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Abstract: This paper presents a new data fusion multiscale observation product (MOP) for flood
emergencies. The MOP was created by integrating multiple sources of contributed open-source
data with traditional spaceborne remote sensing imagery in order to provide a sequence of high
spatial and temporal resolution flood inundation maps. The study focuses on the 2015 Memorial
Day floods that caused up to USD 61 million dollars of damage. The Hydraulic Engineering Center
River Analysis System (HEC-RAS) model was used to simulate water surfaces for the northern part
of the Trinity River in Dallas, using reservoir surcharge releases and topographic data provided by
the U.S. Army Corps of Engineers. A measure of fit assessment is performed on the MOP flood maps
with the HEC-RAS simulated flood inundation output to quantify spatial differences. Estimating
possible flood inundation using individual datasets that vary spatially and temporally allow to
gain an understanding of how much each observational dataset contributes to the overall water
estimation. Results show that water surfaces estimated by MOP are comparable with the simulated
output for the duration of the flood event. Additionally, contributed data, such as Civil Air Patrol,
although they may be geographically sparse, become an important data source when fused with
other observation data.

Keywords: data fusion; remote sensing; damage assessment; hydraulic models; flood; HEC-RAS

1. Introduction

The increasing trend of population living in urban areas, along with deteriorating
infrastructure and projected hydroclimatic changes, escalates the likelihood of society
becoming more vulnerable to natural disasters. The growth in frequency and magnitude
of hydrometeorological events can result in loss of life and property, and can negatively
affect the economy of a region [1,2]. This is particularly evident during flood events, where
human factors can exacerbate the damage caused by a natural phenomenon. One of the
key components in preventing and reducing losses is the ability to accurately monitor and
model flood extents as well as to provide reliable information about the risks associated
with flooding and actionable warning. Accurate predictions often involve a range of
interactive activities that become critical safety tools, assisting in providing actionable input
to the response community and informing the general public [3].

Assessing the degree of a flood extent with a high spatial and temporal resolution
as an event is progressing is a difficult task. Currently, there is a lack of tools that allow
professionals to measure flood extents and to make high-resolution assessments in a timely
manner. Specialists often rely on river gauge station readings, numerical models, or for
surveyors to take manual in situ measurements [4]. However, during a flood event, these
resources could be compromised or take time to carry out, resulting in temporal gaps
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in data. Additionally, efforts in maintaining gauge stations are often costly and sparse,
making it difficult to obtain accurate measurements. For these reasons, satellite and aerial
data are often used because they provide multispectral, high-resolution spatial data that
can be used to make assessments before, during, and after a flood event.

Remote sensing provides a synoptic overview of the Earth and gives valuable environ-
mental data for a broad variety of scales, ranging from entire continents down to urban
regions and spatial pixel resolution ranging from kilometers to centimeters [5]. Despite
the many advantages, several drawbacks prevent remote sensing platforms from being
solely used during emergencies. Sensor limitations for optical remote sensing platforms
are often a serious drawback since no single sensor offers the optimal spectral, spatial, and
temporal resolution at the same time [6]. Specific data may not be collected at the time
and space most direly required and/or may contain gaps as a result of the satellite revisit
time, atmospheric opacity, or other obstructions. Additionally, these platforms are heavily
limited during periods of clear sky and daylight conditions. Likewise, airborne platforms
are weather-dependent, often require multiple flights at high altitudes to view large flood
areas, and only provide information in the visible part of the electromagnetic spectrum
(EM), making it difficult to extract information quickly [7].

As one of the ways to overcome the limitations of optical remote sensing platforms,
the research community has shifted towards active microwave remote sensing. Due to its
all-weather, day and night capabilities, synthetic aperture radar (SAR) data have been used
to identify water bodies and estimate flood extent for multiple environmental hazards [8].
Yet, several challenges still occur due to the low-backscatter properties of water with other
environmental variables. For example, land cover variables such as vegetation and urban
areas cause multiple reflections, increasing the amount of backscatter information being
sent back to the SAR sensor. This effect makes these environmental features notably similar
to the properties of open water, making it difficult to distinguish between flooded areas and
non-flooded regions. Optical and active data have substantially been investigated at various
levels of spatial resolutions and accuracy assessments, resulting in visual interpretation
often being found to be the most accurate assessment [9].

In occurrences where observation data are lacking or not available enough to provide a
complete flood extent, areas at risk are delineated using hydraulic models. Hydraulic mod-
els are designed to simulate different flood scenarios which aid in identifying flood-prone
areas, and estimating water depth and probable flood inundation [10]. One characteristic
of hydraulic models is that they replicate flow based on the topography of the channel and
floodplain by applying physical laws to fluid motion with varying degrees of complexity
and minimal parameterization requirements [3]. Traditionally, numerical models rely on
water level measurements or flow from stream gauging stations to simulate inundation.
With the development of high-resolution topographic mapping through the advancement
of remote sensing data, models expanded to incorporate structured and unstructured grid
meshes for 2D modeling. Digital elevation models (DEMs) often serve as the terrain pa-
rameter that is essential to estimate the topography and geometry of a river channel, flood
basin extraction, discharge, ditches, etc. [11,12]. Studies comparing 1D and 2D models have
shown that 2D models have the capability of sufficiently estimating variables such as flow
velocity, inundation extent, and water level depth, all of which are crucial factors for flood
risk management. However, alternative studies have also shown significant differences
between 2D model performances, specifically in urban environments when estimating
velocity. This is due to the presence of small-scale features such as bridges, roads, and
buildings, which tend to alter the flow pattern, making it challenging to apply 2D models
in urban areas in comparison to rural regions [13]. Because of this model limitation present
in urban regions, a detailed validation dataset is needed [14].

Remote Sensing and Data Fusion for Flood Assessment

A significant amount of research has focused on the use of remote sensing data
for rapid flood inundation mapping from platforms with different spatial resolutions.



Remote Sens. 2023, 15, 1615 3 of 27

Refs. [15,16] used 8-day composite images from Moderate Resolution Imaging Spectrora-
diometer (MODIS) to identify the spatiotemporal extent of annual flooding over Cambodia,
the Vietnamese Mekong Delta, and Bangladesh. Inundation extents obtained from MODIS
are compared with RADARSAT-derived inundation maps and show that it is possible
to observe flood dynamics by examining patterns of flood inundation and recessions us-
ing coarser resolution imagery, as carried out similarly using moderate resolution data.
Similarly, Ref. [17] used 30 m Landsat imagery to measure inundation changes over the
Macquarie Marshes located in central–eastern Australia for a 28-year time period. These
studies show examples of how the spatial analysis of long-term imagery is a powerful way
to measure changes in inundation over large spatial scales. Yet, these types of analyses
would be difficult to perform over small regions, urban environments, and shorter time
scales because of the spatial and temporal resolutions of the satellite data.

Higher spatial and temporal resolution data are required for an up-to-date inundation
over a single event. For example, Refs. [18,19] used multitemporal series data from
COSMO-SkyMed to assess flood evolution mapping and damage after the 2009 floods in
Northern Italy and the 2011 Tohoku tsunami in Japan. Ref. [18] applied an automated
image segmentation algorithm and an electromagnetic surface scattering model to derive
flood progression of three consecutive days and recession for post-event analysis. Ref. [19]
applied change detection to identify flooded areas and debris over urban areas in the harbor
of Sendai.

The availability of new and diverse data sources, paired with advancements in data-
driven methods, have transformed the practice of flood model initialization, calibration,
and validation. Until recently, only sparse streamflow measurements, available at few
locations, were used to spatially validate hydraulic models. Because models can simulate
large and diverse two-dimensional domains, the comparisons of simulated and observed
measurements at these few locations have shown mixed results [9]. For the initialization and
calibration of models, current hydraulic models require spatially distributed observation
data at a scale proportionate to the model domain. Higher resolution data have been shown
to lead to better simulation results [14]. These data may be available in various forms,
including flood extents, water depths, or stream velocities. Data fusion techniques are
required to ingest multiple sources and generate products for model use, especially as
data are generated contemporaneously during an evolving flood event. This is particularly
important in urban environments, where the progression of the flood may be propagating
with complex geometries.

Several approaches were developed for leveraging remote sensing data for inundation
modeling for model calibration [20], validation [21,22], and to improve model develop-
ment [11]. Ref. [23] used MODIS and Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) images to acquire spatial extents of flooding to calibrate
flood inundation areas using a distributed hydrologic model in Lake Victoria. Ref. [24]
integrated river gauge data with physiographic data, such as DEM, land use land cover,
and Landsat TM imagery, to accurately estimate flood damage in Pitt County, North Car-
olina. Ref. [24] demonstrated the effectiveness of the proposed methodology for flood
extent mapping based on the reflection differences between wet and dry regions before and
during the flood event. Additionally, they showed that this approach could help estimate
water-inundated areas located under forested canopy and cloud cover. Aerial platforms,
both manned and unmanned, are particularly well suited after major catastrophic events
because they can fly below the clouds, and thus acquire data in a targeted and timely fash-
ion. Ref. [25] used RGB photographs collected using a UAV, GPS river cross-sections, and
DEM as data sources to generate a digital surface runoff model (DSRM). The DSRM was
then used as input into HEC-RAS for hydraulic computations with steady and unsteady
flows. Results showed that HEC-RAS performed best when the DSRM generated from the
observed data was used to run the analysis and to validate model performance.

Novel information streams, such as social media, contributed videos, photographs,
and text, as well as other open source data, are redefining situational awareness during
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emergencies. When these contributed data contain spatial and temporal information,
they can provide valuable volunteered geographical information (VGI), harnessing the
power of “citizens as sensors” to provide a multitude of on-the-ground data, often in real
time [26]. Refs. [27,28] demonstrated this through a series of papers and case studies in
which crowdsourced photos and volunteered geographic data were fused together using
geostatistical interpolation to create an estimation of flood damage in New York after
Hurricane Sandy on October 2012. Refs. [20,29] used geolocated photographs attached to
social media messages to estimate water depth using referenced objects in the pictures and
generated flood maps. Water-level data were then used to validate the flood estimation
model. Ref. [30], on the other hand, proposed a method to use Twitter data in conjunction
with traditional data sources. They used the presence of tweets to start hydraulic model
runs and assessed the model output by examining different water and velocity levels
derived from social media.

Gradually comparing model output with various remote sensing platforms allows us
to investigate different model initialization options and help pinpoint model setups and
assess how modeling may be improved. This research focuses on utilizing multiple data
sources generated during emergencies for the identification of flood extents. It proposes a
methodology to develop a multiscale observation product (MOP) to generate a sequence of
spatiotemporal maps by fusing multiple heterogeneous data sources. The methodology
is based on a computational approach that allows for the mining of big data, information
integration, and data fusion. Furthermore, due to the multitude of spatial and temporal
resolutions associated with contributed data, this research assesses flood progression during
the entire duration of the event. It incorporates data that are generated during the duration
of the event and seeks to represent the contribution of each dataset. This, in return, has
the potential to support traditional means of inundation mapping in near-real time and
provide advantages for high-resolution flood hazard mapping. A comparison between the
observational flood map derived from the proposed method with traditional numerical
modeling approach demonstrates how the fusion of heterogeneous data sources could
provide advantages for high-resolution flood hazard mapping.

The structure of the paper is as follows: Section 2 provides an overview of the hy-
drometeorological event and the study area. Section 3 provides a detailed summary of
different data characteristics and acquisition dates. Section 4 discusses the methodology
used to generate spatial and temporal flood extent maps from observed data. The results
are presented and discussed in Section 5, and conclusions are presented in Section 6.

2. Case Study: 2015 Memorial Day Texas–Oklahoma Flood

May 2015 was one of the wettest months for the state of Texas, with an average
precipitation of more than 23 cm (9 inches) falling throughout the state (NOAA 2016,
NWS). For the first weeks of May, numerous counties statewide received above normal
precipitation, resulting in saturated soils and raising the water table at least 5–10 cm above
normal. During the last week of May 2015, on Memorial Day weekend, a slow-moving
tropical storm system caused severe flooding across much of the southern counties of Texas
and Oklahoma.

The sequence of storms triggered record-breaking precipitation anomalies and de-
stroyed or severely damaged roads and infrastructure across multiple counties and major
cities, including Dallas and Houston. The widespread, high-intensity rainfall across the
states, along with the already saturated soils from previous rainfall events, led to a sharp
increase in surface water runoff and overbank flooding throughout many regions. The
duration and flood progression of this storm system was unusual, as most flood events in
Texas usually last only a few days and are typically localized, affecting only one or two
river basins [31,32].

The Dallas–Fort Worth area recorded more than 30 cm (15 inches) of rain. In the city
of Dallas, nearly two dozen roads were closed, including major interstates, and homes
were flooded as nearby lakes and the Trinity River system were overfilled with excess
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water. Several levees were breached throughout the county, causing over USD 50 million in
damage for the county of Dallas. Out of the numerous areas affected by the storm, a section
of the Elm Fork Trinity River was selected as the area of interest (AOI). This was due to
data availability and proximity to the state’s capital, located 24 km (15 miles) northwest of
Dallas, in Irving, TX. The entire study domain, represented in black in Figure 1, extends
approximately 21 km and covers an area of 190 km2. However, due to the differences in
spatial resolution between different remote sensing platforms, a slightly smaller AOI was
selected, highlighted by a red dashed outline in Figure 1. The AOI extends 15 km and
covers an area of 150 km2.
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Figure 1. Study area showing the various sources of multispectral remote sensing contributed, and
open source geospatial data collected and fused to estimate flood extent. The HEC-RAS model
inundation is overlaid and represented with a hashed pattern.

The surrounding region outside the study area domain is a flood plain, mostly covered
by light vegetation and slowly developing with upcoming urbanization. Monitoring this
flood event from a hydrologic perspective was a difficult task due to the region’s lack of
stream gauges and generally poorly instrumented gauges (USGS, 2015). For this area, three
river gauges along the Elm Fork River were available and were used to run the HEC-RAS
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model. The gauges are shown with a red rhombus located east and south of the domain
Figure 1.

3. Data

Multiple sources of multispectral remote sensing and open-source geospatial data
were collected and analyzed to estimate the flood extent over the Trinity River area. All
multispectral imagery was downloaded from the U.S. Geological Survey Hazards Data
Distribution System (USGS HDDS). The HDDS is a unique web-based interface that enables
users to search for satellite, aerial imagery, and other geospatial datasets available in near-
real time based on a specific event. The web portal is designed to assist in disaster response
by providing imagery and documents acquired before, during, and after an event. Datasets
downloaded and analyzed for this event have multiple ranges of geometry, resolution,
structure, accuracy, and date of acquisition. A summary of the data type, quantity, and
acquisition day is shown in Table 1. A brief description of each data source and associated
characteristics is provided below.

Table 1. Overview of all data sources summarized based on data type, quantity, and day of acquisition.

Type Source Count Acquisition Date
Satellite

WorldView-2 2 27 May
WorldView-3 2 18 June

SPOT-6 2 31 May
Landsat 8 2 2 June, 18 June

Aerial Imagery
CAP 273 21 May, 31 May, 1 June–5 June

Ground
Twitter 97 21 May–29 May, 31 May, 1 June–4 June

3.1. Remote-Sensing Imagery

Imagery from various high (smaller than 5 m) and medium (larger than 15 m) spatial
resolution remote sensing platforms are frequently used for mapping areas of inundation.
However, these data have limited applicability when mapping inundation over small-scale
areas. Data with finer spatial resolution provide adequate information for deriving precise
extent of flood inundation. For this study, both high- and medium-resolution datasets
were used to help overcome the pixel distortion issues often present in medium-resolution
platforms as discussed in Section 2.

Landsat 8 is the latest satellite by National Aeronautics and Space Administration
(NASA), launched on February 2013. It provides multispectral data at 30 m resolution with a
16-day temporal resolution. Four Landsat scenes were selected to perform a spatiotemporal
comparison over the duration of the flood event. Each image was chosen based on the
percentage of cloud cover (<40) and extent of coverage for the study area. The following
dates were used: 15 April, 1 May, 2 June, and 18 June 2015.

High-resolution multispectral imagery is also used in addition to the Landsat scenes.
Commercial imagery from WorldView-2, WorldView-3, and Satellite Pour l’Observation de
la Terre (SPOT-6) were chosen as they provide data more frequently, with a revisiting time
of less than one day, and spatial resolution up to 31 cm with the panchromatic band. Two
WorldView-2 scenes were used for 27 May 2015, two SPOT-6 scenes were used for 31 May
2015, and two WorldView-3 scenes were used for 18 June 2015.

Civil Air Patrol (CAP) imagery is an additional data source that has shown to be a
valuable alternative data source when remote sensing data are not yet available [33]. The
CAP is a congressionally funded, nonprofit corporation functioning as an auxiliary to the
United States Air Force. The CAP conducts a variety of missions in support of federal, state,
local, and nongovernmental entities, including search and rescue, disaster relief support,
and aerial reconnaissance for homeland security. It collects hundreds of high-definition
aerial photographs in the visible part of the EM and is used to assist in disaster response
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for multiple emergency operations nationwide (i.e., search and rescue missions, forest fires,
flood response documentation). A total of 278 images were collected for this study area.

3.2. Twitter Data

Twitter is one of the largest social networking sites, and it is widely used to share
information through microblogging. These microblogs, or “tweets”, at the time of the
study were limited to 280 characters, so abbreviations and colloquial phrasing are common,
making the automated content filtering challenging. Twitter is a very popular outlet during
emergencies and disasters, and it is often used by government agencies and the public to
disseminate information. The use of hashtags, words, or unspaced phrases prefixed with
the sign # are central to the use of Twitter. They act as identifiers unique to Twitter and
are frequently used to search and filter information. The creation and use of a hashtag
can be established by any user who wants to create a concept category to share specific
information about a subject [34]. Figure 2 depicts the various datasets used in this case
study and illustrates the quantity and continuity of certain datasets in comparison to the
traditional observation made at specific snapshots in time.
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Figure 2. Summary graph of all data available during the 2015 Memorial Day flood. Vertical dotted
lines represent dates for which more than one data source are available on that given day.

3.3. Hydrologic Engineering Center River Analysis System (HEC-RAS) Model Output

The hydraulic geometry of a river is an essential component for accurate model
simulations and is generally dependent on the digital elevation model (DEM). A variety
of numerical models have been developed as tools that aid in flood prediction, mitigation
planning, and hazard assessment. The Hydrologic Engineering Center River Analysis
System (HEC-RAS) is one of the most widely used modeling tools that is developed by the
US Army Corps of Engineers. It has been present in the public realm for more than 15 years
and has been peer-reviewed (HEC, 2010c). It is also widely used by many government
agencies and private firms worldwide. For these reasons, HEC-RAS was selected for
this study. A 5 m light detection and ranging (LiDAR) digital terrain model was used
to accurately estimate the hydraulic geometry of the Trinity River. A series of hourly
inundation extent outputs were generated using a 2D dynamic flood model for each day
from 12 April 2015 to 14 June 2015.

4. Methodology
4.1. Overview

A methodology to develop a multiscale observation product (MOP) is proposed to
generate a sequence of spatiotemporal maps by fusing multiple heterogeneous data sources.
The goal is to generate 2D maps that could be used to assess the output of 2D numerical
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models. Three main challenges associated with fusing numerous datasets are the varying
spatial and temporal resolutions and the diverse data collection methods.

The 2D spatiotemporal maps were produced by analyzing each data source individu-
ally to estimate the water presence using the best available technique for that source. This
step was repeated for days that the data were available. The water surface areas extracted
from each source were resampled to a common grid and the maximum flood extent was
computed using the sum of each day.

Lastly, the water surfaces in MOP were compared with the output of the numerical
model using a fit measure that quantifies spatial differences. For this study, four different
approaches were used to classify and identify water surfaces depending on the data source.
These techniques are represented in Figure 3 and explained further in the following sections.

Figure 3. Diagram of the methodology used in this study to generate flood change detection maps.

4.2. Water Identification in Satellite Remote Sensing Imagery

Various image processing techniques have been introduced in recent decades for the
extraction of water features from satellite data. The Normalized Difference Water Index
(NDWI), first proposed by [35], was applied to delineate and distinguish the water extent
over the Trinity River study area. The NDWI uses two bands, the NIR and green channel,
of a multispectral remote sensing scene to classify open water features. The NDWI is
calculated by the formula provided below, where ρGreen refers to the green band and ρNIR
refers to the near-infrared band.

NDWI =
ρGreen – ρNIR
ρGreen + ρNIR

(1)

The NDWI is a dimensionless product, and values vary between –1 to +1. Values
greater than 0.3 correspond to high water content and values less than 0.3 correspond to
low water content and low fraction cover. This method was applied to all multispectral
data available for the flood event. The threshold value was determined based on a study
from [36] which found that a 0.3 value is best for separating water from a water and
land mixture.

4.3. Water Identification in Aerial Imagery

Working with aerial imagery is a challenging task because these data are often acquired
using conventional digital cameras, and only in the visible parts of the red–green–blue
(RGB) spectrum. The aerial images were classified using an ensemble of a supervised deci-
sion tree machine learning classifier and a maximum likelihood classifier. Two classifiers
were used because of the additional difficulty introduced by the lack of IR information.
Furthermore, because of the lack of infrared (IR) data, a 2D wavelet transformation using
the Haar mother wavelet was first run to extract texture information for all the images, and
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thus expanded the search space beyond RGB. Then, for each transformed image represen-
tation (RGB + wavelet coefficient components), a decision tree learning algorithm was used
to classify each pixel as water. A more detailed description of this method is presented
in [33].

An additional challenge when working with aerial imagery is that these images often
do not contain spatial reference information. Therefore, the images do not align prop-
erly with other geographical data available. In order to account for this limitation, each
image was georectified (or georeferenced) to a geographic location or a map. This is
commonly performed by taking an image in its original geometry and identifying a set
of ground control points (known x–y coordinates). Ground control points are features
such as road intersections, bridges, buildings, trees, etc., that are present in the aerial
imagery and also have known coordinates in the real world. Once the points are identified,
a polynomial transformation is applied to distort and match the original (unprojected)
raster with the projection of the map. In this study, the ESRI ArcGIS projective trans-
formation (http://desktop.arcgis.com/en/arcmap/10.3/manage-data/editing-existing-
features/about-spatial-adjustment-transformations.htm accessed on 1 September 2015)
approach was chosen to transform oblique imagery directly from aerial photography. After
the photographs were individually assigned a coordinate system, they were mosaicked
into one new raster and the water extent was identified for each date.

4.4. Water Identification in Twitter

This step consisted of generating a flood inundation extent by integrating ground data
with topography, which is one of the most important characteristics in flood scenarios. The
nature of these data are different from data used to generate the previous flood extent maps,
as they comprise sparse points for each day. The points were used to help identify the
presence or absence of flooding in a localized region around the coordinates of the tweet.
Twitter posts were filtered based on the geographic location that the messages were shared
from and their associated hashtags relevant to each event. Specifically, the x–y coordinates
associated with each tweet were used to generate a 500 m buffer over the DEM centered at
the x, y location. Within the buffer surrounding the Twitter point, the lowest height value
was chosen and used as a threshold. Areas that were lower than the threshold value were
flooded, while areas above the lowest elevation remained nonflooded. Each localized flood
area was merged with the neighboring areas to generate a complete flood inundation for
the entire domain. This process was repeated for each data point independently for all
days that Twitter data were available. Additionally, the same process was duplicated for
the CAP dataset, to generate the CAP.DEM product.

4.5. River Analysis System Preprocessing

Numerical models, such as HEC-RAS, have the capability of producing continuous
outputs at different time steps throughout the simulation period. In this study, hourly
HEC-RAS outputs were generated for each day spanning a two-month period from 18
April 2015 to 14 June 2015. The hourly outputs were aggregated to a single maximum flood
extent for each day over the two-month period. These outputs were used for comparison
purposes with the days for which observational data were available.

4.6. Data Fusion

Data fusion is a process by which data from multiple sources with different spatial
and temporal resolutions are integrated together to improve information for decision
making [37]. This approach is used throughout many disciplines. Although there is a
wide selection of techniques and processing possibilities that have the ability to combine
information, all methods incorporate an ordered hierarchical approach that takes data
collected from multiple sources and represents them as an assimilated interpretation of a
study area [37].

http://desktop.arcgis.com/en/arcmap/10.3/manage-data/editing-existing-features/about-spatial-adjustment-transformations.htm
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/editing-existing-features/about-spatial-adjustment-transformations.htm
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Flood extent layers were created from available remote sensing data, digital elevation
models, and ground information to generate temporal flood assessment maps. Since data
vary in spatial resolution, all data were resampled using the nearest neighbor algorithm to
a uniform 5 m × 5 m grid to match the DEM resolution used in the HEC-RAS model. In
the nearest neighbor algorithm, the center value of a odd-sized mask (e.g., 3 × 3, 5 × 5) is
assigned the value of the average of the values in the mask. A three-day window centered
at a specific date is used to increase the temporal resolution of the MOP results due to the
sparseness of the observations available. This is shown in Figure 4, where the purple points
represent the original acquisition day for the data and the gray shaded areas represent the
data extended within the temporal window. This approach extended the data available for
analysis from only six days, as originally shown in Figure 2, using vertical lines, to a total
of 20 days. By combining datasets of different spatial and temporal resolutions, it allows to
generate inundation maps that have a higher temporal resolution than a single snapshot
in time. The maximum extent for each time step was calculated for comparison with the
HEC-RAS model output.
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Figure 4. Diagram showing the temporal data extension after the data fusion method was applied.
Purple dots represent the original day of data acquisition. The light gray dots represent the days
added after data are extended via interpolation.

4.7. Measure of Fit

The comparison of mapped water features from the remotely sensed product to areas
the model predicts as flooded is a common practice used to quantify the deviation of
simulated results from observational data and thematic map accuracy. This is carried out
using three metrics: measure of fit, omission error, and commission error.

The measure of fit (F2) statistic represents the inundation extent of the observed and
modeled data, respectively. This was calculated using the number of flooded pixels in both
the observed remotely sensed products and the predicted HEC-RAS model output, over
the total number of flooded pixels, calculated by taking the union of the flooded pixels in
both the observations and model (1obs – 1mod).

The following equation was used to estimate such measurement, where Αobs is the
total number of water pixels from MOP, and Αmod refers to the total water pixels predicted
by HEC-RAS.

(Ϝ2) =
Α

obs ∩Αmod

Αobs ∪Αmod (2)

The areas of omission and commission are two additional metrics used for comparing
estimated water features from each output. These were used to measure the underesti-
mation (omission (O)) and overestimation (commission (C)) of the simulated flood pixels
(HEC-RAS) in relation to the observed water pixels from MOP. Therefore, omissions repre-
sent the pixels observed as wet but simulated as dry (1obs – 0mod). Commissions represent
pixels simulated as wet but observed as dry (0obs – 1mod).
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Omission error data were based on the requirement that the map labels matched the
reference labels, whereas the commission error data were based on the requirement that
the reference labels matched the map labels.

O =
(
Α

obs –Ρe
Ρu

)
× 100 (3)

C =
(
Α

mod –Ρe
Ρu

)
× 100 (4)

where Ρe is the number of common flooded pixels between the observed and predicted, and
Ρu is the total number of pixels observed and modeled as water from MOP and HEC-RAS.

5. Results

HEC-RAS is the underlying model used for most flood simulation case studies con-
ducted by FEMA to generate flood maps. Flood modeling analyses are conducted with
the objective of determining the maximum possible flood extent. For this case study, the
maximum inundation from all observation data and the calibrated HEC-RAS model output
is shown in Figure 5.

´0 21
km

Modeled
Observed
Domain

Maximum Inundation

Figure 5. Water surfaces for each day are aggregated together to represent the maximum flood
extent possible for the entire event. Inundation of the MOP is shown in light blue and the simulated
HEC-RAS model output is overlaid in hashed green.

The maximum extent was determined by taking a single day of observation data for
the 20 days that the original data were extended to and consolidating it together to estimate
the extreme possible flood inundation (worst-case scenario) for the duration of the event
based only on the observed data. The observed water surfaces generated from MOP are
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represented in light blue. This step was repeated for the simulated HEC-RAS output for
the same 20 days and is represented by the hashed green pattern. It is important to note
that floods are dynamic in nature, and throughout the progression of an event, water depth
and velocity are prone to change. Using either the simulated or observed maximum flood
extent may not be a true representation of the actual extent at a specific time [12]. This is
likely to occur in urban environments where different city areas may experience the effects
of a flood event at different times.

This analysis compared individual days that observation data were available with
water surfaces simulated from HEC-RAS. In comparison with observation data, numerical
models are capable of providing large amounts of data as output, often continuous in nature
over the domain area. Fusing heterogeneous data with different spatial and temporal reso-
lutions expands data accessibility and allows for continues flood inundations monitoring
at finer resolutions than various snapshots in time. This allows to assess both outputs
spatially and temporally before, during, and after a flood event, as shown in Figure 6. The
figure shows the total inundation area in km2 over the duration of the flood event derived
both from the observed data (blue line) and modeled by HEC-RAS (gray line). Different
observation data available are represented with a series of symbols as well as which data
source is used to estimate the inundation area each day. A gray dashed line is used as a
baseline to represent the total area of water surfaces present during normal conditions.
Note that CAP and TW are often below the baseline because they only observe a portion of
the domain.

Ar
ea

 (k
m
2 )

Figure 6. Data trends of the total area estimated from the remotely sensed product and simulated
inundation over an eight-week time period. The total area of observed water is shown with a blue
line and each dataset is represented by a series of symbols. The simulated water is represented by a
gray line and the normal water area is shown with a dashed line.

The line trends of the total area observed from the MOP and predicted demonstrate an
overall comparable pattern. The first day of the study period, both observed and predicted,
shows an area of approximately 7 km2. As the event progresses, both outputs show an
increase of water presence inside the domain. This is particularly evident during the peak
of the event, 31 May to 1 June, where both observed and predicted line trends peak at the
same time for the same days. As the flood begins to recede, the total area of water presence
begins to decrease.

Additionally, Figure 6 shows that the total areas simulated by the HEC-RAS model
are almost always greater than the MOP areas from the remotely sensed data. This is due
to two main reasons: one is that engineers open and close gates located along reservoirs
or lakes in order to maintain a specific water level within the water bodies. The release of
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water is carried out gradually over the terrain based on how much water flow the area can
sustain. However, data that are reported and used as input for the HEC-RAS model do not
capture this slow release; instead, sharp increases are caused and can be seen throughout
the domain over a two-day period. This effect is shown in Figure 7, in which the image
on the left represents the water surfaces simulated by HEC-RAS for 16 May 2015, and the
image on the right shows the flood simulation for 18 May 2015. It can be observed that
over this two-day period, the water is slowly propagating from the edge of the domain
towards the center.

Figure 7. Water surfaces simulated from HEC-RAS for 16 May and 18 May are shown. Water can be
seen propagating towards the center of the domain over a two-day period as water is being released
from the nearby lake.

The second reason why HEC-RAS has higher areas estimated than the MOP is due
to the underlying characteristics of the observational data used each day. The only data
available near 15 and 18 May are CAP. These data are spatially distributed along the Elm
Fork Trinity River and do not cover the creek left of the Trinity River. This can be seen in
Figure 1, in which the CAP is represented by the shaded color of yellow and dark orange.
This is also true for the sharp decrease in area shown by the observed water features for
3 June, where the only data available are the CAP aerial imagery and Twitter. Although
these data have the advantage of having a high temporal resolution, they are often spatially
sparse, or, in the case of CAP, are assigned to collect data only over a specific geographical
area, while the opposite is true for satellite remote sensing imagery, which are characterized
by high spatial but low temporal resolution. Although the CAP data may be spatially
constrained over specific areas, their temporal resolution helps to fill in the gaps when
satellite resolution from platforms is not sufficient. This is shown and further explained in
the following section and depicted using Figure 8.

Another reason why HEC-RAS may have simulated a larger flood extent compared to
the observed dataset is because of errors in the main channel bathymetry, as represented
by the DEMs. While DEMs (such as National Elevation Dataset) are widely used for flood
modeling, these datasets do not accurately represent river channel and large water bodies,
but represent them as flat surfaces, resulting in underestimating the flow conveyance
potential [38,39].
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Figure 8. Depicts the contribution of each data source to the commission and omission errors. Data
included in the error are represented by blue squares, while data omitted are shown using red squares.

5.1. Error of Commission and Omission

Estimating possible flood inundations using individual datasets that vary spatially and
temporally allows us to visualize and understand how much each observational dataset
contributes to the overall water estimation individually. This is performed by computing
the omission and commission errors that occur when each dataset is either present or absent
from the MOP. Before calculating the omission and commission errors, the sum for a single
data source being present is calculated for every possible data combination. This step is
repeated, but instead of including all data, the same source is omitted, then the sum is
calculated for each data combination possible without that one data source. Once the sum
is generated for each data, the union and intersection are obtained in order to calculate
the overall omission error and commission for each data source. Since for this case study,
we have a total of six different observation data sources, each one is turned on and off;
thus when the sum is estimated there are a total of 12 layers that are used to estimate the
commission error and 12 layers used to calculate the omission error. The total 24 errors are
shown in Figure 8. Each error value shows the overall area (km2) that each data source
overestimates or underestimates during the duration of the flood event; this is used to
represent the overall, on average, trend of error.

Commission error is represented by a solid line while omission error is represented
by a dashed line. Each individual data source is listed along the x-axis together with
when it is used (on and off) to estimate the errors. Data being encompassed in the error
are represented by blue square symbols, while data omitted are shown using red square
symbols. When looking at Figure 8, it is important to note the dimensions that each data
layer represents. In this case, there are three parameters: 1. The total area of observation
that each dataset identifies as possible water surfaces; 2. The water surfaces that are being
observed as well as predicted (the intersection of MOP and HEC-RAS); and 3. The number
of days that are removed as each data layer is omitted.
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The commission error trend line in Figure 8 depicts that overall all the satellite remote
sensing data (LS, WV, and SPOT), whether they are being used or not, the commission
error with respect to the predicted water features by HEC-RAS slightly increases or stays
the same. This is because the areas of intersection (water features seen by both MOP and
HEC-RAS) change as each data layer is added or removed. This effect is most noticeable
when the CAP imagery is removed or turned off from the MOP, causing the commission
error to decrease. This shows that normally there is a large overlap between the water
features predicted by HEC-RAS that are also observed from the CAP images compared to
any other dataset. Additionally, this implies that although the CAP images are collected
along a specific portion of the domain and may be sparse, in this case, they are a very
important data source when fused with other observational data.

The omission error, represented by a dashed line, is used to show, on average, the
relative contribution of each dataset individually when compared to MOP. It can be noted
that every time a data layer is added or removed, the omission error increases or decreases.
This is expected because as each data layer is being removed, a number of observed
water surfaces unique to that data source are also being removed. Additionally, along
with removing the data layer, all the days that the data source is available are also being
removed from MOP. This is also true when all data layers are turned on, as the omission
error is relatively the same.

The temporal component based on the number of days that are added or removed
with the data layer as well as the water surfaces that are unique to a single data source can
be best seen when comparing the WV and CAP.DEM layers with the SPOT and TW sources.
For this, the WV and CAP.DEM layers contribute the most omission error in comparison to
the other datasets as they contain water surfaces that are not observed by any other data
layer. This means that as WV and CAP.DEM are removed, there are less water features
that are predicted by the model. In contrast to the WV and CAP.DEM sources, on average,
SPOT and TW provide very little information to the MOP. This is because for the days that
SPOT and TW data are available, there are several other data sources which are fused for
those days; thus, the other sources help augment the absence of SPOT and TW but not for
the WV and CAP.DEM data.

Due to the fact that flood events and the data available to observe them change
significantly over the duration of an event, it is important to understand the contribution
of each dataset. On average, when a specific data layer is removed, the days that the
data covers also have to be removed. However, throughout different flood phases, the
uniqueness of the data source may increase severely as seen by the CAP, WV, and CAP.DEM.
Yet, in other circumstances where other available data with similar characteristics are
available, then some datasets may not be as unique, as shown by WV and TW. Therefore,
the uniqueness of a data layer is a very big factor in whether or not the errors of omission
and commission areas increase or decrease.

5.2. Visualizing Areas of Commission and Omission

To represent calculated areas of commission and omission estimated by MOP and
HEC-RAS, the areas observed and omitted from each data layer are individually plotted.
This is performed to show the areas of data agreement and to spatially represent the
contribution of every dataset on average as each layer is turned on and off. In addition,
the difference between the data sources is presented to help visualize the various water
regions of omission and commission areas. Figure 9 represents the areas of omission,
in coral, and commission, in purple, for all data sources used in MOP over the domain.
Additionally, using a blue hashed pattern, are highlighted the regions of water surface
intersection between the MOP and HEC-RAS output. The differences of relative areas of
omission and commission that occur when these data are employed or disregarded are
shown in the third column.
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Figure 9. Areas of commission and omission are shown in comparison to the HEC-RAS model output. LS and SPOT observations are displayed on the top row of
the figure, and WV, CAP, and TW observations are below. The intersection between the observation data and HEC-RAS is shown with a light blue hashed pattern.
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Looking at the differences between each data layer, the patterns of average areas
highlighted in Figure 8 and discussed in the previous section can certainly be noticed. For
example, the areas of commission shown by the satellite observations (LS, WV, SPOT) are
all relatively the same. Yet, the water surfaces observed by CAP and CAP.DEM throughout
the domain are most dominant with commission errors. The areas of omission which
were shown to occur when WV and CAP.DEM data were turned off are also displayed.
In fact, it can be observed that the areas in which the omission occurs indeed have the
most omission compared to the other data available. The different areas of intersection
between every observation dataset with the HEC-RAS output are approximately similar,
with the exception of the CAP dataset. This implies that during the dates that CAP imagery
are available, they are able to observe water bodies that HEC-RAS is not able to predict
as flooded, resulting in the largest area of commission than any other dataset used for
this study.

5.3. Daily Flood Estimation

During emergencies, it is necessary to analyze large amounts of heterogeneous geospa-
tial data in a collaborative environment and in a timely fashion. It is critical for decision-
makers and emergency responders to have access to timely actionable knowledge regarding
preparedness, emergency response, and recovery before, during, and after a disaster [40].
The use of maps during an event has been shown to be vital, as they are the quickest method
for locating assets in a specific geographic area without having to separately reference
large amounts of data. Additionally, estimating possible flood inundation for individual
days for the duration of a flood allows to visualize changes that may occur throughout the
progression of the flood event.

In this regard, cumulative and temporal flood extent maps were prepared. These are
shown in Figures 10 and 11, which represent, respectively, the flood inundation during the
beginning of the flood event and at the peak. Both figures are divided into four quadrants
displaying different aspects of the flood event. The top left quadrant represents the flood
trend areas estimated from MOP and HEC-RAS for a single day. The top right quadrant
shows the areas of omission, commission, and data intersection throughout the domain,
while the lower two quadrants display HEC-RAS inundation and MOP spatial extents.
Figure 10 represents the flood inundation for 15 April 2015, which is one of the first days of
the simulation.

Estimating flood inundation on a daily basis using heterogeneous data enables a
better understanding of how the MOP compares with the simulated water surfaces from
the HEC-RAS output each individual day. The goodness of fit measurements for each
day of the analysis is summarized by Table 2. On 15 April 2015, a 43.58% agreement
between HEC-RAS and MOP is calculated; this can be noted by referring to the total area
estimated in the first quadrant or by looking at the data intersection in the second quadrant
of Figure 10. A 27.59% omission error by MOP and 28.83% commission error by HEC-RAS
is shown in the second quadrant and are highlighted by coral and purple colors. Figure 11
shows flood inundation extent at the peak of the event on 1 June 2015. The goodness of fit
between HEC-RAS and MOP is 51.28%, and the omission error by MOP is 19.47%, while
the commission error of HEC-RAS is 29.24%. An average of 42% fit is calculated for the
entire duration of the event between MOP and HEC-RAS.
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Figure 10. Flood inundation for 15 April 2015 estimated by MOP and HEC-RAS.

Figure 11. Flood inundation for 1 June 2015 estimated by MOP and HEC-RAS.
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All phases of emergency management depend on data from a variety of sources. The
appropriate data have to be gathered, organized and displayed logically to determine
the size and scope of emergency management programs in order to respond and take
appropriate action. A pressing question when working with a series of heterogeneous
datasets is which data are needed the most at any given time. This is extremely important
in times of emergency, as officials must act quickly and cannot afford lengthy analysis. For
this case, the total area observed is used to estimate which dataset is most useful for any
given day. This is determined by calculating the total area of omission or commission based
on the data available for each day and all the data combinations possible. A threshold
value, based on the top 30% of calculated areas, is set to represent which data are needed in
order to obtain an approximate area of omission for our study region. Figure 12 is used to
suggest which data should be used and which should be omitted based on the threshold
value of an area less than 5 km2 (this is approximately 30% of the maximum value of seven).
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Figure 12. Areas of omissions for all data combinations available for 1 June 2015.

Figure 12 represents the areas of omissions based on the data combinations from all
data available for 1 June 2015, a day of the flood peak. Satellite observations are listed along
the x-axis, and social media with aerial photos are along the y-axis. Dataset combinations
that estimate an omission area larger than the threshold value are emphasized by a cross-
line pattern. For this example, it can be inferred that both satellite data are not necessarily
needed as long as any of the other datasets are available. Either SPOT or LS are suitable as
long as they are fused with other data. Additionally, looking at SPOT and LS individually,
it can be determined that SPOT has a smaller area of omission than that of LS for this single
day. This concept can also be used to highlight which data are needed to estimate areas of
omission greater than 5 km2. In this case, the options are a lot less limited and cannot rely
only on a single dataset, but there must be access to specific data combinations such as the
ones shown with a cross-lined pattern in Figure 12.

Similarly, Figure 13 shows which of the data combinations are used to represent the
total areas of commission based on the data combinations for 1 June 2015. The figure
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shows that for any combination in which LS or SPOT are present in the fusion, the area of
commission is low (≈8–10 km2); however, when they are individually used, the areas of
commission are higher. This is specifically true for SPOT. This implies that SPOT alone has
a larger area of commission than LS and is a data source that could be used independently
to observe an area greater than 15 km2. Other data combinations that only have an area of
error for commission greater than 15 km2 are the CAP and CAP with Twitter. This implies
that these datasets are the only combinations that provide a commission error greater than
15 km 2 for 1 June 2015, and the CAP is an important data source.
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Figure 13. Areas of commission for all data combinations available for 1 June 2015.

Table 2. Measure of fit, commission, and omission for each day that MOD and HEC-RAS are
compared.

Date MOP HEC-RAS Intersect Omission Commission Fit
(km2) (km2) (km2) (%) (%) (%)

14 April 7.25 7.88 4.46 27.08 29.60 43.32
15 April 7.25 7.66 4.44 27.59 28.83 43.58
16 April 7.25 7.72 4.47 27.34 28.66 44.00
30 April 6.35 8.46 4.49 19.28 34.00 46.72

1 May 6.35 8.11 4.49 19.47 33.48 47.05
2 May 6.35 7.74 4.45 20.62 31.20 48.18

26 May 13.16 11.39 6.27 40.73 22.23 37.04
27 May 13.21 12.97 6.70 36.19 26.62 37.19
28 May 13.21 14.82 6.91 33.64 29.52 36.84
30 May 22.06 22.97 12.98 31.34 23.87 44.78
31 May 20.97 27.35 13.95 21.95 34.43 43.61

1 June 21.33 27.55 15.46 19.47 29.24 51.28
2 June 17.38 26.33 13.91 12.94 35.30 51.76
3 June 20.13 25.21 14.76 19.79 26.84 53.37
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Table 2. Cont.

Date MOP HEC-RAS Intersect Omission Commission Fit
(km2) (km2) (km2) (%) (%) (%)

4 June 9.40 22.86 7.84 7.40 55.27 37.34
5 June 9.17 23.15 7.02 9.99 57.54 32.47
6 June 9.17 22.05 6.83 11.37 55.53 33.09

17 June 15.09 15.71 7.94 34.99 26.15 38.86
18 June 15.09 15.71 7.94 34.99 26.15 38.86
19 June 14.52 15.71 7.88 33.35 27.10 39.55

Average 42%

5.4. Data Comparison: Validation

Due to the absence of validation data (i.e., FEMA flood extent), YouTube recordings
were used to compare the MOP and HEC-RAS outputs. Aerial flood recordings using
unmanned aerial vehicles (UAVs) were used as a dataset to visually compare areas of data
agreement and disagreement. The videos recorded flood-affected areas throughout the
study region and were uploaded around the duration of the 2015 Memorial Day flood. The
regions chosen and days used for this comparison were selected based on the YouTube
videos and available metadata information provided within the files.

The first day of comparison is during the peak of the event, 1 June 2015, and is located
on the southernmost part of the domain area along the Elm Fork Trinity River. Figure 14
shows data agreement of the MOP and HEC-RAS by displaying different data intersections
created from a series of data sources. A total of four data sources (LS, CAP, SPOT, and
CAP.DEM) are used within this region along with all data combinations available. The
HEC-RAS model is overlaid on top of the MOP product along with an image extracted
from the YouTube video, located in the top right corner. Observing the output created from
the MOP and HEC-RAS, an agreement between the two outputs can be noticed. The image
extracted from the UAVs over the same region also shows the area as being flooded.
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Figure 14. Flood inundation for 15 April 2015 estimated by MOP and HEC-RAS.
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Figure 15 shows a second example from 3 June 2015 located in the northern part
of the study area. In this scenario there is a disagreement between the observation data
sources (LS, CAP, CAP.DEM) available and the HEC-RAS output. This is seen by the areas
that are not overlapped by the HEC-RAS layer but that are observed as potentially being
flooded by the MOP. Looking at the UAV image collected on the same day, it shows that
this area is indeed flooded. A possible reason for why this disagreement could occur is
because the region shown here is a sports complex made up of multiple baseball fields
and the HEC-RAS model may not account for this. This commonly occurs because of data
averaging and loss of topographic small-scale details that affect flood propagation.

0 0.40.2
Kilometers

HEC-RAS

´

 CAP.DEM
CAP
LS

LS∩CAP.DEM
LS∩CAP

Figure 15. Flood inundation for 3 June 2015 estimated by MOP and HEC-RAS. The image in the top
left corner shows the condition of the area at the time the UAV recording was collected.

6. Conclusions

The recent availability of real-time observations of the Earth and its environment
have revolutionized the science of monitoring and understanding disasters. New data-
and computation-driven solutions are being applied to study disasters with the common
goal to protect people, properties, and the environment. A significant amount of research
has been carried out towards creating inundation maps, and often they are created using
numerical modeling, remotely sensed data, or a combination of both. These approaches
require advanced methodologies, high-performance computing, and cyberinfrastructure
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to generate new knowledge from multiple heterogeneous data sources. The proposed
domain-independent methodology is applied to solve a long-standing scientific problem of
large societal importance: the generation of near-real-time flood inundation maps.

The progression of flood events and data available to observe them change significantly
over the duration of an event. Therefore, is it essential to create sequences of high temporal
and spatial resolution inundation maps to monitor such changes. Results show that water
surfaces estimated by MOP are comparable with simulated output. Contributed data,
although they may be geographically sparse, become an important data source when fused
with other observational data.

When high-resolution maps are generated using data that vary spatially and tempo-
rally, it is important to understand the different contributions that each dataset offers. As
shown by Figure 8, for this case study, on average, when a specific data layer is turned
off, the days that are covered from that data source also have to be removed. However,
throughout different flood phases, the uniqueness of each data source may increase severely,
as seen by the CAP, WV, and CAP.DEM. Additionally, there are circumstances in which a
data source could also lose its uniqueness if several datasets with similar characteristics
are available on the same day. This is shown in Figure 8 when looking at WV and TW. The
uniqueness of the data can play a large role with regard to the increase or decrease of the
areas of omission and commission.

The temporal component is another factor that needs to be considered. This is based
on the number of days that are added or removed with each data layer, but also the water
surfaces that are unique to a single data source. This can be best observed when comparing
the WV and CAP.DEM layers with the SPOT and TW sources. For this, the WV and
CAP.DEM layers contribute the most omission error in comparison to the other datasets as
they contain water surfaces that are not observed by any other data layer. This means that
as WV and CAP.DEM are removed, there are fewer water features that are predicted by the
model. In contrast to the WV and CAP.DEM sources, on average, SPOT and TW provide
very little information to the MOP. This is because for the days that SPOT and TW data are
available, there are several other data sources that are fused for those days; thus, the other
sources help augment the absence of SPOT and TW but not for the WV and CAP.DEM data.

A limitation of this product is that currently it is generated only with data that are
dependent on only daytime observations. The satellite observations used are limited by
the passive sensor’s ability to collect data only during daytime hours. Therefore, the MOP
does not have the ability to map nighttime inundation. Because of the daytime constraints
associated with the remote sensing data, other available data, such as social media, must be
tailored and fused with alternative data that may be available in this timeframe. Nighttime
social media data can be used; however, the level of uncertainty is greater as the information
provided could be obscured by nighttime conditions.

A multiscale observation product (MOP) was created with the capability to dynami-
cally integrate various data sources to estimate flood inundation and assess damage during
an event. It aims to provide scientists in the field with a suitable method of integrating
heterogeneous remote sensing data with social media photos and to fill the need for an
independent product that can be used for model parameterization, validation, and assimi-
lation. While in the current study, the 2D MOP maps are created by aggregating all data
available in a single day, the assessment may be performed at a finer temporal resolution.
Lastly, although this method was applied to a flood event, the same methodology can be
applied to different hazard-related studies and emergencies.
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