduce noise, similar to what was done for the VIs images. The time series of ∆T
were separated into species and used for the ongoing monitoring of the GWs and later for
early detection of vegetation stress in VGS using TIR images.

2.4. Stress Detection
2.4.1. Yellowing Index and Ground Truth

In mid-October 2020 (south-facing GW—213) and mid-November 2020 (north-facing
GW—212), the Viola hederacea plants along the GWs began to turn yellow and eventually
died (Figure 5). In contrast, the Hedera helix plants, which are known as less sensitive plants,
remained green and survived throughout the study and beyond. This period coincided with
COVID-19 quarantine restrictions in Israel, and irrigation and fertilizer were not properly
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managed, likely contributing to vegetation degradation. The yellowing events caused
significant damage to the GW, dissatisfaction among residents and passersby, and required
extensive vegetation replacement using cranes. The time series of the Viola hederacea plants’
yellowing in both GWs are referred to as “yellowing events” in the study.
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To investigate the usage of HS and TIR imaging for the early detection of stress
events in the GWs, the yellowing areas in the time series were detected and delineated.
A “yellowing index” for Viola hederacea was manually created to quantify the percentage
of yellowing at each time step. This process involved visual observation of RGB and HS
images, histogram investigation of yellow and green pixels, and examination of several
RGB chlorophyll detection indices from the Sánchez-Sastre et al. [61] study (see Table A1
in Appendix A). The RGB r index (Table 1) was chosen to represent stressed vegetation.
By setting a fixed threshold (based on histogram properties and visual inspection) of 0.3,
the r index, hereafter referred to as the “yellowing index”, successfully captured yellow (r
index value > 0.3) and green (r index value < 0.3) pixels. The yellowing index was analyzed
for 10 time steps (from 24 September to 21 December at the north-facing GW and from 4
September to 1 December at the south-facing GW). One image per GW, close to the end of
the yellowing event at each GW (14 December at the north-facing GW and 24 November
at the south-facing GW), was selected as the reference image (ground truth) for stressed
(yellow) pixels.

2.4.2. Stress Detection in VIs and Thermal Index Images

To investigate the feasibility of detecting stress events before the visual stage (yellow-
ing) in VGS, we classified the HS VIs and ∆T thermal index images into stressed and green
pixels. For each VI (Table 1) and thermal index image in the 10 yellowing index time steps,
we used an unsupervised Otsu threshold [62] and Multi-Otsu [63] to divide each image
into two or three groups based on the presence of yellow pixels. When minimal or no
yellow pixels were detected in the image (yellowing index < 0.5%), the data was split into
two groups. Conversely, when yellow pixels were already present in the image (the yellow
index was greater than 0.5%), the data was divided into three groups to increase sensitivity
and allow for early detection of pre-yellowed stressed pixels. Separating into two groups
only allowed the differentiation of yellow pixels from other pixels but could not detect the
variance (stressed, non-stressed) in the rest of the image. For each time step, we classified
the pixels as green, stressed, and yellow (if present).

2.4.3. Stress Detection Performance Estimation

To evaluate the performance of the classifiers for early stress detection, we compared
the classified (predicted: under stress or green) pixels from each HS VIs and ∆T index time
step to the reference image (ground truth: yellow or green) and created a confusion matrix.
The matrix was divided into four classes (Figure 6):

True positive (TP): yellow pixels that were correctly predicted as under stress.
False positive (FP): green pixels that were falsely predicted as under stress.
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True negative (TN): green pixels that were correctly predicted as green.
False negative (FN): yellow pixels that were falsely predicted as green.

Remote Sens. 2024, 16, x FOR PEER REVIEW  9  of  24 
 

 

green pixels. For each VI (Table 1) and thermal index image in the 10 yellowing index time 

steps, we used an unsupervised Otsu threshold [62] and Multi-Otsu [63] to divide each 

image into two or three groups based on the presence of yellow pixels. When minimal or 

no yellow pixels were detected in the image (yellowing index < 0.5%), the data was split 

into two groups. Conversely, when yellow pixels were already present in the image (the 

yellow index was greater than 0.5%), the data was divided into three groups to increase 

sensitivity and allow for early detection of pre-yellowed stressed pixels. Separating into 

two groups only allowed the differentiation of yellow pixels from other pixels but could 

not detect the variance (stressed, non-stressed) in the rest of the image. For each time step, 

we classified the pixels as green, stressed, and yellow (if present).   

2.4.3. Stress Detection Performance Estimation 

To evaluate the performance of the classifiers for early stress detection, we compared 

the classified (predicted: under stress or green) pixels from each HS VIs and ∆T index time 

step to the reference image (ground truth: yellow or green) and created a confusion ma-

trix. The matrix was divided into four classes (Figure 6): 

True positive (TP): yellow pixels that were correctly predicted as under stress. 

False positive (FP): green pixels that were falsely predicted as under stress. 

True negative (TN): green pixels that were correctly predicted as green. 

False negative (FN): yellow pixels that were falsely predicted as green. 

 

Figure 6. Illustrations of the confusion matrix structure as used in this study. (a) Process of the cal-

culated area. (b) Confusion matrix for yellow (under stress) and green (healthy) pixels as recognized 

by the ground truth (actual) and the VIs and thermal indices (predicted). 

The metrics that were used to describe the classifiers’ success for early stress detec-

tion based on  the  confusion matrix were: accuracy, precision,  false positive  rate  (false 

alarm), and F1 score. Recall was also calculated for the F1 score calculation. The metrics 

were calculated as follows:   

Accuracy = (TP + TN)/(TP + FP + TN + FN)  (3) 

Precision = TP/(TP + FP)  (4) 

False positive rate (false alarm) = FP/(FP + TN)  (5) 

Recall = TP/(TP + FN)  (6) 

The F1 score, a single-value metric, combines precision and recall using the harmonic 

mean. It considers both false negatives and false positives, making it a useful metric for 

TP FP

FN TN

Yellow

Under 
stress

Green

Green

Actual

P
re

d
ic

ti
o

n

Green and yellow areas 
detected by the 

ground truth

Green and under 
stress areas predicted 

by a VI and ∆"

a b

Figure 6. Illustrations of the confusion matrix structure as used in this study. (a) Process of the calcu-
lated area. (b) Confusion matrix for yellow (under stress) and green (healthy) pixels as recognized by
the ground truth (actual) and the VIs and thermal indices (predicted).

The metrics that were used to describe the classifiers’ success for early stress detection
based on the confusion matrix were: accuracy, precision, false positive rate (false alarm),
and F1 score. Recall was also calculated for the F1 score calculation. The metrics were
calculated as follows:

Accuracy = (TP + TN)/(TP + FP + TN + FN) (3)

Precision = TP/(TP + FP) (4)

False positive rate (false alarm) = FP/(FP + TN) (5)

Recall = TP/(TP + FN) (6)

The F1 score, a single-value metric, combines precision and recall using the harmonic
mean. It considers both false negatives and false positives, making it a useful metric for
imbalanced data [64]. In this study, the F1 score was utilized to assess the classifier’s per-
formance and ensure that the classification results were not merely due to random chance.

3. Results
3.1. Ongoing Monitoring of VGS Using HS and TIR Images

The average value of VIs allowed us to assess the general status of vegetation in VGS
using remote and non-destructive methods. Figure 7 shows the time series of average VIs
values and STD kernel from May to December 2020 for the two species in each GW. In both
GWs, the VIs initially showed stable or minor changes in average values for several months.
However, as the yellow visual symptoms appeared on the plants, there were noticeable
changes in vegetation dynamics, with some VIs showing a rise while others demonstrated
a drop, as well as a rise in standard deviation and STD kernel, all synchronized with the
yellowing event.
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Figure 7. Average VIs and standard deviation (shading) time series of Viola hederacea (purple) and
Hedera helix (green). The green (Hedera helix) and purple (Viola hederacea) dotted lines represent
the STD kernel with values in the secondary y-axis. (a) North-facing and (b) south-facing GWs.
The vertical yellow shading and red triangles indicate the yellowing events on 18 November in (a)
and October 14 in (b). The dates (November–December) in (b) where the images were in shadow
conditions are marked in black lines. The data in (b) of the Hedera helix on 1 November was dropped
due to mixed shadowed and sunny conditions. See details of VIs in Table 1.

For the north-facing GW (Figure 7a), the average NDVI and standard deviation were
0.84 and 0.017 (Viola hederacea), and 0.79 and 0.019 (Hedera helix), respectively, from the
beginning of the monitoring until the yellowing event. Just before the yellowing event (14
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October to 1 November), the averages increased even further, and the standard deviation
decreased (0.87, 0.009 for Viola hederacea; 0.83, 0.012 for Hedera helix). At the onset of the
yellowing event (18 to 24 November), the averages decreased to 0.84 (−3.4% for Viola
hederacea) and 0.81 (−2.4% for Hedera helix), and the standard deviation increased to 0.049
(540% for Viola hederacea) and 0.044 (360% for Hedera helix) compared to the period just
before the yellowing event. As the yellowing event progressed (1 to 21 December), the
averages further decreased to 0.651 (−22% for Viola hederacea) and 0.759 (−6% for Hedera
helix), and the standard deviation increased to 0.154 (314% for Viola hederacea) and 0.077
(175% for Hedera helix), compared to the beginning of the yellowing event. Similarly,
the REIP and OSAVI averages decreased, and the standard deviation increased at the
beginning of the yellowing event and beyond. The water content indices, WBI and NW-2,
exhibited periodic changes throughout the study, with more drastic average decreases and
standard deviation increases (WBI: −5.7%, 270%; NW-2: −15.7%, 300%) in Viola hederacea
at the beginning of the yellowing. Other VIs were either not stable (e.g., r, G, PRI, NPQI,
RVI, and mSR705) or very stable (e.g., SIPI) throughout the seasons, but also showed a
decrease in average value and a drastic increase in standard deviation at the beginning of
the yellowing event. Both species experienced decreases in average VIs and increases in
standard deviation, indicating degradation of the entire GW during the yellowing event.
Nevertheless, the changes in average and standard deviation values were more significant
for Viola hederacea, and it eventually turned yellow and died. As for the STD kernel, the
increase for both species began even before the beginning of the yellowing event (around
21 October) and continued to rise until the end of the time series. Some indices (e.g., NDVI,
G, and PRI) exhibited a more synchronized response with the vegetation condition than
others (e.g., NPQI, NWI-2, and mSR705).

At the south-facing GW (Figure 7b), the NDVI averages and standard deviation were
0.77 and 0.013 (Viola hederacea), and 0.81 and 0.017 (Hedera helix) respectively from the
beginning of the monitoring until the yellowing event, and 0.765 and 0.031 (Viola hederacea),
and 0.788 and 0.032 (Hedera helix) just before the yellowing event (14 to 30 September). At
the onset of the yellowing event (14 October), the average of both species dropped, and
the standard deviation drastically increased by −12%, 387% (Viola hederacea), and −3.8%,
125% (Hedera helix) compared to the period just before the yellowing event. In this GW,
the Viola hederacea yellowing event was much more intensive and was visually apparent
from the beginning. Thus, the difference between the species is even more significant than
in the north-facing GW. As the yellowing event progressed (21 October to 1 December),
the averages continued to decrease to 0.578 (−14% for Viola hederacea) and 0.738 (−2.6%
for Hedera helix). Several VIs (i.e., PRI, RVI, and mSR705) gradually decreased in both
species throughout the monitoring period, which may indicate a gradual degradation in
the entire GW vitality over the year. However, during the yellowing event, all VIs values
sharply changed in average and standard deviation only for the Viola hederacea, which
turned yellow, while Hedera helix changes were much more moderate. As for the STD
kernel, the increase was more intense for Viola hederacea and started only at the beginning
of the yellowing event (14 October) and continued to rise until the end of the time series.
Like the north-facing GW, the STD kernels of the indices showed variable synchronization
with the vegetation condition. However, unlike the north-facing GW, the STD kernel did
not increase before the yellowing event.

During the study period, the north-facing GW remained entirely shaded, while the
south-facing GW was fully exposed to sunlight during midday. Due to seasonal changes in
the sun’s position, the south-facing GW (213) was entirely shaded in the last two images (24
November and 1 December), and partially shaded at the bottom of the GW (mainly at the
Hedera helix areas) in the third image from the end (1 November). The shading conditions
affected several pigment VIs in the last (2–3) images in the time series (Figure 7b). For
example, PRI and NPQI sharply decreased during the yellowing event but started to
increase on 1 November, even though the yellowing event continued. Due to the mixed
sun-shadow conditions in the 1 November image, noisy values were observed in PRI,



Remote Sens. 2024, 16, 302 12 of 24

NPQI, WBI, and NW-2 in the Hedera helix dataset. Therefore, we excluded this time step
from the time series. The complete time series data, including the excluded time step, can
be found in Figure A1 in Appendix A.

Figure 8 presents the average ∆T of the two species for each GW. Data from the
thermal camera is missing from 24 September until 21 October and on 23 June (north-
facing GW) due to a technical problem (see Section 2.2). From the ∆T time series, it
is evident that the north-facing GW (212) did not exhibit drastic changes in ∆T, except
toward the end of the time series when ∆T began to rise as the GW yellowing progressed.
This rise was observed in both species, although Hedera helix did not undergo yellowing.
Conversely, at the south-facing GW, the ∆T index exhibited a consistent rise and was
even slightly higher for the Hedera helix. Following the commencement of the yellowing
event, ∆T in Viola hederacea continued to increase and surpassed that of Hedera helix. Data
was unavailable before and after the commencement of the yellowing event, introducing
uncertainty for this period. The consistent rise in ∆T was also observed in various HS
VIs (see Figure 7b) and likely resulted from the gradual degradation of the entire GW.
Eventually, this degradation led to the yellowing of Viola hederacea, whereas Hedera helix
did not exhibit visual yellowing. The lowest ∆T in both GWs was recorded in the initial
image (21 May), captured during a heatwave that transpired between 14–22 May 2020.
During this period, the air temperature was elevated (Ta = 38 ◦C), and relative humidity
was low (RH = 19.6%). In well-watered, unstressed vegetation, elevated air temperature,
and reduced RH enhanced plant transpiration and resulted in decreased Tcanopy compared
to air temperature (López et al., 2022 [65]).
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3.2. Early Detection of Stress Events

Figure 9 illustrates the use of the r index as the “ground truth” for desiccated vegeta-
tion. The RGB and the r index images are depicted for both GWs. The yellowing index [%]
is computed based on the r > 0.3 threshold.
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Figure 9. Yellowing index [%] for each GW based on the r index (r > 0.3). (a) North-facing GW
and (b) south-facing GW. Images are presented for the date chosen as the reference image for early
detection (14 December at the north-facing GW and 24 November at the south-facing GW). The last
column in the south-facing GW (b) yellowing index (1 December) is lower than the image before (24
November), due to vegetation regrowth in part of the yellowed area.

Following the binary classification of stressed/green pixels for each VI based on the
Otsu threshold, each image was compared to the reference image at four time steps before
the first yellowing was visually apparent. In total, 48 confusion matrices were computed
(12 VIs × 4 time steps). Figure 10 shows a summary of the outcomes of the confusion
matrices across the four VI categories outlined in Table 1 (RGB and HS pigment, leaf
structure, and water content). At the north-facing GW (Figure 10a), 17 days before the onset
of the yellowing event, metrics (accuracy, precision, and F1 score) displayed the highest
values within the leaf structure and water content groups, both of which were derived
from NIR wavelengths. In contrast, lower values were observed in the pigment groups
(RGB and HS). Discrepancies in metrics among the classifiers became evident 35 days
before the initial yellowing, occurring two months prior to the date of the ground-truth
image, referenced for stressed vegetation (14 December). In the case of the south-facing
GW (Figure 10b), distinguishing between classifiers proved more challenging, with the
range between 14–20 days before the initial yellowing event appearing to be the inflection
point, also approximately two months prior to the ground-truth image on 24 November. In
this context, the HS pigment and leaf structure groups yielded the highest performance.

Table 2 outlines the highest metric scores within each VIs category during the final
time step (17 days: north-facing; 14 days: south-facing) before the initial yellowing became
visually apparent. At the north-facing GW, the water content index NWI-2 emerged as the
most effective predictor (based on the F1 score), followed by the WBI index and then the
OSAVI index. NWI-2 accurately predicted 85% of the yellowing area on 14 December as
early as 1 November, with an accuracy of 0.91, precision of 0.84, false alarm rate of 0.06,
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and F1 score of 0.85. Similarly, NWI-2 anticipated 64% of the yellow pixels 35 days prior to
the initial yellowing (approximately two months ahead of the reference yellowing image),
achieving an accuracy of 0.85, precision of 0.82, false alarm rate of 0.06, and F1 score of 0.72.
Meanwhile, at the south-facing GW, NPQI proved to be the strongest classifier, followed by
the mSR705 and PRI indices. NPQI successfully predicted 72% of the 24 November yellow
pixels as early as 30 September, boasting an accuracy of 0.87, precision of 0.73, false alarm
rate of 0.08, and F1 score of 0.73.
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Our investigation also encompassed the ∆T thermal index for the early detection
of stressed vegetation. At the north-facing GW, the performance of ∆T on November 1
trailed behind the water content and leaf structure groups but surpassed the pigment group
(accuracy of 0.87, precision of 0.77, false alarm rate of 0.09, and F1 score of 0.78). Previous
time step metrics were slightly superior to the leaf structure group but still lagged behind
the water content group. For the south-facing GW, missing data hindered our assessment
of the time steps (24 and 30 September) that closely preceded the initial visible yellowing.
Metrics for the final time step (14 September, around two and a half months before the
reference image) were slightly lower than those of the other VIs groups (accuracy of 0.79,
precision of 0.6, false alarm rate of 0.1, and F1 score of 0.53).
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Table 2. Metrics for each group at the north (212) and south (213) facing GWs at the last time step
before the visual yellowing (17 days at 212 and 14 days at 213).

LW Metric Pigment
RGB

Pigment
HS

Leaf
Structure

Water
Content Thermal

212

Accuracy 0.82 0.86 0.91 0.91 0.87
Precision 0.76 0.74 0.91 0.84 0.77

False alarm 0.09 0.10 0.08 0.06 0.09
F1 score 0.67 0.77 0.84 0.85 0.78

213

Accuracy 0.83 0.87 0.85 0.83

NA
Precision 0.75 0.73 0.78 0.67

False alarm 0.10 0.08 0.09 0.10
F1 score 0.64 0.73 0.69 0.64

Figure 11 presents the time series of stress maps for both the north and south-facing
GWs. In the north-facing GW, a small region within the ROI began to yellow on 18
November (Figure 11a). The yellowing, occurring in small portions a few meters above
the ground, was nearly impossible to detect through visual investigation on site. This
event’s origins can be traced back two weeks or more. On 14 September, thermal index
imagery displayed cooler vegetation temperatures (denoted by darker hues) in certain
areas, suggesting potential over-irrigation or drainage issues. By 1 November, these
areas exhibited decreased water content (NWI-2). The initial yellowing transpired where
vegetation temperatures were lower, indicating that the first affected regions suffered from
excessive irrigation. Although irrigation was scaled back on 22 October (Figure 1e), the
areas affected by over-irrigation failed to recover and were the first to exhibit yellowing.
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At the south-facing GW (Figure 11b), owing to the absence of TIR image data (see
Section 2.2), we were unable to pinpoint the cause of stress events. Nevertheless, stressed
regions were successfully detected and visualized before the visible yellowing using VIs.
The time series of PRI, NPQI, RVI, REIP, and mSR705 indices (Figure 7b) indicated a decline
in plant vitality as early as August 2020. Thermal index images prior to the yellowing event
(8 and 14 September) highlighted the warmest areas (represented by brighter tones) at the
GW’s upper portion–these regions were the first to undergo yellowing on 14 October.

4. Discussion

Economic feasibility and maintenance are among the limiting factors of VGS [66].
While the significant construction costs are usually foreseen during the planning phase,
clients often find themselves surprised by the unforeseen service costs linked to mainte-
nance. The expense of irrigation is recognized as a significant factor [67], and the conse-
quences of both inadequate and excessive irrigation, coupled with various abiotic or biotic
stressors, can lead to VGS failure and necessitate extensive plant replacements [68]. While
recommendations such as employing more tolerated plants [69,70] or irrigating using non-
potable water [71] may alleviate certain operational costs, continuous monitoring of VGS is
essential [20]. Real-time monitoring can identify stress indicators or system irregularities
(e.g., drainage issues), allowing for timely intervention and averting the need for exten-
sive plant replacements before irreversible damage occurs. This integrated approach not
only addresses economic considerations but also underscores the importance of proactive
monitoring in sustaining the long-term functionality and vitality of VGS.

In this study, we employed time series of hyperspectral (HS) and thermal infrared
(TIR) imaging to illustrate practical approaches for the ongoing monitoring of green walls
(GWs) (Figures 7 and 8) and the early detection of stress events via unsupervised Otsu
classification (Figure 10, Table 2). General statistics derived from vegetation indices (VIs)
provided insights into the entire GW (Figures 7 and 8). Additionally, mapping the VI
images into stress maps (Figure 11) offered spatial information on vegetation and watering
status—a highly valuable asset in VGS, given the constrained accessibility to plants and
the substrate [72]. These insights provided information about the timing of stress and
possible reasons, which could be associated with watering patterns (either lack or over-
irrigation). Our analysis employed a semiautomated method, realized through Python
code, for noninvasive continuous monitoring of GWs. Apart from the manual image
capture process (Figure 2a,b), image projection, and pre-preparation of plant species masks,
the entire image processing workflow (Figure 3) can be fully automated, providing valuable
insights into VGS health. Notably, the manual aspects of this study carry some limitations.
The image projection process could impact accuracy, and the consistent mask for species
separation from a specific date might not precisely depict species boundaries in subsequent
images due to vegetation growth. Nevertheless, vegetation growth remains restricted due
to the small size of the GW modules.

In the continuous monitoring of both GWs, the yellowing event of Viola hederacea
manifested as a decrease/increase in VIs values, a rise in standard deviation, and sig-
nificant change in STD kernel across all VIs (Figure 7). In the north-facing GW, yellow-
ing initially affected small sections, leading to a moderate decrease/increase in average
VIs and a substantial upsurge in standard deviation and STD kernel values (Figure 7a).
Hedera helix exhibited milder changes, potentially indicating a degree of stress without
yellowing. Conversely, at the south-facing GW, the averages of several VIs consistently
decreased/increased for both species since the summer, preceding the yellowing event,
signifying the gradual deterioration of GW vitality over time (Figure 7b). Certain VIs were
less sensitive and more stable over time (e.g., NDVI, SIPI), nevertheless, they were precise
in detecting the yellowing event.

Increased vegetation variation is generally viewed as a marker of stress [73,74]. The
pronounced escalation in standard deviation values across all VIs during the yellowing
event, along with a rise in several VIs’ STD kernels even before the event’s onset, highlights
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plants’ varied responses to stress conditions. This gradual change during the yellowing
event suggests that plants did not experience immediate yellowing but responded in a
non-uniform manner. This indicates that these parameters can serve as stress detectors in
VGS as well.

Some VIs were notably sensitive to shadow conditions, as observed in the final three
images at the south-facing GW (Figures 7b and A1 in Appendix A). Mixed shadow-sun
conditions on 1 November also affected water content VIs, while several NIR-based VIs
(such as RVI, NDVI, and SIPI) demonstrated lesser sensitivity to illumination changes,
revealing the VIs’ trends. When devising a monitoring system utilizing image processing
techniques in an outdoor environment, accounting for illumination variation along the
VGS is crucial due to the vertical arrangement of the VGS and the intricate nature of the
outdoor urban setting [75]. Although we employed pixel-based spectrum normalization to
address illumination variation in the vertical direction (Section 2.3.1), we did not account for
shadowed areas. Our findings emphasize that normalized NIR-based VIs, such as NDVI,
maintain consistent patterns even under varying lighting conditions while still providing
information regarding plant conditions. Based on these observations, we propose that such
VIs could serve as valuable tools to mitigate the effects of diverse illumination and uphold
reliable vegetation monitoring in nonuniformed illumination areas. Further exploration
into shadow treatment in VGS and in other urban settings is warranted.

The time series of the ∆T index derived from TIR images provided supplementary
insights into the plants’ water usage across the GWs (Figure 8). In the north-facing GW, a
significant rise in the ∆T index was not observed until substantial sections of Viola hederacea
along the GW displayed yellowing. Notably, the detection based on the ∆T time series
lagged behind the HS VIs, where an increase was noted for both species only two weeks
after the initiation of the yellowing event. This escalation in ∆T in the north-facing GW
aligned with a sudden reduction in irrigation since 24 November (Figure 1e). Conversely, in
the south-facing GW, ∆T increased progressively and remained elevated since the summer
(August), extending through the yellowing event for both species. This pattern mirrored
the HS VIs time series, indicating a gradual decline in the entire GW’s vitality over time
(Figure 7b).

The VIs and ∆T index time series from both GWs reveal that while plant species’ index
values may differ, the trends throughout the study were similar, suggesting stress across the
entire GWs. Nonetheless, the plants’ response to stress varied: one species (Viola hederacea)
turned yellow and ultimately perished, while the other (Hedera helix) remained green and
survived. This distinction in species’ stress response was mirrored in the ongoing VI
monitoring, with more pronounced changes observed in the affected species, particularly
reflected in heightened variation (i.e., standard deviation and STD kernel). Given that a
GW often contains multiple vegetation species along the wall, species separation might
be necessary when designing a remote sensing image-based monitoring system for more
precise and comprehensive monitoring. Nevertheless, monitoring without separation
can still offer insights into the GW’s overall vitality and generate stress maps for spatial
issue detection.

Early detection of stressed vegetation along the GWs was also explored in this study
using RGB and HS VIs, as well as the ∆T thermal index, followed by Otsu unsupervised
classification (Figure 10 and Table 2). Plant yellowing is a symptom of a spectrum of
problems, such as watering issues, temperature stress, lack of sunlight, insufficient nu-
trition, over-fertilization, disease, and pests. Although the precise cause of vegetation
yellowing was not systematically diagnosed in this study, we presented initial findings
highlighting the early detection of vegetation yellowing. The assembled data, including
HS and TIR images, irrigation patterns, and environmental conditions, yields promising
outcomes for the early detection of issues in VGS. These results offer an initial step toward
gaining valuable insights into the causes of stress. While stress detection techniques in
agriculture have progressed with the advent of machine learning and deep learning, our
preference was to employ more straightforward approaches using image thresholding.
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Thresholding methods continue to be applied in stress detection and segmentation process
in recent agricultural studies [76–78]. Complex models demand extensive training datasets,
particularly in our study’s context, where amassing substantial datasets of stress-affected
pixels is undesirable in VGS. Additionally, the adoption of a simpler method establishes a
baseline for future research in stress detection within VGS and presents an opportunity for
further exploration as a practical tool.

As anticipated, the HS VIs outperformed the RGB VIs, yielding superior outcomes for
the early detection of stressed areas. Performance varied among the VIs groups and GW
orientations (north/south). In the north-facing GW, the water content and leaf structure
VIs exhibited the most reliable predictive capability, while in the south-facing GW, the
HS pigment and leaf structure indices demonstrated superior performance in predicting
stressed areas. Thus, we recommend using multiple sets of VIs for comprehensive plant
parameter monitoring in image-based monitoring. Notably, the leaf structure VIs group
demonstrated high performance in both orientations.

Results from the north-facing GW revealed that 85% of stressed areas could be detected
17 days before visible yellowing (42 days before the ground-truth image) with an accuracy
of 0.91. In the south-facing GW, 72% of the stressed area was detectable 14 days before
visible yellowing (approximately two months before the ground-truth image), with an
accuracy of 0.87. While early detection using ∆T in the north-facing GW exhibited lower
performance compared to the water content and leaf structure VIs, it outperformed the
pigment VIs group. In the south-facing GW, the performance of ∆T (alongside other
VIs) was relatively diminished, likely due to data gaps and the limited time steps tested.
Nonetheless, the visualization of the thermal index within stress maps (Figure 11) facilitated
the identification of potential causes for vegetation stress.

HS vegetation indices were most effective in the early detection of stress; nevertheless,
RGB vegetation indices, such as the r and G indices, are effective for real-time stress
detection indicated by color changes. Unlike the costly HS camera used in this study,
RGB VIs can readily detect pigment alterations through simple manual or automated
thresholding processes (Figures 9 and 10). Developing an alert system for VGS based
on RGB camera technology is feasible and could serve as an ongoing control system for
large-scale VGS operations. Note that in this study we employed narrow RGB channels
extracted from the HS camera. This likely resulted in higher accuracy compared to the use
of broader channels commonly found in low-cost RGB cameras.

Visualizing the HS VIs and thermal index through images (Figure 11) in conjunction
with the irrigation patterns (Figure 1e) allowed us to pinpoint the cause of the plants’
stress in the north-facing GW. It is plausible that the yellowing event commenced in over-
irrigated regions that were suddenly subjected to reduced irrigation. In the south-facing
GW, although early yellowing occurrences were successfully detected, discerning the exact
cause of plant stress proved challenging. An analysis of multiple indices’ time series from
the south-facing GW (Figure 7b), including the thermal index (Figure 8b), revealed that
the gradual decline in vegetation vitality commenced during the summer (August 2020), a
full two months prior to the initial visual appearance of yellowing. Continuous irrigation
over several months (from May to October) without adjustments to account for higher
temperatures during the heatwave (14–22 May) and the summer months (July–August)
(Figure 1e) likely initiated early plant stress. Moreover, the reduction in irrigation levels
during October possibly exacerbated plant stress, ultimately culminating in the emergence
of the yellowing event two weeks later.

Monitoring large-scale outdoor VGS with cameras is mainly a challenging task due
to their vertical orientation limiting the accessibility needed for optimal camera position.
To tackle the maintenance issues associated with vertical structures, robotics solutions like
cable-driven and rail track robots have been developed [14,34,79]. Researchers have also
explored various image-based monitoring approaches for vertical crops like greenhouse
tomatoes, using multiple cameras positioned at different heights [80], as well as the use of
mobile robots [81,82]. In the context of the ongoing monitoring of large-scale VGS health, it
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is essential to collect spatial data that enables the early detection of problems. Achieving
this is challenging with the methods mentioned above. Additionally, outdoor VGS typi-
cally do not yield the same commercial profits as agricultural structures, necessitating the
search for simpler and more practical monitoring solutions than those previously discussed.
Implementing ground-based monitoring, as conducted in this study, by stationing cameras
in a fixed position on the ground, offers a straightforward approach to continuous surveil-
lance. Although the normalization of spectral data facilitated data analysis, it is important
to acknowledge that the vertical orientation in real-scale VGS could potentially influence
the results. Nonetheless, the findings from ongoing monitoring, the early detection of
stressed vegetation, and the visualization of stress maps, as demonstrated in this study,
indicate the feasibility of this method for the broad-scale monitoring of large-scale VGS at
the single image (without mosaicking). Alternative solutions, such as utilizing multiple
camera positions or employing adjustable mounts or tracks positioned in front of the VGS,
should be considered to mitigate the vertical impact while preserving spatial distribution.

While our study presented the benefits of using precision agriculture methodologies
in VGS, here we address certain limitations. The manual monitoring of specific ROI us-
ing expensive equipment (HS and TIR cameras) in our study raises concerns about the
cost-effectiveness of continuously monitoring VGS. To optimize ongoing monitoring, it
is crucial to explore alternative approaches, such as using more affordable sensors and
implementing fully automated operations that can cover large-scale VGS. Additionally,
shaded areas, common in VGS due to their vertical structure, need further study to find
treatment solutions when employing image-based monitoring techniques. Technical issues
with the TIR camera unveiled temporal gaps in the time series, hindering our ability to
draw conclusive findings for the south-facing VGS. Furthermore, our study focused on the
symptom of ‘yellowing’ without delving into the underlying causes of stress. Unexplored
factors like nutrition, lighting conditions, and insect-related stresses may introduce com-
plexities not addressed in our analysis. To address these limitations, future research should
investigate the causes of stress in VGS, providing a more comprehensive understanding of
the underlying phenomena.

5. Summary and Conclusions

The goal of this study was to examine the applicability of ground-based remote
sensing techniques to monitor outdoor VGS. Additionally, we showcased a semiautomated
approach for the early detection of vegetation stress and the visualization of spatially
related issues through time series representation. The main conclusions of our study are
as follows:

• Consistent monitoring utilizing HS and TIR images can identify shifts in VGS health
through index values, standard deviation, and STD kernel metrics.

• Both vegetation species experienced stress, yet only Viola hederacea exhibited yellowing
and eventual demise. Our observations suggest that the Hedera helix is less vulner-
able to changes in irrigation patterns and can recover more effectively following
stress events.

• Species differentiation is pivotal for meticulous monitoring, accounting for each
species’ unique characteristics and stress responses. Nevertheless, monitoring and
visualizing the overall GW over time, without segregating individual species, can offer
invaluable insights into the overall health of the GW and facilitate the identification of
spatially linked issues.

• Given the complexity of urban settings and the vertical arrangement of vegetation,
variations in illumination should be considered when implementing image-based VGS
monitoring, and further investigation is needed.

• Early detection performance of stressed vegetation ranged from 14 to 35 days before
visible yellowing, with an accuracy of 0.85 to 0.91.

• The insights gained from this study could be harnessed to formulate an automated
spatial decision support system that fosters more efficient VGS operations.
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• Additional investigations into stress detection methods and the adoption of low-cost
cameras in outdoor VGS should be explored under different conditions and with
various plant species.
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Table A1. RGB chlorophyll detection indices that examined for detecting yellow vegetation for
preparation of the “yellowing index”.

RGB Index Definition Reference

r R/(R + G + B) [45]
g G/(R + G + B) [45]
b B/(R + G + B) [45]

R − G [45]
R − B [45]
G − B [45]

(R − G)/(R + G) [45,46]
(R − B)/(R + B) [45]
(G − B)/(G + B) [45]

(R − G)/(R + G + B) [45,83]
(R − B)/(R + G + B) [45]
(G − B)/(R + G + B) [45,83]

RGRI R/G [84]
GLI (2G − R − B)/(2G + R + B) [85]
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