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Abstract: In this paper, a matching method for altimeter and transponder signals in Sub-optimal
Maximum Likelihood Estimate (SMLE) tracking mode is proposed. In the in-orbit calibration of the
altimeter in SMLE tracking mode using the reconstructive transponder, it is necessary to separate
the forwarding signal from the ground echo signal. At the same time, the fluctuations in the
received signal of the altimeter, which are caused by the forwarding signal of the transponder, can be
eliminated. The transponder generates a bias when measuring the arrival time of the transmitting
signal from the altimeter and embeds this bias in both the transponder-recorded data and the
altimeter-recorded data. Therefore, the two sets of data have one-to-one correspondence, and they
are superimposed using the sliding sum method. Moreover, the distance between the altimeter and
the transponder is a parabolic geometric relationship, and the outliers are eliminated by the fitting
error minimization decision, and the transponder signal is separated from the ground echo. The final
altimeter transmitting–receiving signal path is obtained. Furthermore, the principles underlying this
method can be used for any transponder that can adjust the response signal delay during calibration.

Keywords: altimeter; SMLE tracking mode; transponder; signal separation; match

1. Introduction

Transponder is a ground-based auxiliary device for satellite radar altimetry that re-
ceives satellite altimeter signals and returns them to the altimeter after amplification [1].
Currently, the calibrations of satellite altimeter using the bent-pipe transponder are oper-
ationally run internationally in Crete [2–4] and Svalbard [5]. The bent-pipe transponder
consists of an antenna, an amplifier, a connector and a microwave delay device. It receives
an altimeter signal and subsequently transmits the amplified original signal. Notably, it
lacks the capability to assign distinct delays to various forwarding signals. Therefore, this
limitation results in no fluctuations being added to the altimeter signal during calibra-
tion. Unlike the bent-pipe transponder, the reconstructive transponder [6–8] delays the
forwarding signals through more complex signal processing. Specifically, digital delay and
frequency modulation of the de-chirp signal are two features that allow the reconstructive
transponder to assign different delays to different forwarding signals in the calibration.
The reconstructive transponder adds arbitrary timing biases and output frequency biases
to control the delay of each response signal. Fluctuations will be introduced in the altimeter
observation distance due to the non-ideal nature of the transponder signal processing.
Therefore, to eliminate the effects of fluctuations, the altimeter’s and the transponder’s
signals must be matched. Also, subsequent algorithms for estimating altimeter ultrastable
oscillator (USO) drift [9] using reconstructive transponder require strict data matching.

Remote Sens. 2024, 16, 1682. https://doi.org/10.3390/rs16101682 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16101682
https://doi.org/10.3390/rs16101682
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0006-3561-3634
https://doi.org/10.3390/rs16101682
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16101682?type=check_update&version=1


Remote Sens. 2024, 16, 1682 2 of 12

Wan and Wang et al. of the Key Laboratory of Microwave Remote Sensing, National
Space Science Center, Chinese Academy of Sciences, carried out in-orbit calibration stud-
ies on the reconstructive transponder of HY-2A [10,11]. In the data processing part of
the study, Wan et al. present a method for matching satellite radar altimeter data and
transponder data generated during in situ calibration [12]. The correspondence between
the two types of data is established by performing second-order finite difference on the
transponder-recorded data as well as the altimeter-recorded data. These studies were based
on switching the altimeter from tracking mode to search mode [13]. In this mode, the
ground echo and transponder forwarding signal are separated by setting the altimeter sig-
nal’s transmitting–receiving interval and the transponder’s delay. This completely avoids
the land surface echo into the altimeter tracking window; at this time, the forwarding
signal can be easily distinguished after matched filtering. As shown in Figure 1a, the
frequency point at the maximum peak represents the echo signal. As well as Wang et al.’s
subsequent calibration work on HY-2B [14,15], studies were conducted with the altimeter
in search mode.
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We wanted to reduce the complexity of the altimeter’s operation by performing in-
orbit calibrations in tracking mode. Calculating and calibrating the altimeter-recorded
I/Q data makes the calibration results more intuitive and accurate. This requires that the
transponder needs to be deployed offshore, resulting in land echoes and the forwarding
signals from the transponder appearing in the altimeter tracking window at the same time,
as shown in Figure 1b. So, unlike the signal matching in altimeter search mode of Wan
et al., at this point, the transponder forwarding signal needs to be separated from other
strong scatterer echoes. There is no existing solution, to our knowledge, to match the
altimeter observations and transponder observations in the calibration of altimeter tracking
mode. This paper gives a method to separate the surface echoes from the transponder
forwarding signals and concurrently accomplish the matching of the altimeter data with
the transponder data in tracking mode.

2. Background
2.1. Altimeter

The HY-2 series satellite radar altimeter normally operates in tracking mode and mea-
sures sea surface height in a pulse-limited manner. The echo waveform data are obtained
by transmitting a Linear Frequency Modulation (LFM) signal and tracking the received
sea surface echo, and then the sea surface height is extracted after pulse compression and
retracking techniques. A model-compatible tracker [16] is used in the altimeter for the
tracking of echoes. In this tracker model, a parallel tracking algorithm of SMLE and Offset
Centre of Gravity (OCOG) is used and data fusion processing is performed to achieve the
goal of sea–land compatible tracking. Figure 2 shows a diagram of the altimeter echo signal
with the two tracking algorithms. The power spectrogram of the ground echoes influences
the selection of the locations for subsequent experiments. If the experiment is conducted at
a location with an echo power spectrogram like that in Figure 2a, there will be no way to
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know whether the transponder forwarding signals enter the altimeter tracking window
when carrying out the experiment, and it will not be possible to distinguish the transponder
forwarding signal.
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Figure 2. Power spectrum of altimeter echo signal in (a) OCOG and (b) SMLE.

Previously, altimeters were required to switch their operating mode to search mode
for in-orbit calibrations. This mode provides a tracking altitude setting function, which
allows calibrations to be performed inland. The time interval between transmitting and
receiving is sufficiently large to remove the echo signal from the Earth’s surface, but the
transponder’s signal can be sent into the altimeter range window by properly presetting
the signal run-time delay.

Table 1 shows a comparison of the characteristics of the altimeter in two modes of
the altimeter. In the two modes, the altimeter uses an LFM signal with a time width of
102.4 µs and a bandwidth of 320 MHz. A burst is formed by the combination of 12 Ku-band
pulses and 4 C-band pulses. tatt is the time interval between adjacent altimeter transmission
operations, and tatr is the time interval between the altimeter transmitting operation and
the corresponding receiving operation. In search mode, both tatt and tatr are constants.
However, they are constantly changing based on the tracking height in tracking mode, as
shown in Figure 3.
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Figure 3. Schematic diagram of altimeter transmitting–receiving signals [18] in (a) search mode and
(b) tracking mode.

Table 1. Comparison of HY-2 altimeter tracking mode and search mode characteristics [17].

Characteristics Tracking Mode Search Mode

Length of tracking window/m 120 240
Ground command switching No Yes

Preset tracking height No Yes
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2.2. Transponder

Conventional bent-pipe transponders consist of an antenna, an amplifier, a microwave
delay device and the necessary connecting devices, and thus do not have the capability to
set different retransmission delays for different signals. The reconstructive transponder can
compensate for this shortcoming. Under this system, delay, amplification and forwarding
are no longer realized in only the Radio Frequency (RF) stage, but the RF signal is first
de-chirped, down-converted, amplified, filtered, demodulated, etc., to generate the I/Q
signals of the baseband and processed digitally. The delay is accomplished in the computer
control unit, which improves the flexibility and accuracy. The working principle is shown
in Figure 4.
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Furthermore, the transponder tracks the altimeter signal by means of an α-β tracking
loop filter [19], whose output is accompanied by a noise of random character, and the
transponder subsequently processes the fluctuations introduced by this noise to transform
them from frequency errors to time errors. Therefore, there are fluctuations in the received
signal data of the altimeter. However, the data from the transponder also record this
fluctuation value. So, it is possible to compensate for the fluctuations in the altimeter-
received data by finding a one-to-one correspondence between the fluctuations in the
altimeter-received signal data and the data recorded by the transponder.

The traditional altimeter in-orbit calibration experiment needs to be switched to the
search mode. At this time, the altimeter signal will be given a fixed transmitting–receiving
interval, as in Figure 3a. To achieve the effect of separating the ground signal from the
transponder’s forwarding signal, the signal delay value that should be assigned to the
transponder is then determined based on the height of the satellite in transit of the orbit
forecast. However, in the altimeter tracking mode, the transmitting–receiving interval of
the altimeter signal is determined according to the tracking state of the altimeter itself, and
is therefore variable, as shown in Figure 3b.

Therefore, different operations must be performed on the transponder according to
the timing variations of the altimeter. To guarantee that the forwarding signal appears in
the trailing edge of the sea surface echo signal, the transponder setting the delay time of
the forwarding signal must also make sure that the forwarding signal enters the altimeter’s
tracking window and does not affect the rising edge of the sea surface echo signal, which is
the altimeter’s tracking point and determines the transmitting–receiving intervals of the
altimeter signals. In practice, to achieve the above purpose, the transponder will forward
the signal delay by adding a pulse time width, resulting in the first pulse being empty, and
the transponder starts forwarding the signal from the second pulse.
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3. Principle and Algorithm

Figure 5 illustrates the link between the transponder and satellite positions. From
Figure 5 and [12], when the position of the transponder, the satellite orbit, velocity and
altitude are determined, according to the cosine theorem, the distance R between the
transponder and the satellite altimeter is a parabolic function with time t as the variable.
The equation is given by (1):

R(t) = (R0+H)GM
2(Rorbit−H)(R 0+Rorbit)

t2 + (Rorbit − H) (1)

where GM = 3.986 × 1014 m3s−2 is a constant.

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 13 
 

 

forward the signal delay by adding a pulse time width, resulting in the first pulse being 
empty, and the transponder starts forwarding the signal from the second pulse. 

3. Principle and Algorithm 
Figure 5 illustrates the link between the transponder and satellite positions. From 

Figure 5 and [12], when the position of the transponder, the satellite orbit, velocity and 
altitude are determined, according to the cosine theorem, the distance 𝑅  between the 
transponder and the satellite altimeter is a parabolic function with time 𝑡 as the variable. 
The equation is given by (1): 𝑅 𝑡 = 𝑅 + 𝐻 𝐺𝑀2 𝑅 − 𝐻 𝑅 + 𝑅 𝑡 + 𝑅 − 𝐻  (1) 

where 𝐺𝑀 = 3.986 10  m s  is a constant. 

 
Figure 5. Plot of the position of the transponder and the satellite (𝐻 is the height of the transponder 
relative to the Earth’s reference ellipsoid; 𝑅   is the Earth’s radius; 𝑅  is the relative distance be-
tween the altimeter and transponder; 𝑅  is the altimeter’s flight height relative to the reference 
ellipsoid; 𝐷 is the surface distance from the transponder to the satellite’s nadir; 𝜃 is the geocentric 
tensor angle corresponding to the distance from 𝐷; and 𝜈 is the satellite’s velocity along the orbit). 

In order to control timing deviations introduced by the fixed size of the clock pulses, 
the transponder employs a two-stage time measurement mechanism [17]. The first level 
of the time measurement is realized by clock pulse counting, and the second level of the 
time measurement is realized by frequency measurement and modulation. Therefore, the 
LFM signal generated by the Direct Digital Frequency Synthesizer (DDS) is modulated 
with a certain frequency bias. The value of the frequency bias is equal to the signal fre-
quency after de-chirping of the received signal. This frequency bias 𝑒  is the fluctuation 
introduced in the distance of the altimeter observation by the transponder forwarding the 
signal. A schematic of the geometric position of the transmitting and receiving signals 
when the altimeter is observing the target is given in Figure 6. 

Reconstructive
Transponder

0R 1R
2R

3R

4R

5R

6R v

 

Figure 5. Plot of the position of the transponder and the satellite (H is the height of the transponder
relative to the Earth’s reference ellipsoid; R0 is the Earth’s radius; R is the relative distance between
the altimeter and transponder; Rorbit is the altimeter’s flight height relative to the reference ellipsoid;
D is the surface distance from the transponder to the satellite’s nadir; θ is the geocentric tensor angle
corresponding to the distance from D; and ν is the satellite’s velocity along the orbit).

In order to control timing deviations introduced by the fixed size of the clock pulses,
the transponder employs a two-stage time measurement mechanism [17]. The first level of
the time measurement is realized by clock pulse counting, and the second level of the time
measurement is realized by frequency measurement and modulation. Therefore, the LFM
signal generated by the Direct Digital Frequency Synthesizer (DDS) is modulated with a
certain frequency bias. The value of the frequency bias is equal to the signal frequency
after de-chirping of the received signal. This frequency bias en is the fluctuation introduced
in the distance of the altimeter observation by the transponder forwarding the signal. A
schematic of the geometric position of the transmitting and receiving signals when the
altimeter is observing the target is given in Figure 6.
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Figure 6. Schematic of the geometric position of the transmitting and receiving signals when the
altimeter is observing the target.
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R2n is the distance from the altimeter-transmitted signal to the transponder. Rm is
the distance at which the altimeter receives the signal forwarded by the transponder. The
altimeter transmits signals at time tan, and the signals reach the transponder at time ttrn.
The following equation can be defined:

ttrn = tan +
R2n
C + en, n = 0, 1, 2, . . . (2)

where C is the speed of light, C = 299, 792, 458.458 m/s.
Both the transponder and the altimeter use an LFM signal with a time width T of

102.4 µs and a bandwidth B of 320 MHz. The frequency modulation rate k can be expressed
as follows:

k = T
B (3)

Frequency deviation ftrn can be derived by performing FFT calculation on the transponder-
recorded signal data. Combined with (3), en is

en = k ftrn, n = 0, 1, 2, . . . (4)

Since both the altimeter and the transponder use de-chirping to process the LFM
signal, then the altimeter receives signals at time tarm, which can be expressed as

tarm = tan + ttr delay +
R2n + Rm

C
− en, m = 1, 2, 3, . . . ; n = 0, 1, 2, . . . (5)

where ttrdelay is the delay set by the transponder and is constant in each experiment.
Hence, the equation for the transponder forwarding signal received by the altimeter

Sar(t) is as follows:

Sar(t) = exp
{

j
[

2π fc

(
t −

(
ttr delay +

R2n+Rm
C − en

))
+ k

2

(
t −

(
ttr delay +

R2n+Rm
C − en

))2]}
,

m = 1, 2, 3, . . . ; n = 0, 1, 2, . . .

(6)

where fc is carrier frequency.
So, only by finding the correspondence between (4) and (6), the fluctuating value en

introduced in the altimeter observation distance R2n + Rm can be eliminated. Also, from
(1), the altimeter observation distance after eliminating the fluctuations approximates a
parabolic shape.

And the expression for other objects’ echoes on the ground received by the altimeter is
as follows:

Sclutter(t) = exp

{
j

[
2π fc

(
t − 2Rclutter

C

)
+

k
2

(
t − 2Rclutter

C

)2
]}

(7)

where Rclutter is the distance between the altimeter and objects. Due to the unpredictable
nature of en, the other objects’ echoes will display randomness after overlaid correction is
applied. In this way, the transponder forwarding signal can be separated from the clutter.

The specific implementation of the algorithm is given by the block diagram shown
in Figure 7. The acquired altimeter signals and transponder signals are converted to the
frequency domain by FFT processing. We looked in advance at the amplitude–frequency
figures of the sea surface echoes around the experimental site. The threshold δ can be
set to the maximum of the amplitude of the sea surface echoes. The frequency values
corresponding to amplitudes greater than the set threshold in the frequency domain of
the altimeter signal can be intercepted (the frequency values corresponding to the echo
signal should be included in the intercepted data) and converted into distances. The signal
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path values acquired by the altimeter are combined with the distance fluctuation values
generated by the transponder, following a chronological sequence corresponding to the
transponder’s stored data. Subsequently, the data are recorded and represented graphically
as a scatter plot.
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Each output dataset is evaluated discriminatively. Outliers are removed from the data
before performing fitting operations. Finally, the calculation of root mean square error
(RMSE) is utilized as the criterion for decision-making. The dataset corresponding to the
minimum RMSE is output. Subsequent fitting is required to remove singularity values by
narrowing the difference between the fitted curve and the true parabola until a smooth
parabola is obtained.

4. Experiment and Results

In-orbit calibration transponders should be deployed at locations where the power
spectral pattern of the echo signal approximates the Brownian model [20], as shown in
Figure 2b. If the power spectrum of the echo signal near the calibration point is cluttered, as
shown in Figure 2a, the transponder forwarding signal will be flooded. It will be impossible
to judge whether the transponder forwarding signal enters the altimeter tracking window
during the experiment; the subsequent data processing will not be able to separate the
forwarding signal, and the uncertainty will increase. Consequently, we investigated the
state of the altimeter’s echo signals within a 40 km radius of the coasts of numerous islands
along China’s coastline. Furthermore, it should be noted that the transponder is stored
in Beijing. A remote experimental site will result in longer travel times, which raises the
possibility of equipment damage. Finally, three experimental locations were selected for the
calibration of the HY-2B (37.4106101075◦N, 122.6583330748◦E), HY-2C (37.4426472243◦N,
121.7561883854◦E) and HY-2D (37.6858872379◦N, 120.2710782643◦E) satellites, respectively.

Take the data obtained from the in-orbit calibration experiment on 6 March 2023,
for HY-2B (Pass No. 181); 25 August 2023, for HY-2C (Pass No. 114); and 8 March 2023,
for HY-2D (Pass No. 166) as examples. The red line segment in Figure 8 indicates the
transponder forwarding the signal into the receiving window of the altimeter. The altimeter
flight distance is given in the figure from the time the transponder forwards the signal into
the tracking window until the altimeter lost lock.
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Figure 8. Location of the HY-2B/C/D in-orbit calibration experiment.

During the flight phase of the satellite in the red part of Figure 8, the power spectrum
of the echo signal received by the altimeter is shown in Figure 9. The signals in the red part
in the figure are the forwarding echoes from the transponder. From Figure 9, the power of
the transponder forwarding signal is higher than the power of the point sea surface echo
under the satellite, but it does not destroy the ocean surface echo that obeys the Brown
model. Therefore, the point target signal generated by the transponder is easier to recognize
in the echo power spectrum under SMLE tracking mode.
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Figure 9. Power spectrum of altimeter echo signal.

The raw I/Q data of the echo signal received in the red region of the altimeter flight in
Figure 8 were processed. A threshold discrimination was set for the frequency domain sig-
nal amplitude by time–frequency variation, as shown in Figure 10. Data signals with ampli-
tude values greater than δ were computed to obtain the altimeter’s transmitting–receiving
two-way path values (including fluctuations).
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The transponder is required to establish a tracking state to the on-board radar altimeter
during the initial phase of the calibration experiment. The transponder does not send
signals to the altimeter during this period; it only receives signals from the altimeter.
Only after the tracking state has been successfully established and stabilized does it start
transmitting signals to the altimeter. Consequently, the number of forwarding signals
received by the altimeter is less than the number of signals received by the transponder. As a
result, the length of the data recorded by the transponder is kept constant during subsequent
processing, and the received signal path of the altimeter and the distance fluctuation data
recorded by the transponder are added up in chronological order while sliding.

A schematic of the signal two-way distance of HY-2B/C/D before and after eliminating
the distance fluctuations is given in Figure 11. As can be seen in Figure 11a,d,g and
Figure 11b,e,h, the parabolic shape of the packet in the latter is more continuous and
very distinct, which is consistent with the distance model between the altimeter and the
transponder in (1). Figure 11b,e,h show that the matching is completed, while the distance
fluctuation introduced by the forwarding signals due to the transponder is eliminated.
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The data extracted after the threshold setting in Figure 10 contain not only the transpon-
der forwarding signal but also the high Radar Cross Section (RCS) targets on the ground.
Thus, although the fluctuations in the altimeter echo signals introduced by the transponder
forwarding signals have been eliminated in the data processing process described above,
there will still be uncanceled ground echoes. As shown in Figure 11b,e,h, in addition to
the data points forming a parabola, there are many data points scattered in the figure.
Therefore, it is necessary to separate the ground echoes from the transponder forwarding
signals by fitting and eliminating singular values. A schematic diagram of the bi-directional
path of the HY-2B/C/D altimeter transmitting–receiving signal after separating from the
ground echoes is given in Figure 11c,f,i. At this point, the compensation of the altimeter
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observation distance parabola is completed. This operation eliminates the fluctuations in
the signal distance parabola due to the transponder forwarding the signal.

We achieved consistent results in multiple experiments conducted in March and
August 2023 utilizing this approach. The RMSE is used to measure the difference between
the matched altimeter and transponder identified by the proposed method as shown in
Table 2. The corresponding visualization picture is shown in Figure 12. By combining
Figure 12 and Table 2, it is evident that the RMSE of the altimeter observation distance is
substantially decreased after transponder distance adjustment.

Table 2. Comparison of RMSE before and after altimeter signal range compensation.

Satellite Date Before Compensation (m) After Compensation (m)

HY-2B 6 March 2023 1.0632 0.0546
HY-2D 8 March 2023 1.6342 0.0788
HY-2D 18 March 2023 1.4708 0.0629
HY-2B 20 March 2023 0.9996 0.0566
HY-2B 21 August 2023 0.9852 0.0643
HY-2D 24 August 2023 1.1882 0.0609
HY-2C 25 August 2023 1.5068 0.0582
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Figure 12. RMSE of parabolic fluctuations in altimeter distance before and after compensation for
successive experiments.

The RMSE before matching was bigger and the range of numerical fluctuation was
greater due to the influence of ground echoes and the distance fluctuations caused by the
transponder forwarding signal. On the contrary, the RMSE after matching was reduced
from meters to centimeters, and the results of several experiments were stabilized at about
0.0623 m.

After removing outliers from Wan’s results [12], the calculated RMSE is roughly
around 0.0895 m. Unlike Wan’s approach, our method exhibits smaller RMSE variations
across numerous experiments. And there are individual unreliable matches in his results.
So, combined with Table 2, it is proven that the signal matching method proposed in this
paper is feasible and effective. Accurate data support was provided for the subsequent
calculation of altimeter clock bias.

5. Conclusions

When the altimeter is calibrated in the SMLE tracking mode, the transponder is de-
ployed along the coastline, and it is inevitable that ground clutter will enter the tracking
window of the altimeter. Therefore, this paper gives a method to separate the transponder
forwarding signal from the ground echo signal. This method can eliminate the distance
fluctuation introduced by the transponder forwarding signal in the received signal of the
altimeter while processing, so the calibration accuracy can be improved. The signal ranging
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error is decreased from the meter level to the centimeter level. We achieved consistent
results in multiple experiments conducted in March and August 2023 utilizing this ap-
proach. The RMSEs after matching several experiments are stabilized at about 0.0623 m. So,
the signal matching method is feasible and effective. Moreover, the scheme in this paper
only relies on the altimeter observation distance and the transponder observation distance
without relying on the corresponding time code, so interference of the time-scale bias in
the altimeter data and the transponder data can be avoided. Moreover, the fundamental
ideas that form the basis of this technology can be applied to any transponder capable
of modifying the delay in its response signal during the calibration. It has established a
foundation for later ground-based construction of a permanent station.
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