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Abstract: In the past decade, deep learning methods have proven to be highly effective in the
classification of hyperspectral images (HSI), consistently outperforming traditional approaches.
However, the large number of spectral bands in HSI data can lead to interference during the learning
process. To address this issue, dimensionality reduction techniques can be employed to minimize
data redundancy and improve HSI classification performance. Hence, we have developed an efficient
lightweight learning framework consisting of two main components. Firstly, we utilized band
selection and principal component analysis to reduce the dimensionality of HSI data, thereby reducing
redundancy while retaining essential features. Subsequently, the pre-processed data was input into a
modified VGG-based learning network for HSI classification. This method incorporates an improved
dynamic activation function for the multi-layer perceptron to enhance non-linearity, and reduces the
number of nodes in the fully connected layers of the original VGG architecture to improve speed
while maintaining accuracy. This modified network structure, referred to as lightweight-VGG (LVGG),
was specifically designed for HSI classification. Comprehensive experiments conducted on three
publicly available HSI datasets consistently demonstrated that the LVGG method exhibited similar or
better performance compared to other typical methods in the field of HSI classification. Our approach
not only addresses the challenge of interference in deep learning methods for HSI classification, but
also offers a lightweight and efficient solution for achieving high classification accuracy.

Keywords: hyperspectral image classification; dimensionality reduction; multi-layer perceptron;
lightweight network

1. Introduction

As a potent remote sensing technique, hyperspectral imaging might capture high-
dimensional data about the Earth’s surface or other objects [1–3]. Unlike traditional remote
sensing, which captures only a few broad spectral bands, hyperspectral imaging measures
the reflectance or emission of light by spanning hundreds of contiguous and narrow spectral
bands. These bands come from the shortwave-infrared, near-infrared, and visible sections
of the electromagnetic spectrum. The resulting hyperspectral images (HSIs) contain plenty
of information about the composition of materials on the surface that can be used in diverse
applications, such as vegetation research, ocean exploration, mineral exploration, and
disaster response. By analyzing the spectral signatures of various materials, hyperspectral
imaging can be used to assist in the identification and mapping of different land cover types,
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such as forests, wetlands, urban areas, impervious (nonporous) surfaces, and agricultural
fields [4–7].

In recent decades, many methods relying on artificial features have been developed [8–12].
However, artificial feature extraction is often constrained by domain-specific knowledge
and expertise, making it challenging to adapt to different datasets and applications, and it
lacks sufficient adaptability [13].

Unlike traditional images, remote sensing image data typically contains more dimen-
sions. With the increase in data dimensionality, classifier performance often shows an
initial improvement, because the added dimensions provide more information, enabling
the classifier to better distinguish between different categories. However, as dimensionality
continues to increase, performance eventually reaches a saturation point, where classifi-
cation accuracy no longer improves and may even slightly decrease. This suggests that
adding dimensions no longer provides useful information after, and may actually intro-
duce noise or redundancy; this is referred to as the Hughes Phenomenon [14]. Therefore,
dimensionality reduction is necessary to mitigate the effects of the dimensionality curse.

For remote sensing images, several dimensionality reduction methods have been
presented, which can be broadly classified into two categories: feature extraction [15] and
band selection [16].

Representative feature extraction methods include principal component analysis
(PCA), independent component analysis, and linear discriminant analysis [17,18], among
others. With the advancement of computer technology, supervised classification methods
have evolved in sophistication. Supervised classification utilizes labeled sample data to
train classification models or algorithms, such as support vector machines (SVM) [19]
and random forests [20]. These models and algorithms enable the automatic classification
of different land cover categories, and also have achieved significant improvements in
accuracy and efficiency.

The rise of deep learning methods signifies a significant advancement in remote
sensing image classification. Deep learning methods, particularly convolutional neural
networks (CNNs) [21–25], exhibit excellent performance in image classification. Notably,
they have the ability to automatically extract high-level features from remote sensing images
without the need for complex feature engineering. This results in increased accuracy in
remote sensing image classification. Furthermore, there are also methods that combine
transformers and CNNs for HSI classification [26–31]. Deep learning models, especially
CNNS, can automatically learn features from raw data. This means that there is no need
for manual feature engineering, and that the model itself can discover the most important
features. In contrast, SVM typically requires manual feature selection and extraction [32].

Band selection (BS) can help remove redundant spectral bands, thereby reducing
the dimensionality of the HSI data. Furthermore, this can decrease computational costs,
accelerate model training speed, and mitigate the risk of overfitting. Feature extraction also
allows the model to automatically extract advanced features, while BS assists in selecting
spectral bands relevant to the task. By integrating these two approaches, it is possible to
achieve comprehensive use of the rich information in the HSI data. This includes various
spectral features of the original data, as well as domain knowledge related to the task. This
helps improve the model’s representational capacity and performance.

Harnessing the capabilities of these recent advances in technology, we propose a novel
lightweight network architecture for HSI classification based on Visual Geometry Group
(VGG) networks [33] and the incorporation of dimensionality reduction and multi-layer
perceptron (MLP). In this method, we performed band selection to eliminate duplicate
or redundant bands. Prioritizing band selection allowed us to identify the most relevant
bands for classification. Furthermore, by using PCA dimensionality reduction, not only
was the impact of noise reduced, but the amount of training data was reduced as well.
These data preprocessing also improved the efficiency of subsequent network training and
increased classification accuracy.
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The contributions of this paper can be summarized as follows:

1. We simultaneously used band selection and whitened PCA to relieve the impact of
random seeds on experimental results;

2. We propose a novel lightweight-VGG (LVGG) network architecture for HSI classi-
fication, which aims to maintain high performance while reducing the complexity
and computational resource requirements of the network, enabling efficient HSI
classification even in resource-constrained environments;

3. Our proposed method achieved better accuracy in three publicly available HSI
datasets as compared to several other existing methods.

The remainder of this paper is organized as follows: Section 2 describes some related
data preprocessing studies. In Section 3, the proposed LVGG network is introduced in detail.
Section 4 introduces three publicly available HSI datasets and divides them into three parts
(i.e., training, validation, and test sets). Section 5 analyzes comparative experimental results
on three HSI datasets, and demonstrates the effectiveness of our method. Finally, some
conclusions and discussions are provided in Section 6.

2. Related Work
2.1. Patch-Based Classification

In recent years, deep learning has experienced significant growth, and has had a
profound impact on multiple domains, particularly in the field of hyperspectral image (HSI)
classification, which is relevant to many deep learning-based models reaching widespread
application. Models, such as autoencoders [34] and recurrent neural networks [35], have
been extensively employed. Previously to this, CNNs, known for their local receptive fields
and translational invariance, were most effective at feature extraction, thereby enhancing
classification accuracy.

In HSI classification, various classification frameworks and architectures have been
proposed to acquire spatial features and train classifiers. These frameworks often involve
generating patches centered around sample pixels from an original image, which are then
employed for feature extraction and classification using different network architectures.
Some studies have introduced end-to-end networks that take 3D patches as inputs and
produce specific labels for each patch using the last fully connected (FC) layer [36]. Other
approaches have employed 2D CNNs with 1 × 1 convolution kernels and global average
pooling to extract spectral information and prevent overfitting [37]. Neural networks
with band-adaptive, spectral–spatial feature learning have also been proposed to solve the
dimensionality curse and the spatial variability problems of spectral signatures. Addition-
ally, deeper and wider networks with residual learning have been suggested, such as the
contextual deep CNN, which utilizes multi-scale filter banks to simultaneously process
spectral–spatial information [38].

To improve the aggregation of spectral–spatial information, researchers have intro-
duced two-stream CNN-based architectures [39,40]. Before fusing the outputs for classifica-
tion, these architectural designs employ 2D CNNs and other algorithms for the extraction
of spatial and spectral information, respectively. Another category of spectral–spatial-based
CNN architecture uses 3D CNNs to extract joint spectral–spatial features for HSI classi-
fication [36,41]. The spectral–spatial residual network (SSRN) [42], alternatively, utilizes
residual blocks to learn spectral and spatial information in hyperspectral images. This en-
ables the model to enhance its ability to identify different land cover categories and features.
A fast and dense spectral–spatial convolution architecture has also been proposed [20],
which uses different scales of 3D convolution and residual structures to learn spectral and
spatial information. Another approach employs a hybrid convolution network that utilizes
3D convolution followed by 2D convolution to learn spectral–spatial features [21].

In recent years, various attention mechanisms have been integrated to enhance clas-
sification performance in the field of HSI classification [43]. These attention mechanisms
enable models to dynamically focus on the most relevant and information-rich parts of
an image, thereby improving classification accuracy [44]. One common type of attention
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module is the Squeeze-and-Excitation module [45], which generates channel attention
vectors through global pooling and fully connected layers; these vectors are then used to
recalibrate the responses of spectral features. Additionally, many spatial attention modules
and channel attention modules are used in convolutional networks to enhance spectral
and spatial features [46,47]. Furthermore, a double-branch dual-attention (DBDA) mech-
anism network is employed, incorporating both position attention modules and channel
attention modules [24] to enhance the feature representations of remote sensing images.
Thus, the above attention mechanisms have significantly improved the performance of
remote sensing image classification methods and have enabled models to better adapt to
the characteristics of different images and scenes.

In stark contrast to CNNs, transformers segment images into non-overlapping blocks,
often referred to as tokens, and then pass these blocks as input sequences to the model.
Transformers use attention mechanisms to learn the relationships between these blocks,
and thus primarily model global information. As a result, they require substantial amounts
of data for training. Recently, transformer models have also been employed for HSI
classification and achieved good results. For instance, an improved transformer-based,
spatial–spectral feature extraction method has previously been proposed as a means to
obtain features [48]. Another study used a partial partition restore module to introduce a
novel local transformer [27]. A spectral–spatial feature tokenization transformer (SSFTT)
has also been developed to excavate spectral–spatial features and high-level semantic
features [28].

As the vision transformer has gained popularity in computer vision, researchers
have begun to explore its potential for HSI classification. However, compared to its
application in natural image processing, the transformer model is not always as effective
for remote sensing image classification. Some reasons for this include: (1) single viewpoints;
remote sensing images are mostly captured from a top-down perspective, while natural
images exhibit diverse viewpoint. (2) Limited background and objects; remote sensing
images typically consist of specific land cover types, with the spatial distribution of objects
often influenced by geographical information. Thus, neighboring regions may not have
significant correlations. As a result, capturing global features may not be as meaningful,
and local features become more crucial. Therefore, transformers may not offer substantial
improvements over CNNs, and may even be less effective than CNNs in this context.

2.2. Dimensionality Reduction

Feature extraction and band selection are two commonly employed techniques for
reducing dimensionality in hyperspectral data processing. The primary objective of these
methods is to enhance data analysis and processing efficiency by reducing overall data
dimensionality [49].

Feature extraction is a fundamental process in data analysis and machine learning. It
involves selecting and transforming relevant information from raw data to create a more
compact and informative representation, making it easier for algorithms to process and
analyze the data. Feature extraction is used to reduce the dimensionality of data while
retaining essential information. It simplifies data, making it more manageable and often
improving the performance of machine learning algorithms. This transformation helps to
more effectively capture the relevant characteristics present in the data. Common feature
extraction methods include PCA and linear discriminant analysis, among others. These
methods employ mathematical transformations to identify the most significant features
within the data, thereby facilitating improved classification or analysis [50].

Band selection plays a pivotal role in remote sensing image processing, enabling the
selection and extraction of the most informative spectral bands, rendering remote sensing
data more amenable to analysis and interpretation. This process helps reduce computational
complexity, improve classification accuracy, decrease storage requirements, and better cater
to the specific needs of remote sensing applications. Optimal band selection enhances the
richness of information in remote sensing imagery, offering critical support for precise
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land cover classification, monitoring, and analysis. Common band selection methods
include ranking-based approaches, such as correlation coefficients and information gain, as
well as clustering-based methods. Ranking methods sort bands based on their correlation
or information content and select the top-ranked bands, while clustering methods group
similar bands together and then select representative bands from each group for subsequent
processing [51].

In a previous study, an improved, fast peak-based clustering method was introduced,
which takes into account both intra-cluster distance and local density to rank bands. In
the literature [52], an adaptive and distance-based band hierarchy clustering method was
introduced by using the same ranking approach. Additionally, a fast neighborhood group-
ing band selection method [53] was proposed, which employs a coarse-to-fine grouping
strategy to reduce redundancy, and then utilizes the product of information entropy and
local density to rank bands.

Here, we introduce a preprocessing method for dimensionality reduction based on
feature extraction and band selection, followed by the application of a deep learning
network for HSI classification. First, a combined feature extraction and band selection
approach was designed to extract valuable information for dimensionality reduction. An
improved, lightweight-VGG architecture is then proposed for classification.

3. Proposed Method

The workflow of the proposed lightweight-VGG method is depicted in Figure 1 and
encompasses four primary stages. In this method, dimensionality reduction preprocessing
is performed on the original HSI data. Next, an expand convolution is introduced to
increase the network’s capacity, enabling the network to capture more data features, thus
enhancing its performance. The dimension-enhanced data is then fed into a DyVGG block
for patch-level feature extraction, and the extracted features are inputted into MLP and
linear classifier layers to obtain the predicted labels of the sample data.
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Figure 1. Overview of the proposed LVGG framework, which consists of two main components: a
strategy for removing redundant data and a strategy for designing a lightweight VGG-based network
structure.

3.1. The Removal of Redundant Data

In HSI preprocessing, band selection is an effective way of filtering out redundant
bands while retaining important information relevant to the target task. Additionally, PCA
is usually used to further reduce the impact of noise and extract key feature information.
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Hence, we propose a redundant data removal method that integrates band selection
and PCA.

3.1.1. Band Selection

This passage describes a process for grouping neighboring bands in a dataset repre-
sented by X. The bands in X, denoted as C bands, are initially divided into K equal groups.
Each group, labeled Xk (where k = 1, . . ., K), is defined as follows:

Xk =

{X (k−1)[ C
K ]+1, . . . . . . , Xk[ C

K ]
}

k[C/K] ≤ C

{X (k−1)[ C
K ]+1, . . . . . . , XC

}
k[C/K] > C

(1)

where Xi represents the i-th band image of X and [C/K] represents the smallest integer
greater than or equal to C/K.

Next, a fine partition algorithm [53] is applied to each of the initial band groups Xk
(k = 1, . . ., K) to create new band groups Xk′ (k = 1, . . ., K). In this new partition, the
number of bands may not be the same for different groups, and it is thus designed to group
highly correlated spectral bands together, thereby resulting in lower correlation between
the different band groups. For simplicity in this description, the new band groups are still
marked with Xk (k = 1, . . ., K), so the final grouping representation of X is given by:

X = {X 1 , X2, . . . . . . , XK} (2)

These highly correlated spectral bands are grouped together, resulting in lower cor-
relation between band groups. Therefore, selecting representative bands from each band
group becomes a more reasonable approach. For each band group, we utilize correlation
coefficients to find a representative band that is most relevant to other bands in its group.
The above process is described in detail as follows:

Step 1: Calculation of Pearson correlation coefficient. For band x and band y, the
correlation coefficient rxy can be calculated using the following formula:

rxy =
∑N

i=1(xi − x)(yi − y)√
∑N

i=1(xi − x)2
√

∑N
i=1(yi − y)2

(3)

where N represents the number of samples, that is, the number of spatial pixels.
Step 2: Construction of a correlation coefficient matrix. Assuming the number of bands

is Ck for band group Xk, then the correlation coefficient matrix Rk (with a size of Ck × Ck)
is constructed as follows:

Rk =
[
rk

xy

]
Ck×Ck

(4)

where the element rk
xy comes from Formula (3).

Step 3: Select the most representative spectral band. For band group Xk, we sum the
correlation coefficient matrix Rk by column, resulting in a vector Sk with a size of 1 × Ck:

Sk =
[
∑Ck

x=1 rk
xy

]
1×Ck

(5)

Then, it is easy to find the maximum value in vector Sk and locate the index of
its column:

max_sum_index = argmax
y

∑Ck
x=1 rk

xy (6)

Hence, the band corresponding to the index max_sum_index is the most representative
spectral band of band group Xk.
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By selecting the most representative band from each group, a spectral band set Y with
a dimension of K is formed:

Y =
{

Y1, Y2, . . . , YK
}

(7)

where Yk represents the chosen band from the k-th band group.

3.1.2. Whitened PCA

In order to further reduce HSI data dimensionality and eliminate the noise effect in
downstream classification, the PCA technique is employed to handle the selected band set
Y; this preserves most of the information from the original dataset to ensure accuracy in
the subsequent training.

Whitened PCA, an extension of PCA, not only reduces data dimensionality, but also
eliminates data inter-correlations through linear transformations. Subsequently, whitened
data is partitioned into smaller blocks or patches, each of which is centered around a pixel;
the label of the central pixel serves as the ground truth label for the patch. To ensure
accurate patch extraction, mirror padding is applied to the HSI data. Mirror padding
duplicates data values at the boundaries, creating a seamless extension of the original HSI
data. Eventually, these patches are inputted into the proposed lightweight-VGG network
for the training process.

3.2. Expand Convolution

The proposed method uses 1 × 1 × 128 convolutional kernels to expand the data
after dimensionality reduction. This is because the reduced-dimensional data contains too
few channels, making it challenging for the network to effectively fit the data. By using
more convolutional kernels, features from the reduced dimensional data can be extracted
more comprehensively, enabling better learning of critical information within the data.
Additionally, this approach enhances the model’s generalization capabilities, ultimately
leading to improved classification performance.

Simultaneously increasing the dimensionality can lower the impact of the activation
function on the results. If the current activation space has a high degree of integrity for the
manifold of interest, passing through the rectified linear unit (ReLU) activation function
can cause the activation space to collapse, inevitably resulting in information loss.

3.3. DyVGG Block

The primary characteristic of the previous VGG network is its use of stacked
3 × 3 convolutional layers and 2 × 2 max-pooling layers to create a deep neural net-
work. Using 3 × 3 convolution offers fast computation and a streamlined single-path
architecture, while also offering good memory efficiency compared to other structures
(such as ResNet’s shortcuts, which do not add to computational load but require double
the GPU memory). Additionally, the use of 2 × 2 max-pooling layers effectively reduces
the overall number of parameters.

Due to the depth and larger model size of the VGG network, it contains a significant
number of parameters, requiring more computational resources and storage space. This can
potentially limit its applicability in resource-constrained environments. Additionally, the
large number of parameters in the VGG network results in relatively long training times.

To address these above issues, we have introduced a DyVGG block instead of the
traditional VGG network, which includes three key points: reduction of network depth,
replacement of batch normalization (BN), and use of depthwise convolution.

Point 1: reduction of network depth. We significantly reduced the number of con-
volutional layers, relying primarily on two sets of 3 × 3 convolutions and two rounds
of max-pooling for feature learning. Max-pooling with a stride of 2 is also employed.
Max-pooling preserves the maximum value within each pooling window, reducing image
resolution and consequently decreasing the number of parameters. This helps alleviate
the computational burden on the model, reduces the risk of overfitting, and enhances the
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network’s generalization capability. Our network structure has 11 fewer CNN layers and 3
fewer max-pool layers than the VGG-16 network.

Point 2: replacement of batch normalization. In this method, layer normalization
(LN) is used instead of batch normalization. Following the optimization strategy from
ConvNeXt [54], LN is employed after the convolutional layer. The advantages of layer
normalization compared to batch normalization include: (1) insensitivity to small batch
sizes; LN’s performance is less affected by small batch sizes, making it effective even
when dealing with small batches. (2) Lower parameter count; LN generally requires
fewer parameters, resulting in more efficient model sizes. (3) No additional computation
overhead; BN necessitates the calculation of batch-wise means and variances, while LN
avoids these additional computations, leading to lower computational overhead.

Point 3: use of depthwise convolution. For enhancing the flexibility of the model, we
improved the activation function, named DyReLU. After convolution, data passes through
a 1 × 1 depthwise convolution [55] before application of the activation function. DyReLU
can be formulated as:

DyReLU(x) = ReLU(aix + bi) (8)

where x represents the input, ai represents the 1 × 1 depthwise learned parameters, and
bi represents the bias associated with these parameters. Additionally, as the network
architecture is relatively shallow, residual structures are not used, which also helps reduce
computation time.

3.4. Multi-Layer Perceptron

After the processing of the DyVGG block, the extracted features are flattened and
inputted into the FC layers. The primary issue with the original VGG network is the
excessive number of neurons used in the FC layers, which leads to a large overall parameter
count and slow computation. Our approach significantly optimizes the total number of
neurons. The FC layer in VGG16 has 4096 neurons, whereas our approach reduces it to 128,
resulting in a substantial reduction while maintaining high classification accuracy. This
operation also significantly enhances computational speed.

Furthermore, the activation function is switched from ReLU to scaled exponential
linear unit (SELU) [56] in the fully connected layers, which is defined as follows:

selu(x) = λ

{
x i f x > 0

αex − α i f x < 0
(9)

where x is the input, α and λ (λ > 1) are hyperparameters, and e denotes the exponent.
SELU promotes the self-normalization of hidden layer activations, addressing vanish-

ing/exploding gradient issues common in deep neural networks. It also maintains a stable
mean and variance of activations, improving generalization and potentially eliminating the
need for additional normalization techniques.

4. Datasets

In this section, we first introduce three commonly used hyperspectral image (HSI)
datasets, including the Indian Pines (IP) dataset, Pavia University (PU) dataset, and Salinas
(SA) datasets. Then, each dataset is divided into training, validation, and test sets for
subsequent experiments.

4.1. Indian Pines Dataset

The IP dataset was acquired from airborne remote sensing data from the Airborne Visi-
ble Infrared Imaging Spectrometer (AVIRIS) sensor over the city of West Lafayette, Indiana,
USA. This data is primarily used for research in agricultural fields, vegetation, and land
use classification. The dataset consists of a set of grayscale images with a spatial resolution
of 145 × 145, where each image corresponds to a hyperspectral band. The spectral range
spans from 400 to 2500 nanometers, encompassing information from visible to infrared
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spectra. After eliminating noisy bands, the dataset includes 200 bands for classification
(1–103, 109–149, 164–219). The dataset includes 16 distinct land cover categories, including
various types of crops, roads, buildings, and natural vegetation. In total, there are 10,249
labeled pixels, 10% of which were used for training, 10% for validation, and the remaining
80% for testing. The class name and the number of training and test samples are listed in
Table 1.

Table 1. The class names and the training, validation and test sample numbers in IP.

Class Land Cover Type Train. Val. Test.

1 Alfalfa 5 5 36
2 Corn-No till 143 143 1142
3 Corn-Min till 83 83 664
4 Corn 24 24 189
5 Grass-Pasture 48 48 387
6 Grass-Trees 73 73 584
7 Grass-Pasture-Mowed 3 3 22
8 Hay-Windrowed 48 48 382
9 Oats 2 2 16
10 Soybean-No till 97 97 778
11 Soybean-Min till 245 245 1965
12 Soybean-Clean 59 59 475
13 Wheat 20 20 165
14 Woods 126 126 1013
15 Buildings-Grass-Trees-Drives 39 39 308
16 Stone-Steel-Towers 9 9 75

Total 1024 1024 8201

4.2. Pavia University Dataset

The PU dataset was collected in 2003 using the Reflective Optics System Imaging
Spectrometer (ROSIS-3) sensor over a part of the city of Pavia, Italy. The dataset consists of
a set of grayscale images with spatial resolution 610 × 340, where each image corresponds to
a hyperspectral band. The spectral range of these bands spans from 430 to 860 nanometers.
Initially, the dataset contained 115 spectral bands, but during the data preprocessing phase,
12 bands affected by noise were removed, leaving a total of 103 bands for classification. The
dataset includes nine distinct land cover categories, such as asphalt, meadows, and gravel,
representing various land cover types in the city and its surrounding areas. In total, there
are 42,776 labeled pixels. For machine learning and image classification evaluations, the
dataset is typically split into training and test sets. In this case, 5% of the labeled samples
are used for training, another 5% for validation, and the remaining samples for testing. The
class name and the number of training and test samples are listed in Table 2.

Table 2. The class names and the training, validation and test sample numbers in PU.

Class Land Cover Type Train. Val. Test.

1 Asphalt 332 332 5967
2 Meadows 932 932 16,785
3 Gravel 105 105 1889
4 Trees 153 153 2758
5 Painted Metal Sheets 67 67 1211
6 Bare Soil 251 251 4527
7 Bitumen 67 67 1196
8 Self-Blocking Bricks 184 184 3314
9 Shadows 47 47 853

Total 2138 2138 38,500
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4.3. Salinas Dataset

The SA dataset is a hyperspectral dataset collected by the 224-band AVIRIS sensor
over Salinas Valley, California. The dataset consists of 224 spectral band grayscale images
with spatial resolution of 512 × 217. These spectral bands cover a wavelength range of
0.36 µm to 2.5 µm. During the data preprocessing stage, 20 bands affected by noise and
water absorption were removed: 108–112, 154–167, and 224. The ground truth data for
the Salinas dataset contains 16 classes, with a total of 54,129 pixels representing different
land cover categories. For machine learning and image classification evaluation, 1% of the
labeled samples were used for training, another 1% for validation, and the remainder for
testing. The class names and the number of training and test samples are listed in Table 3.

Table 3. The class names and the training, validation and test sample numbers in SA.

Class Land Cover Type Train. Val. Test.

1 Brocoli-green-weeds-1 20 20 1969
2 Brocoli-green-weeds-2 37 37 3652
3 Fallow 20 20 1936
4 Fallow-rough-plow 14 14 1366
5 Fallow-smooth 27 27 2624
6 Stubble 39 39 3881
7 Celery 36 36 3507
8 Grapes-untrained 113 113 11,045
9 Soil-vinyard-develop 62 62 6079

10 Corn-senesced-green-weeds 33 33 3212
11 Lettuce-romaine-4wk 11 11 1046
12 Lettuce-romaine-5wk 19 19 1889
13 Lettuce-romaine-6wk 9 9 898
14 Lettuce-romaine-7wk 11 11 1048
15 Vinyard-untrained 72 72 7124
16 Vinyard-vertical-trellis 18 18 1771

Total 541 541 53,047

5. Experiments

In this section, we describe the experimental setup, including comparative methods,
evaluation metrics, and parameter configurations. Subsequently, we conducted quantitative
experiments and ablation studies to assess the effectiveness of our proposed method.

5.1. Experimental Settings

Experimental Environment: The entire experimental process was conducted on a
computer equipped with a GeForce RTX 3070Ti and an Intel i7-12700F 12-core processor,
with 32 GB of memory, using Python 3.9 and PyTorch 2.0.1.

Data Acquisition: for the IP, PU, and SA datasets, training sets were randomly sampled
at 10%, 5%, and 1%, respectively, using random seeds ranging from 1331 to 1340. The
remaining data were used as the test sets.

Evaluation Metrics: three universal indicators were employed, i.e., overall accuracy
(OA), average accuracy (AA), and the Kappa coefficient (Kappa).

Comparison Methods: to validate the effectiveness of our proposed method, we
compared it with several other classification methods, including methods based on CNN
and transformers. We evaluated each method with the most effective configuration. The
comparison methods used here were as follows:

1. The 3D CNN (2016) [25] contains 3D convolution blocks and a softmax layer;
2. The SSRN (2017) [42], built upon 3D CNN by incorporating residual structures

for shortcuts;
3. The HybridSN (2019) [23], which uses PCA for dimensionality reduction, and for

which reduced data is fed into a 3DCNN, followed by a 2DCNN, so as to consider
both spectral and spatial information simultaneously;
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4. The SSFTT (2022) [28], which first learns features through 3DCNN and 2DCNN, and
then utilizes a transformer for feature-based classifications;

5. The GAHT (2022) [27], a network structure composed of three convolutional layers
and the integration of transformers;

6. The DBDA (2020) [24], a hyperspectral image classification approach that uses a
two-branch CNN architecture with a dual-attention mechanism to effectively capture
spectral and spatial features;

7. The FDSSC (2018) [22], a fast and efficient hyperspectral image classification frame-
work that utilizes dense spectral–spatial convolutions for accurate classification.

Implementation Details: our LVGG model was implemented using the PyTorch frame-
work. First, we reduced the number of bands to 35 through band selection. The PCA
dimension and patch size were set to 7 and 41 × 41, respectively. We then adopted the
Adam optimizer, with a batch size of 256 and a learning rate of 1 × 10−4. Then, we used
cross-entropy loss in lightweight classifiers. The training schedule involved the use of the
Adam optimizer and Cosine Annealing. The original learning rate and minimum learning
rate were set to 1 × 10−4 and 5 × 10−6, respectively, and the number of epochs was set to
100 for all datasets. Finally, by repeating this experiment ten times with different training
sample selections, we obtained the average values as the final results.

5.2. Classification Results

Compared to other methods, the proposed LVGG model achieved the highest OA
and Kappa on three benchmark datasets. The classification plots are shown in Figures 2–4,
respectively, while Tables 4–6 display the algorithms’ classification accuracy regarding the
three datasets in detail.
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Table 4. The classification accuracy of the IP dataset.

Class 3D CNN SSRN HybridSN SSFTT GAHT DBDA FDSSC LVGG

1 58.54 ± 3.15 94.14 ± 2.16 92.68 ± 1.73 95.12 ± 3.51 97.56 ± 1.23 98.30 ± 1.66 100± 0 97.62 ± 1.71
2 76.19 ± 1.69 97.84 ± 0.86 96.62 ± 0.66 97.67 ± 1.13 98.05 ± 1.25 97.95 ± 1.29 99.73 ± 0.26 97.74 ± 0.79
3 77.64 ± 2.30 97.54 ± 1.79 98.41 ± 0.54 98.87 ± 0.35 98.66 ± 0.88 99.40 ± 0.41 98.89 ± 0.80 98.28 ± 0.73
4 52.11 ± 4.48 90.70 ± 3.10 98.97 ± 1.17 91.55 ± 4.73 95.31 ± 3.26 100 ± 0 100 ± 0 99.52 ± 0.73
5 93.56 ± 0.88 97.75 ± 1.32 97.70 ± 1.26 96.32 ± 1.52 95.17 ± 2.69 97.84 ± 1.57 98.83 ± 0.67 99.10 ± 1.01
6 98.17 ± 0.72 99.24 ± 0.55 99.69 ± 0.11 99.54 ± 0.45 99.85 ± 0.14 98.82 ± 1.52 99.65 ± 0.33 98.70 ± 0.20
7 36.00 ± 5.12 81.60 ± 4.01 98.85 ± 0.38 100 ± 0 100 ± 0 92.91 ± 9.86 95.23 ± 3.62 99.16 ± 1.67
8 98.60 ± 1.19 100 ± 0 100 ± 0 100 ± 0 100 ± 0 99.67 ± 0.31 98.97 ± 0.40 100 ± 0
9 55.56 ± 2.45 74.44 ± 1.03 98.38 ± 3.26 88.89 ± 3.48 100 ± 0 93.75 ± 3.16 100 ± 0 94.74 ± 0.96
10 82.86 ± 3.02 94.77 ± 3.06 98.08 ± 0.81 97.71 ± 1.42 94.29 ± 2.30 98.47 ± 1.77 95.3 ± 2.21 99.66 ± 0.40
11 90.45 ± 1.33 98.87 ± 0.90 97.47 ± 1.33 98.69 ± 1.28 99.37 ± 0.48 98.39 ± 0.91 99.53 ± 0.44 96.97 ± 0.64
12 62.55 ± 1.17 97.83 ± 2.13 98.85 ± 1.02 98.13 ± 1.77 96.63 ± 0.97 99.36 ± 0.26 98.73 ± 0.72 99.40 ± 0.51
13 88.65 ± 3.58 99.24 ± 0.32 99.82 ± 0.24 97.28 ± 2.64 99.68 ± 0.40 96.36 ± 1.46 100 ± 0 100 ± 0
14 99.39 ± 0.60 99.18 ± 0.77 99.13 ± 0.92 99.91 ± 0.07 97.89 ± 2.16 99.40 ± 0.44 99.02 ± 0.49 99.91 ± 0.09
15 86.17 ± 2.85 93.95 ± 2.38 100 ± 0 98.84 ± 2.49 97.12 ± 1.58 95.59 ± 2.59 96.15 ± 1.31 99.14 ± 0.95
16 45.24 ± 5.36 98.33 ± 1.55 91.57 ± 4.07 95.54 ± 3.07 94.05 ± 3.13 93.33 ± 4.10 96.05 ± 2.45 94.54 ± 5.62

OA (%) 85.42 ± 3.75 96.88 ± 0.41 97.59 ± 0.56 97.47 ± 0.33 97.95 ± 0.28 98.10 ± 0.21 98.31 ± 0.17 98.53 ± 0.38
AA (%) 85.10 ± 2.98 97.51 ± 0.53 97.27 ± 0.93 96.57 ± 0.48 97.75 ± 0.55 98.35 ± 0.72 98.63 ± 0.72 97.44 ± 1.03

Kappa × 100 83.24 ± 2.31 97.23 ± 0.52 96.90 ± 0.37 97.11 ± 0.44 97.66 ± 0.38 98.01 ± 0.41 98.22 ± 0.65 98.26 ± 0.44

The highest values in each row are marked in bold to highlight the performance.

Table 5. The classification accuracy of the PU dataset.

Class 3D CNN SSRN HybridSN SSFTT GAHT DBDA FDSSC LVGG

1 97.02 ± 1.70 99.29 ± 0.24 98.81 ± 0.76 99.33 ± 0.15 99.38 ± 0.15 99.67 ± 0.24 99.76 ± 0.10 99.83 ± 0.06
2 98.82 ± 1.17 99.71 ± 0.19 99.83 ± 0.17 99.92 ± 0.05 99.80 ± 0.10 99.85 ± 0.14 99.80 ± 0.04 99.94 ± 0.03
3 92.98 ± 1.31 96.92 ± 3.15 92.45 ± 4.90 98.29 ± 0.95 98.35 ± 0.85 99.41 ± 0.72 98.95 ± 1.14 99.72 ± 0.26
4 97.53 ± 1.58 99.89 ± 0.11 98.32 ± 0.88 98.49 ± 1.40 99.52 ± 0.40 98.96 ± 0.69 99.92 ± 0.08 99.30 ± 0.33
5 99.06 ± 1.20 99.52 ± 0.49 99.65 ± 0.29 99.53 ± 0.50 99.88 ± 0.12 99.82 ± 0.17 99.91 ± 0.07 99.65 ± 0.39
6 99.10 ± 0.85 99.87 ± 0.16 99.43 ± 0.56 99.21 ± 0.48 99.75 ± 0.05 99.91 ± 0.09 99.90 ± 0.03 99.96 ± 0.04
7 79.10 ± 8.97 99.76 ± 0.26 99.76 ± 0.19 99.13 ± 1.01 99.60 ± 0.32 99.44 ± 0.11 99.68 ± 0.22 99.06 ± 1.27
8 97.34 ± 1.02 97.36 ± 1.68 99.52 ± 0.50 98.05 ± 0.57 98.63 ± 0.27 96.13 ± 3.10 99.45 ± 0.16 99.39 ± 0.59
9 95.22 ± 2.55 99.66 ± 0.23 99.82 ± 0.23 95.44 ± 2.17 99.53 ± 0.16 98.89 ± 1.15 99.83 ± 0.05 99.10 ± 0.22

OA (%) 97.88 ± 0.35 99.33 ± 0.29 99.10 ± 0.44 99.21 ± 0.36 99.43 ± 0.15 99.37 ± 0.40 99.55 ± 0.17 99.76 ± 0.08
AA (%) 95.26 ± 0.29 99.16 ± 0.18 98.60 ± 0.32 98.69 ± 0.44 99.37 ± 0.21 99.12 ± 0.49 99.22 ± 0.23 99.56 ± 0.21

Kappa × 100 97.19 ± 0.39 99.14 ± 0.22 98.81 ± 0.71 99.15 ± 0.39 99.39 ± 0.08 99.09 ± 0.53 99.18 ± 0.24 99.69 ± 0.06

The highest values in each row are marked in bold to highlight the performance.

Table 6. The classification accuracy of the SA dataset.

Class 3D CNN SSRN HybridSN SSFTT GAHT DBDA FDSSC LVGG

1 97.07 ± 1.19 100 ± 0 99.76 ± 0.24 100 ± 0 99.45 ± 1.07 100 ± 0 100 ± 0 100 ± 0
2 99.86 ± 0.14 100 ± 0 99.97 ± 0.02 99.66 ± 0.52 100 ± 0 99.31 ± 0.11 99.93 ± 0.05 100 ± 0
3 92.14 ± 2.20 98.60 ± 1.07 95.81 ± 3.39 96.73 ± 1.71 95.76 ± 3.83 99.67 ± 0.32 99.89 ± 0.11 99.78 ± 0.19
4 98.33 ± 0.62 98.39 ± 2.24 96.05 ± 2.32 99.22 ± 0.61 98.90 ± 0.51 98.03 ± 1.01 98.36 ± 0.92 95.90 ± 4.13
5 96.23 ± 0.97 100 ± 0 93.62 ± 3.07 96.59 ± 2.68 98.88 ± 0.61 99.73 ± 0.26 99.83 ± 0.07 95.96 ± 2.41
6 99.58 ± 0.40 99.98 ± 0.01 99.46 ± 0.53 99.69 ± 0.37 100 ± 0 100 ± 0 100 ± 0 98.87 ± 1.33
7 99.38 ± 0.31 99.98 ± 0.02 94.59 ± 1.31 99.70 ± 0.21 99.91 ± 0.09 99.96 ± 0.06 99.90 ± 0.09 100 ± 0
8 83.96 ± 1.84 91.42 ± 5.45 96.78 ± 1.75 87.59 ± 1.46 93.18 ± 2.04 89.86 ± 6.44 94.53 ± 1.46 97.68 ± 3.32
9 97.89 ± 1.15 99.83 ± 0.16 98.85 ± 1.20 98.91 ± 1.22 99.87 ± 0.10 99.37 ± 0.66 99.86 ± 0.11 99.55 ± 0.65
10 89.27 ± 1.71 98.86 ± 0.66 98.60 ± 1.69 94.51 ± 1.71 96.88 ± 1.19 99.30 ± 0.33 99.33 ± 0.09 98.97 ± 1.19
11 83.08 ± 9.27 98.39 ± 0.86 93.23 ± 1.31 96.70 ± 2.25 99.06 ± 0.81 98.15 ± 1.43 98.13 ± 0.98 99.70 ± 0.33
12 99.06 ± 0.95 98.71 ± 1.55 97.62 ± 1.99 99.88 ± 0.07 99.84 ± 0.23 99.82 ± 0.15 99.75 ± 0.25 97.97 ± 3.48
13 97.62 ± 2.49 99.51 ± 0.53 90.57 ± 5.42 97.84 ± 2.66 99.60 ± 0.38 99.86 ± 0.16 100 ± 0 100 ± 0
14 96.36 ± 2.67 98.23 ± 0.47 94.63 ± 2.00 91.80 ± 4.85 98.07 ± 2.75 98.19 ± 1.59 98.48 ± 1.11 99.77 ± 0.21
15 74.55 ± 6.08 93.65 ± 5.82 98.50 ± 2.29 81.42 ± 3.77 90.82 ± 3.47 93.17 ± 6.17 97.39 ± 1.27 99.29 ± 0.62
16 91.76 ± 4.12 99.82 ± 0.13 99.27 ± 0.72 97.09 ± 1.58 96.87 ± 0.72 100 ± 0 99.26 ± 0.54 100 ± 0

OA (%) 90.89 ± 0.61 96.90 ± 0.69 97.16 ± 0.57 93.73 ± 0.39 96.80 ± 0.37 96.44 ± 1.51 98.01 ± 0.24 98.69 ± 0.70
AA (%) 93.51 ± 0.62 98.38 ± 0.30 96.54 ± 0.68 96.08 ± 0.47 98.00 ± 0.24 98.95 ± 0.29 98.54 ± 0.17 98.80 ± 0.81

Kappa × 100 89.86 ± 0.57 96.50 ± 0.77 96.84 ± 0.44 93.01 ± 0.44 96.44 ± 0.33 97.79 ± 0.73 97.94 ± 0.27 98.54 ± 0.65

The highest values in each row are marked in bold to highlight the performance.
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5.2.1. IP

Table 4 shows the classification performance of different models on the IP dataset.
Among the compared methods, SSRN, HybridSN, DBDA, and FDSSC employ relatively
complex CNN-based frameworks, incorporating elements such as 3D CNN, residual con-
nections, and MLP to enhance classification performance. However, these approaches come
at the cost of consumed computational time. In contrast, SSFTT, based on a lightweight
transformer architecture, offers a shorter training time but exhibits a slight decrease in
accuracy compared to other methods.

GAHT adopts a hybrid approach, combining elements of both transformers and
CNNs. This hybrid strategy results in shorter training times while improving accuracy. In
comparison to other methods, compared to FDSSC, SSFTT, and GAHT, our LVGG improved
0.22%, 1.06%, and 0.58% in OA and 0.04%, 1.15%, and 0.60% in Kappa, respectively.
However, it did show a slightly increased overall training time compared to SSFTT.

5.2.2. PU

For the PU dataset, because we chose a training set percentage of 5%, the training
data volume was relatively large. As a result, all methods yielded good results. Among
these methods, GAHT and FDSSC were two models that performed well, in addition to our
method. The accuracy of Class 3, Class 8, and Class 9 significantly impacted the overall OA.
While our method did not perform well in classifying Class 7, it did achieve the highest
accuracy in most other classes. Furthermore, the transformer-based SSFTT did not perform
as well as the hybrid model GAHT, which combines transformers and CNN. This suggests
that convolutional methods still performed effectively on the PU dataset. However, our
method still achieved the best OA, AA, and Kappa results while also being the fastest in
terms of execution time.

5.2.3. SA

For the SA dataset, we selected only 1% of the data as the training set, which led
to lower classification accuracy for the SSFTT method. The low accuracy of SSFTT in
classifying Class 8 and Class 15 may be due to the limited number of samples that the
transformer learned, coupled with the similarity of features. When dealing with a limited
number of HSI samples, there are limitations associated with transformer-based methods;
possibly, these methods require a larger amount of data to learn effectively due to weaker
inductive biases. In contrast, CNN-based methods tend to perform better under these
conditions, and our approach outperformed all others. This could be attributed to the
use of a larger patch size, allowing for a broader learning scope that works well with
small datasets.

5.3. Ablation Studies

We analyzed the proposed LVGG framework by transitioning from the VGG block
to the lightweight-VGG block, and conducted experiments on the IP dataset with the
corresponding results summarized in Table 7. First, the activation function of the FC
layers was modified from ReLU to SELU, as SELU has self-normalizing properties and
performs well in FC layers. Using SELU as the activation function for FC layers improved
performance compared to the basic VGG structure.

We also improved the activation function for regular convolutions. While VGG uses
ReLU as the activation function, we introduced DyReLU as an alternative to enhance the
non-linearity of shallow networks. Using DyReLU as the activation function also resulted
in improved accuracy.
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Table 7. Ablation analysis of the proposed LVGG on the IP dataset.

Changes OA (%)

(a) Baseline 97.13
(b) Redundant Data Removal 97.75

(c) Expand Convolution 97.70
(d) DyVGG Block 98.03

(e) Multi-Layer Perceptron 97.55
(b) + (c) + (d) 98.22
(b) + (c) + (e) 97.86

(b) + (c) + (d) + (e) 98.36

Regarding normalization, for the IP dataset, using a large batch size with batch
normalization decreased the classification accuracy, while using layer normalization im-
proved the accuracy. Therefore, layer normalization was adopted for normalization in this
proposed network.

Activation functions and normalization have an impact on network classification
accuracy. Additionally, the expand convolution also contributes to improved accuracy. As
we had seven channels after the whitened PCA, using only seven channels for the classifi-
cation limited the overall convolutional features. Therefore, expanding the convolution
before regular the convolution enhances the network’s learning ability and achieves better
classification accuracy.

5.4. Parameter Analysis

We analyzed the effect of various parameters on the classification performance of our
proposed lightweight-VGG method by conducting experiments using different parameter
settings in the same experimental setting as described in Section 5.1.

5.4.1. The Effectiveness of Band Selection

The criteria for determining the number of bands is to minimize it as much as possible
while ensuring the accuracy of SVM. As shown in Table 8, the highest accuracy appears
when the number of selected bands is 35 on the IP dataset. In addition, when taken as 35,
the number of bands and accuracy achieve a certain degree of balance on the other two HSI
datasets. Therefore, 35 bands were chosen in this study.

Table 8. Impact of band selection on OA (%) for three datasets.

15 20 25 30 35 40 45 50

IP 78.66 80.2 80.81 81.26 82.89 82.7 82.87 82.46
PU 89.52 90.09 93.02 93.17 93.26 93.29 93.41 93.48
SA 91.71 91.85 92.07 92.33 92.45 92.41 92.50 92.55

5.4.2. The Effectiveness of PCA Size Selection

We investigated the impact of different PCA dimensions on classification performance,
evaluated using overall accuracy. The purpose of PCA dimensionality reduction is to
reduce the data’s dimensions, lowering computational cost and noise. By selecting an
appropriate PCA dimension, noise or less significant variations can be filtered out. Lower
PCA dimensions may filter out important information, while higher PCA dimensions
may retain noise. Lower PCA dimensions result in higher data compression but may lead
to information loss. Higher PCA dimensions retain more information but increase data
dimensionality. Lower PCA dimensions typically enhance computational efficiency, as
processing low-dimensional data is faster. However, in our case, we performed PCA after
band selection, so setting the PCA dimensions to seven achieved outstanding performances.
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As shown in Figure 5, the results with PCA dimensions set to seven were comparable
to those retaining more dimensions, indicating that band selection filtered out most of the
noise, and that PCA dimensions of seven were sufficient to achieve good performance.
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5.4.3. The Effectiveness of Patch Size Selection

We investigated the impact of different patch sizes on classification performance,
which we evaluated based on overall accuracy. The patch sizes varied from 21 × 21 to
49 × 49, as shown in Figure 6. As the patch size increased, performance initially improved
and then started to decline. When the patch size was set to 41 × 41, we obtained the best
performance for the IP, PU, and SA datasets, with OAs of 98.10%, 99.72%, and 99.02%,
respectively. The performance of the PU dataset remained relatively stable from 21 × 21
to 49 × 49, possibly due to the high training rate of the PU dataset. However, the IP and
SA datasets showed variations in performance. This may be attributed to the use of max-
pooling in our method, where smaller image patches did not have sufficient representation,
and overly large patches could make the overall structure too complex. Therefore, we chose
a patch size of 41 × 41.

Remote Sens. 2024, 16, x FOR PEER REVIEW 18 of 22 
 

 

 
Figure 6. The three HSI datasets with distinct patch sizes for OA. 

5.4.4. The Effectiveness of Neuron Number in the FC Layer 
We investigated the impact of different neuron numbers in the FC layer on classifica-

tion performance, evaluating based on overall accuracy. Neuron numbers ranged from 32 
to 512, as shown in Figure 7. Performance improved with an increase in neurons but began 
to decline thereafter. On all three datasets, the best performance was generally achieved 
with 128 neurons, although 64 neurons also showed good results in the SA and PU da-
tasets. 

 
Figure 7. The three HSI datasets with distinct neuron numbers for OA. 

5.5. Computational Efficiency 
We also verified computational efficiency by observing the performance of these 

methods in terms of execution time, number of parameters, and the number of floating-
point operations (FLOPs) on three HSI datasets. The statistical results are shown in Table 
9. 

SSRN is a combination of 3D CNN with a ResNet structure short-circuit. 

20 25 30 35 40 45 50
96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

OA
(
%)

Size of Patches

 IP
 PU
 SA

0 100 200 300 400 500 600
97.5

98.0

98.5

99.0

99.5

O
A(

%)

Neuron Number

 IP
 PU
 SA

Figure 6. The three HSI datasets with distinct patch sizes for OA.



Remote Sens. 2024, 16, 259 17 of 21

5.4.4. The Effectiveness of Neuron Number in the FC Layer

We investigated the impact of different neuron numbers in the FC layer on classifica-
tion performance, evaluating based on overall accuracy. Neuron numbers ranged from 32
to 512, as shown in Figure 7. Performance improved with an increase in neurons but began
to decline thereafter. On all three datasets, the best performance was generally achieved
with 128 neurons, although 64 neurons also showed good results in the SA and PU datasets.

Figure 7. The three HSI datasets with distinct neuron numbers for OA.

5.5. Computational Efficiency

We also verified computational efficiency by observing the performance of these
methods in terms of execution time, number of parameters, and the number of floating-
point operations (FLOPs) on three HSI datasets. The statistical results are shown in Table 9.

SSRN is a combination of 3D CNN with a ResNet structure short-circuit.
HybridSN is a network that combines 3D CNN and 2D CNN, resulting in shorter

execution times. Because it uses PCA for dimensionality reduction, followed by two rounds
of 3D convolution for feature extraction, and because it uses a 2D convolutional network, it
results in shorter execution times compared to SSRN.

Table 9. Analysis of computing efficiency among different methods on the IP dataset.

Model 3D CNN SSRN HybridSN SSFTT GAHT DBDA FDSSC LVGG

Train Time (s) 161.04 80.96 67.43 10.70 53.36 116.01 798.77 19.95
Test Time (s) 6.33 3.82 2.85 0.29 2.41 6.16 6.25 2.62
Number of
Parameters 623,281 364,168 5,122,176 148,488 972,624 382,326 1,227,490 758,672

GFLOPs 1.859 1.539 1.496 0.750 0.153 1.765 1.722 0.585
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SSFTT is the fastest model in terms of execution time because it consists of only one
layer of 3D CNN and one layer of 2D CNN, followed by the tokenization of features
through the transformer. Due to the limited data, the transformer learns quickly. The model
has the shortest training time and the least number of parameters. However, the overall
accuracy is moderate.

GAHT is a method that combines transformers with CNN, so the overall execution
time is similar as well. Although it has the lowest FLOPs, its execution time is not very
short due to the involvement of group convolutions.

FDSSC is the most time-consuming CNN network because it involves reconstruction
and feature extraction using complex 3D CNN. The high time complexity of 3D CNN
results in the longest overall execution time.

DBDA employs dense 3D CNN for learning, much like FDSSC. However, it does not
have the reconstruction step that FDSSC has, which significantly reduces its execution time.

In comparison to these methods, our proposed LVGG method has a short execution
time because it only utilizes 1 × 1 and 3 × 3 2D convolutions. Its FLOPs are relatively low,
but due to a relatively larger number of parameters compared to transformer methods, its
runtime is somewhat longer than those of transformer-based approaches.

6. Conclusions

This study proposes a lightweight-VGG approach to improve HSI classification speed
and accuracy. In this context, we introduce a method that performs PCA after selecting
bands for classification. Most existing works either directly use raw images or apply PCA
with a large number of retained dimensions, which can introduce noise and be sensitive
to random seeds. Additionally, many transformer-based classification methods involve
complex and computationally expensive operations, yet they do not achieve high accuracy
in HSI classification. In contrast, our proposed LVGG approach reduces the number of
parameters in the fully connected layers, resulting in a faster processing speed while
maintaining high classification accuracy.

By performing PCA on the data after selecting the bands, and then conducting network
classification, our proposed method provides improved stability and speed. Moreover, its
smaller parameter size allows for faster processing, making it suitable for deployment on
lightweight devices. Quantitative experiments using three HSI datasets showed that our
LVGG approach outperformed existing methods in both performance and speed.
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Abbreviations

The abbreviations for all key terms in this paper are explained below:

HSI Hyperspectral Image
SVM Support Vector Machine
CNNs Convolutional Neural Networks
MLP Multi-Layer Perceptron
FC Fully Connected
LN Layer Normalization
BN Batch Normalization
VGG Visual Geometry Group
SELU Scaled Exponential Linear Unit
ReLU Rectified Linear Unit
SSFTT Spectral–Spatial Feature Tokenization Transformer
SSRN Spectral–spatial Residual Network
HybridSN Hybrid Spectral–spatial Network
GAHT Group-Aware Transformer
DBDA Double-Branch-Dual-Attention-Mechanism-Network
FDSSC A Fast Dense Spectral–spatial Convolution Network
IP Indian Pines
PU Pavia University
SA Salinas
AA Average Accuracy
OA Overall Accuracy
Kappa Kappa coefficient
FLOPs Floating-Point Operations
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