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Abstract: Wetlands are important habitats for biodiversity and provide ecosystem services such
as climate mitigation and carbon storage. The current wetland mapping techniques in Norway
are tedious and costly, and remote sensing provides an opportunity for large-scale mapping and
ecosystem accounting. We aimed to implement a deep learning approach to mapping wetlands with
Sentinel-2 and LiDAR data over southern Norway. Our U-Net model, implemented through Google
Earth Engine and TensorFlow, produced a wetland map with a balanced accuracy rate of 90.9%
when validated against an independent ground-truth sample. This represents an improvement upon
manually digitized land cover maps in Norway, which achieved accuracy rates of 46.8% (1:50,000
map) and 42.4% (1:5000 map). Using our map, we estimated a total wetland coverage area of 12.7%
in southern Norway, which is double the previous benchmark estimates (5.6%). We followed an
iterative model training and evaluation approach, which revealed that increasing the quantity and
coverage of labeled wetlands greatly increases the model performance. We highlight the potential
of satellite-based wetland maps for the ecosystem accounting of changes in wetland extents over
time—something that is not feasible with traditional mapping methods.
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1. Introduction

Wetlands are ecosystems that are permanently or periodically saturated or inundated
with water and include habitats in the transition between terrestrial and freshwater or
marine ecosystems. They offer a wide range of ecosystem services, including water purifica-
tion, flood control and carbon sequestration [1,2]. Wetlands hold the highest density of soil
carbon among terrestrial ecosystem types [3]. This makes them efficient and cost-effective
nature-based solutions to climate change, as they sequester atmospheric carbon and are
important in the long-term storage of carbon [4]. Despite this, wetlands are constantly
under pressure from human activities [5–7], and wetland habitat losses due to land-use
change often lead to decreases in local biodiversity and altered hydrological cycles, which
result in carbon emissions.

It has been estimated that about 9% of the mainland of Norway is covered by open
wetlands [8]. Open peatlands, which include open bogs and fens, are the wetland types
with the highest coverage rate in Norway (approximately 8% of land cover; [8]. However,
the coverage of wetlands over Norway remains uncertain, as different data sources yield
different estimates (e.g., 3.8% in 1:5000 maps [9] vs. 6.0% in 1:50,000 [10] and vs. 5.3% in
official statistics [11]. This is partly because previous mapping efforts have been based
on manual in situ mapping procedures, which require substantial financial investment
and adopt differing definitions of wetland habitats. There are, however, several concerns
regarding these map layers, including: (1) the landcover classification system suitable
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for topographic mapping at a scale of 1:50,000 is coarse; (2) small polygons are kept or
removed selectively for cartographic reasons; (3) the main method for the 1:50,000 layer is
aerial photo interpretation without field validation; and (4) the 1:5000 layer is not mapped
in mountainous areas, where many wetlands are excluded from national estimates [8].
Furthermore, employing fieldworkers to digitize habitat types introduces a sampler bias,
which makes the resulting map vulnerable to spatial and temporal inconsistencies [12–15]
Mapping instructions and methods can also change over time, making it difficult to discern
whether changes in wetland cover are real or merely an artifact of changes in mapping
methodology. Apart from the mostly single-timepoint aerial coverage estimates, there
is little active monitoring and surveillance of wetland conditions or changes over time.
However, the active monitoring and annual or biennial mapping of wetlands will become
important given the revised management plan for the restoration of wetlands in 2021 [16].

Due to the importance of wetlands for ecosystem services, and the threats of an-
thropogenic disturbance, monitoring and mapping wetlands is important to aid in their
conservation. The remote sensing of wetlands has seen increased attention in recent years,
with many large-scale studies illustrating the ability to map wetlands from satellite images
using machine learning techniques [17,18]. The current wetland mapping techniques in
Norway are tedious and costly, but satellite and airborne remote sensing methods including
optical sensing, radar sensors, and LiDAR provide an opportunity for large-scale map-
ping and ecosystem accounting. So far, Norway has not supplemented in situ wetland
inventories and mapping with remote sensing data and machine learning classification
workflows, which stands in contrast to countries such as Canada [19]. Perhaps the most
important thing to note is that Norway until recently has lacked access to high-quality
ground truths, which are necessary for training, calibrating, and validating satellite-based
wetland maps [20].

Few studies have applied deep learning models to wetland classification [17], and to
the best of our knowledge only [21] has done so using a fusion of Sentinel-1 and Sentinel-2
data. In a meta-analysis of more than 200 publications, [22] found that the median accuracy
for classifying land use and land cover using deep learning models was 91%, and that there
was no other tree- or kernel-based classifier that achieved a median accuracy over 90%.
Therefore, although less sophisticated models are more efficient in terms of the training
data requirement and inference speeds, deep learning models ultimately achieve higher
accuracies for land cover classification.

In the literature review by [18], which also included the data base from [17], we found
very few examples on the deep learning classification of wetlands by use of Sentinel-1 or
-2. One exemption was [21], who used deep learning for land use and land cover (LULC)
classification based on U-Net based on Sentinel-1 and -2. Another exemption was also [23],
who used deep U-Net convolutional networks and Sentinel-2 imagery for coastal wetland
classification. By comparing deep learning and shallow learning for large-scale wetland
classification in Alberta, Canada, [24] found that the accuracy of the convoluted neural
networks (CNN) product was about 80%. [24] also concluded that CNNs may be better
able to capture natural complexities within wetland classes. In this study, we explored
the potential of using deep learning to map wetlands at a regional scale using U-Net
convolutional networks and cloud computation on Sentinel-2 and LiDAR data.

To distinguish wetlands from other land use and land cover types (LULC), another type
of deep learning method called semantic segmentation is needed. In the process of semantic
segmentation, the purpose is to delineate areas with the desired content, in our approach
wetlands, from all other unwanted information (i.e., the other LULC classes). This type of deep
learning with semantic segmentation often requires the manual digitization of wetlands as
polygons, preferably as a wall-to-wall approach in limited areas where training and validation
image patches can be cut out and made available for a deep learning training process.

Deep learning has recently been proposed as one of the most promising methods
for classifying LULC classes from remote sensed imagery [25]. It has been argued that
deep learning can also solve more difficult classification issues such as wetland delin-
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eation [26]. Despite the potential for deep learning models, the most common machine
learning framework used to generate wetland maps has been decision trees (e.g., Random
Forest), followed by support vector machines (SVM) [17]. However, the type of machine
learning model adopted has so far had no discernible effect on map accuracy [18].

To meet the demand for wall-to-wall, frequently updatable wetland maps in southern
Norway, and to further the international state of wetland remote sensing, our aim was to
generate a deep learning-based map of wetlands in Norway using Sentinel-2 imagery and
LiDAR data. The integration between Google Earth Engine (GEE) [27] and TensorFlow
in the cloud made it possible to apply and train a U-Net model on Sentinel-2 imagery
and LiDAR. In this paper, we describe a pipeline on how to classify a land cover type
(wetland) using Google Colab [28], TensorFlow, and GEE. Further, we discuss the accuracy
and potential of this approach related to other methods.

2. Methods
2.1. Study Area

The study area included the mainland of southern Norway, from 58 to 63◦N and from
5 to 13◦E, from sea level to 2469 m (Figure 1). It spanned a wide range of environmental
gradients relevant to wetland biogeography, including temperature and precipitation
regime, solar radiation, geology, and topography gradients [29,30].

Norway is located on the western border of the Baltic Shield, dominated by Precam-
brian rocks and the Caledonian Mountains with sedimentary, metamorphic bedrock [31]. In
July, the average temperatures vary from 17 °C around the Oslo Fjord to 0 ◦C in the highest
peaks of the Jotunheimen Mountain area (Norwegian Meteorological Institute 2023). The
monthly average temperatures for January range from −15 °C in Jotunheimen to +3 ◦C
in the outer coastal areas in the south and west. The outer and central areas on the west
coast receive the most precipitation, with more than 2000 mm in several areas; however,
the interior parts east of the central mountain range receive as little as 200 to 400 mm of
annual average rainfall.

In Norway, there are estimated to be approximately 20,500 square kilometers of
wetland, i.e., about 5.3% of the total land area [11]. Other major land cover types are
open land areas, which includes mountains (38%), forests (37%), fresh water (5%), and
agricultural land (3%) [32]. The variation in the mire peatland types in Norway is high
and unique, even in a global context [29]. The habitat classification system Nature in
Norway 2.2.0 [33] (NiN, in English EcoSyst) includes 13 main habitat types for the wet-
land ecosystem. These are open fen (V1), bog (V3), mire and swamp forest (V2), tidal
and alluvial swamp forest (V8), wet snowbed and snowbed spring (V4 and V5), spring
(V6), arctic permafrost wetland (V7), semi-natural fen (V9) and semi-natural wet meadow
(V10), peat quarry (V11), drained mire (V12), and artificial wetlands (V13) (see details in
https://www.artsdatabanken.no/Pages/172028/Vaatmarkssystemer, in Norwegian) (ac-
cessed on 5 January 2023). In our study, we did not include the mire and swamp forest
classes (classes V2 and V8). Open peatlands, which constitute bogs and fens, are the
most common wetland types in Norway (accounting for approximately 95% of open
wetland cover; [8].

In the rectangles shown in Figure 1, there is wall-to-wall digitization of wetland
polygons as ground-truth data. Some red and blue rectangles are smaller than others,
mainly because they have a higher density and amount of wetland polygons, meaning
a lot more effort was needed to map wall-to-wall in these areas. The green rectangles
are generally smaller than the red and blue and were created to improve the first deep
learning model.

https://www.artsdatabanken.no/Pages/172028/Vaatmarkssystemer
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Figure 1. Study area and rectangles for collection of image patches for evaluation (red), original
training set (blue), and additional training set (green). The study area is shown in the North-European
map in the lower right corner.

2.2. Preparation of the Predictor Stack

The regional classification of wetlands from Sentinel satellite imagery using deep
learning requires access to a large-capacity platform and infrastructure for storing and
analyzing large amounts of data. TensorFlow is a software library based on open-source
machine learning developed by Google. Pytorch and Keras are examples of other frame-
works and libraries. The GEE was used for storing, customizing, and exporting our input
data for cloud-based deep learning modeling. Customized files in TensorFlow format
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(TFRecord-format) were then exported to Google Cloud Storage and used as an input for a
virtual machine to process the deep learning scripts in Google Colab.

We processed all Sentinel-2 optical scenes over Norway during 1 August to 31 Octo-
ber 2020. The Sentinel-2 data were used to derive spectrotemporal features as predictor
variables [34]. The spectrotemporal features were used to capture both the spectral and
temporal (e.g., phenology including autumn color senescence [35,36]) characteristics of land
cover classes to offer enhanced model prediction accuracy compared to single-timepoint
image classification [37,38].

After trial and error, we selected 3 Sentinel-2 bands and 10 indices, as well as the mean
canopy height model from LiDAR (accessed from hoydedata.no) as a substitute for tree
height, as our explanatory variables. Using the cloud-masked Sentinel-2 imagery [34], we
derived 13 bands or indices (Table 1). For most of these, we used median mosaic values,
except for the normalized difference vegetation index (NDVI), where we used the 25th
percentile mosaics across the three-month time stack of images.

Table 1. List of input variables from Sentinel-2 in the deep learning model showing the names,
abbreviations, equations, and references for equations. See footnotes for the various Sentinel-2 bands
that were used.

Number Name Abbreviation Equation Statistics Reference

1 The green band 3 B3 b3 Median
2 The near infrared band 8 B8 b8 Median
3 The red edge band swir4 band 12 B12 b12 Median
4 The normalized difference vegetation index NDVI ((b8 − b4)/(b8 + b4)) The 25th percentile [39]
5 The normalized burn ratio NBR ((b8 − b12)/(b8 + b12)) Median [40]
6 The normalized difference red/green REDGREEN ((b4 + b3)/(b3 − b4)) Median
7 The plant senescence reflectance index PSRI ((b4 − b2)/b6)) Median [36]
8 The green-red vegetation index GRVI ((b3 − b4)/(b3 + b4)) Median [41]
9 The red-edge ratio vegetation index RERVI b5/b8 Median [42]

10 The enhanced vegetation index EVI (2.5 * ((b8 − b4)/(b8 + 6
* b4 − 7.5 * b2 + 1)) Median [43]

11 The carotenoid reflectance index 1 CRI1 ((1/b2) − (1/b3)) Median [44]

12 The green normalized difference
vegetation index GNDVI ((b8 -b3)/(b8 + 3)) Median [45]

13 The pigment specific simple ratio PSSR b8/b4 Median [46]

* Sentinel-2 bands used: b2 blue (490nm), b3 green (560nm), b4 red (665nm), b5 near infrared 1 (705nm), b6 near
infrared 2 (740nm), b8 near infrared 4 (783nm), b12 short wave near infrared 4 (2190nm).

In Norway, LiDAR data are possible to download free of cost from hoydedata.no
(accessed 23.04.2022). Both terrain and surface models from LiDAR data were uploaded
to GEE. The terrain data can be found on asset “users/vegar/dtm1/dtmcoll”, while the
surface model can be found on asset “users/vegar/dom1/domcoll”. The items can be
visualized using this link: 6b56518b215b373147969757a695b4b6—Earth Engine Code Editor
(google.com). The index we used was the surface model subtracted by terrain. This
index indicates forests, buildings, and other objects that protrude above the terrain. The
hypothesis is that open wetlands do not have high index values here.

2.3. Preparation of the Training Data

As a learning basis for the model, wetland polygons had to be annotated or digitized
throughout the study area to create image chips or patches that could be used in the deep
learning process. The advantage and big difference from using training points as a learning
basis, for example, is that deep learning uses large pixel neighborhoods to decide whether
a given pixel is a wetland area or something else. In theory, a pixel with some spectral
deviation on a huge wetland surface will end up in the wetland class and not create the salt
and pepper classification output that is often seen in other classification algorithms.

To avoid creating many thousands of image patches manually, all wetland polygons
were digitized wall-to-wall within delimited rectangles. We initially made 17 rectangles over
the total study area in southern Norway (see Figure 1). These rectangles were selected based
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on previous knowledge and field work experience in these areas and to cover a cross-section
of different wetland types and regional geographical and climate gradients. As a starting basis
for digitizing the wetlands, two sets of orthophotos and existing wetland polygons from the
1:50,000 and 1:5000 map series were used. All polygons and parts of polygons that contained
forest were removed either by mapping these via intensive fieldwork or by checking them
against new orthophotos or LiDAR data in GIS. Previously unmapped wetland polygons were
added to the map, either via intensive field work, via digitization in GIS from orthophotos, or
preferably both. The levels of generalization both within and between the existing map bases
varied from area to area. The 1:5000 maps also do not have coverage in the mountains. In
addition, these maps have different refresh rates. Because of this, a great deal of work was
required to create a harmonized data basis for models.

The 17 rectangles varied in size from approximately 25 km2 to 600 km2. They were
divided into two, so that there were 17 squares that could be used for training purposes
and 17 for evaluation. Based on these rectangles, image patches were systematically
created through an algorithm made using Google Earth Engine Team (TensorFlow example
workflows, Google Earth Engine, Google Developers, accessed on 24 April 2022) measuring
1280 × 1280 m (128 × 128 pixels for our 10-m resolution predictor stack, where the 20-m
resolution bands in Sentinel-2 were resampled to 10 m), consisting of the 14 layers from
satellite and LIDAR data as well as a rasterized version of the digitized wetlands as a
training and evaluation base.

We generated 2000 samples (image patches/chips) for every training and evaluation
polygon. All image patches contained one layer with the feature to be predicted or seg-
mented (i.e., wetland) stacked upon all the other layers in the predictor stack (i.e., the
14-layer stack). The image patches from each polygon were merged into a single export
and stored in Google Cloud Storage as a TFRecord. The TFRecord file contains patches of
pixel values in each record.

2.4. Computing

GEE was used for storing, customizing, analyzing, and exporting and importing data
for cloud-based deep learning modeling. Customized files in TensorFlow format (TFRecord-
format) were exported to Google Cloud Storage and used as inputs for the virtual machine
to process the deep learning scripts. The model used was a fully convolutional neural
network (FCNN) for semantic classification. The goal of semantic segmentation is to label
each pixel with a probability estimate of the input image with the class that represents a
specific object [47,48].

We used the Keras implementation of the U-Net model [49]. The U-Net model takes
128 × 128-pixel patches as inputs and outputs the per-pixel class probability. The U-Net
model is based on the architecture of a TensorFlow workflow made by the Google Earth
Engine Team and can be inspected online (TensorFlow example workflows, Google Earth
Engine, Google Developers). We used 0.1 as the learning rate, with a batch size of 16,
50 epochs, and 500 steps per epoch. U-Net consists of five encoder and five decoder
convolutional layers, each consisting of 32, 64, 128, 256, and 512 channels, plus one center
layer with 1024 filters.

For the model settings, for the training gain and evaluation accuracy metrics, we
used the ‘Adam’ as the optimizer, ‘Intersection-Over-Union as the loss, and the ‘mean
Intersection-Over-Union’ metric for the accuracy evaluation. The latter meant that 17 sam-
ples from the training dataset were used to estimate the error gradient before the model
weights were updated. The model was trained with 50 epochs to reach stable output
performance. The trained model was then applied to the whole study area by exporting the
predictor layers from this area to the cloud storage, where the calculations were performed.

The first U-Net deep learning model performed better near the training and evaluation
rectangles than in areas far from these. Therefore, we ran an overlay analysis between
our model and existing wetland maps from 1:5000 and 1:50,000 to find areas with major
discrepancies. The main discrepancies could be “bad performance” from the deep learning
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model or that the 1:5000 or 1:50,000 map bases were poorly updated. We found 23 areas
where we wanted to improve the model and made an extra set of training rectangles and
a similar wall-to-wall map of these (see Figure 1). The size of these additional rectangles
was significantly smaller than the original 17 rectangles, and only the conformities were
checked and corrected. This process was much faster than the first. The whole workflow is
shown in Figure 2.
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2.5. Unseen Validation Dataset

The wetland model was evaluated with independent ground truths from the national
monitoring project ANO (area representative for monitoring in Norway). The ANO consists
of 1000 randomly selected 500 × 500 m squares across mainland Norway (Figure 3). The
500 × 500 m squares were randomly drawn from a regular grid across Norway, and the
only criterion was that they should not share a common line or corner point. Each ANO
square contains 18 circles measuring 250 m2 (radius 8.21 m), which are systematically
located within the 500 × 500 m square (Figure 3). In the center of each circle, a 1 × 1 m
vegetation plot was analyzed, where among other things the coverage of all vascular plants
was recorded with the percentage coverage rates.

In both the 250 m2 circles and in the 1 m2 squares, dominant nature types are registered
according to the Nature in Norway (NiN) system developed by [33] Halvorsen et al. (2020).
Wetlands are divided into 13 different classes according to NiN, where the criterium is
mostly related to the species composition. Our wetland model includes all of these NiN
wetland classes, except the mire and swamp forest classes (classes V2 and V8).

For the NiN classes that include wetland edges, we accepted an uncertainty margin of
one Sentinel-2 pixel (10 m) for a correct hit on a wetland edge. This was done by considering
that Sentinel-2 is georeferenced with an inaccuracy rate corresponding to 90% of the pixels
having an inaccuracy rate of less than 10 m [50].

A total of 4966 ANO ground truths were available in our study area at both the 250 m2

scale level and the associated 1 m2 vegetation plot level at the midpoint of the circle. In
the circles at the 250 m2 level, only the dominant nature type is specified, along with what
percentage of the circle this nature type covers. At the 1 m2 level, the dominant habitat
type is also indicated but without a percentage indication, even if several nature types
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are present. Note that nature types at the 250 m2 level and 1 m2 level may be different
from each other, although they represent parts of the same area. As conditions for a valid
wetland ground truth, we used as criteria that a wetland must cover more than 50% at
the 250 m2 level and that it must either be classified as a wetland at the 1m2 level or that
Sphagnum mosses have been registered in the vegetation plot.
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Figure 3. Field design of the unseen validation dataset named as the area representative for monitor-
ing in Norway (ANO), first established in 2019. To the left is an example of a 500 × 500 m square
that contains 18 monitoring circles in a systematically positioned geographical system. To the right is
an example of a 250 m2 monitoring circle with a vegetation sample plot of 1 m2 in the middle. The
main dominating LULC class (percent cover) is allocated to the circle in the field, while both the main
LULC class and species estimates are given to the 1 m2 plot.

3. Results

The first TensorFlow model, based on the 17 original selected training rectangles, was
run over 50 epochs until achieving stable performance as measured by inspecting the train-
ing gain and evaluation accuracy metrics. The best model had a training mIOUaccuracy
rate of 95.6% and validation accuracy rate of 94.9%.

The model output can be inspected here: https://vegar.users.earthengine.app/view/
deeplearningmodel1 (accessed on 19 January 2023).

After the identification of areas of mismatches between the first TensorFlow model and
existing reference data, a completely new deep learning model was trained on additional
annotated data. This model was based on 36 training areas and 17 evaluation areas
(rectangles) (Figure 1) and was trained over 50 epochs for stable performance. The new
model had 98.51% accuracy for the training data and 98.41% accuracy for the evaluation
data. This model corrected most of the weaknesses of the first deep learning model and
was considered a better model.

The results of this model can be inspected here: https://vegar.users.earthengine.app/
view/deeplearningmodel2 (accessed on 19 January 2023).

Of the 4966 independent ground truths, 547 of these satisfied our criteria as wetlands
(Table 2).

https://vegar.users.earthengine.app/view/deeplearningmodel1
https://vegar.users.earthengine.app/view/deeplearningmodel1
https://vegar.users.earthengine.app/view/deeplearningmodel2
https://vegar.users.earthengine.app/view/deeplearningmodel2
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Table 2. Estimated error matrix for the final classification with estimates for the user’s accuracy (UA)
and producer’s accuracy (PA).

Reference

Wetland Non-Wetland Total UA (%)

Prediction

Wetland 491 351 842 58.3
Non-wetland 56 4068 4124 98.6
Total 547 4419 4966
PA (%) 89.8 92.1

Here, we accepted an uncertainty rate of up to 10 m for NiN wetland edge types.
The sensitivity rate of the model was 491/(491 + 56), equaling 89.8%m, and the speci-
ficity rate was 4068/(4068 + 351), equaling 92.1%. The balanced accuracy equation was
(sensitivity + specificity)/2, i.e., (89.8 + 92.1)/2, equaling 90.9% accuracy.

The corresponding accuracy rates with independent ANO ground truths for the
existing reference data for wetlands in Norway were 36.6% for the 1:5000 map basis and
42.2% for the 1:50,000 map. Note that the 1:5000 map does not cover the whole area of
Norway and lacks coverage, especially in mountains. Therefore, after correcting for this
unmapped area, the true positive rate was 46.8% for these areas according to the ANO
ground truths.

We found 351 false positives out of a potential 4419 for our wetland model, which
equated to 7.1% misclassifications of non-wetland ground truths. The most common
misclassified nature types were nutrient-poor forest types and open heathlands, which
are common neighboring nature types to wetlands and often appear together in different
mosaics at different scale levels.

Our model estimated that approximately 12.7% of the land area in southern Norway
is covered by wetlands (except mires and swamp forests). This was higher than previ-
ous estimates (please see the Introduction). The official Norwegian map on a scale of
1:50,000 contains only 5.6% mire areas for all of Norway.

4. Discussion

Our results indicate that as much as 12.7% of the land surface area in southern Norway
is covered by wetlands. This is more than double the area of what is mapped in official
maps for LULC in Norway. In another study using a point-based survey, [8] estimated that
open wetlands in Norway probably cover 8.9% of the total area. Their study was based on
an area frame survey of LULC types in a regular 18 × 18 km network (grid) across Norway,
where an area of 0.9 km2 was mapped at each intersection of the grid. The mapping was,
however, mainly based on the interpretation of aerial photographs [8].

In the area representative for monitoring (ANO) program that we used for independent
ground truths, 11.7% of the area was considered to be wetlands (mire and swamp forest not
included) based on the registrations made in the 250 m2 circles. When we only considered
the registrations made in the center vegetation plot on the circles that are at the 1 m2 scale
level, 13.4% of these were assessed as wetlands.

Moreover, there are clear regional patterns where our model predicts more, but also
less, wetland areas than the existing maps (see Figures 4 and 5). Our model predicts more
wetlands in the mountains and on the west coast of Norway. This agrees with the findings
of [8]. There are also regions in Norway where our model has smaller areas with wetland
than the existing maps. This is particularly the case in southeastern Norway (see both
Figures 4 and 5). This pattern was also observed by [8]. The cause is probably related to the
ditching of bogs in the decades after World War II and a general reduction in wetland areas
due to construction and other development close to heavily populated areas. The ditching
of bogs has led to the bogs being desiccated, planted with trees, and now overgrown by
forests. The official maps, thus, appear to be outdated in these areas.
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1 
 

Figure 4. Visualization of the differences in predicted wetland coverage and existing reference data at
the scale of 1:5000. Note that the 1:5000 maps do not cover mountain areas, and the large discrepancies
in the central part of southern Norway are partly due to this lack of coverage (but see also Figure 5).

It was an extensive process and task to create a satisfactory map of wetlands in
southern Norway. This was largely due to the lack of satisfactory annotated data, and
most of the job involved digitizing wall-to-wall wetland polygons in the rectangles for the
collection of image patches. However, the result and the internal deep learning evaluation
accuracy of the final product (98.41%) must be said to be very good compared to earlier
studies that aimed to classify wetlands by means of remote sensing. Accuracy rates of
70–95% have been reported in literature studies performed by [17,18,26]. However, only
when we introduced an unseen validation dataset for evaluation could a credible confusion
matrix be established. We found using this unseen and independent dataset that our model
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is approximately 90.9% correct for our study area, which is far better than existing reference
map data, which is below 50%.

 

2 

 Figure 5. Visualization of the differences in predicted wetland coverage and existing reference data
at the scale of 1:50,000.

Our model has a balanced accuracy rate of 90.9%, and depending on the further use
of the model, users might explore additional filters and post-processing steps to remove
some obvious misclassifications and unwanted areas. It will be possible to use the slope to
mask out steep areas with a low possibility of being wetlands [51,52]. Additionally, it will
be possible to set a threshold on heights above the nearest drainage network. Agricultural
land is also annually mapped with a high degree of accuracy in Norway. This agricultural
land layer may also be used to mask out misclassified wetlands in these areas.
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Initially, a lot of time was spent looking for either spectral bands or indices that formed
visual patterns that were in accordance with the wetland delineation we wanted to create. It
quickly became clear that single bands or indices alone would not be able to contribute fully
to the wetland delineation along the east–west gradient in Norway, nor to different types
of wetlands. For instance, indices that seemed to work well in continental areas showed a
lower spatial pattern correlation with wetland types in western Norway. It was only when
we began to experiment with autumn colors and limited the search for Sentinel-2 images to
the period of August–October that the patterns became clearer throughout the study area.
The colors yellow, orange, and red, in addition to green, are the most common autumn
colors in Norway. The indices that distinguished these colors from each other visually also
had the clearest patterns that could distinguish wetlands from other habitat types.

The transfer value of our results is limited by the fact that we did not calculate variable
importance scores for the satellite features that informed the deep learning model. Due to
funding and time constraints, we were not able to calculate importance scores for the set of
predictor variables. We identify this as an avenue for further research given that reducing
the feature set can drastically improve the processing and inference times in deep learning
architectures [53].

The process of creating the map was iterative, where the first deep learning model
based on wetland polygons from 17 rectangles gave good results in the surrounding areas
with roughly the same wetland types. However, the models deteriorated when transferred
to areas further away from the training rectangles and became quite unreliable 100–200 km
from the nearest annotated training area. We, therefore, supplemented the training dataset
with new rectangles for wetland types in different regions along altitude, north–south, and
east–west (continental) gradients at regular intervals to achieve comparable results with
existing maps. This resulted in an updated wetland prediction map of southern Norway
that is up to date regarding the input data and now captures new cottage developments and
the large-scale ditching of bogs, for which the existing official maps are not yet updated.

It is possible that the use of less training data can give similarly good results by using
augmentation methods [54]. We did not try this here, but it may be relevant if the model
is to be extended to include northern Norway. However, we felt strongly that the use of
a denser network of training rectangles to capture different and other wetland types was
important, as the model’s performance was significantly poorer with increasing distances
from training (and evaluation) rectangles. It is also possible that different models could
have been made for specific classes of different types of wetlands and for different regions,
such as one model for wetlands in the mountains and one for the lowlands. These are
issues that must be tested in future projects to further improve the models. Wetlands must
also be said to be a difficult nature type (land cover) to classify [55]. Deep learning methods
have also been used to classify other LULC classes with some success [56–58]

In recent times, and especially in the last two or three years, an increasing number
of papers have been published on the use of U-Net and partly Tensor-Flow in semantic
segmentations of imagery. However, these methods are mostly used on very high-resolution
images and in remote sensing in products such as WorldView3 and others with a resolution
of 1 m or even higher [18]. U-Net has hardly been used on remote sensing products other
than RGB and hardly in combinations of Sentinel-1 and Sentinel-2 imagery. One of few
exceptions was reported by [21], who used these methods for LULC classification based on
U-Net on Sentinel-1 and -2 data. They stated the accuracy to be about 76%, which is quite
low. They reported three reasons for this: (1) there were too many details in the classification
system; (2) the spatial resolution was too coarse; (3) there were too few observations in
the training set (annotations). As we attempted to predict only one LULC class, their first
reason did not apply to us. To solve point (reason) 2, we tried to use relevant bands and
indices that had as crisp and sharp boundaries between wetlands and other LULC classes
as possible. To solve the last point, we invested a lot of time and effort into increasing
the amount of annotated data. [21] also stated that the use of a low training basis with
annotated data was an important reason for low accuracy in their results. They also stated
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that they used augmentation to increase the training basis. [59] used BigEarthNet [60]
and achieved accuracy rates ranging from 98% (impervious and agricultural areas) to
75% for wetlands. BigEarthNet is a large-scale Sentinel-2 dataset collected from a total of
125 Sentinel-2 tiles covering areas of 10 countries in Europe, with a total of 590,326 tiles
measuring 120 × 120 pixels, which are annotated with land cover classification labels.

SAR (Sentinel-1) data were also tested as the input data in our initial phase. However,
we ruled out Sentinel-1 bands as predictors as the same wetland (training) polygons often
had very different band values in different internal parts. This gave erroneous results, where
parts of the wetland polygon were not correctly predicted in the finished classification.
U-Net was originally designed to find objects (segments) in very high-resolution images,
especially RGB and other low-spectral products [61]. To us, it seems that the method works
best on Sentinel imagery when the bands or indices form sharp boundaries and that the
polygons’ boundaries are in accordance with the boundaries we initially wanted to draw.

5. Conclusions

In our experience, and based on the evidence presented in this paper, the classification
of ecosystems and land cover classes based on satellite and repeated airborne remote
sensing imagery offers some significant advantages over in situ and manual reference
mapping: (1) it covers large areas and multiple years in a consistent and comparable
manner, in that it is objectively compared to manual mapping, which is performed by
different individuals over different parts of the country; (2) it is scalable to some extent
because one can extrapolate over time and space using the deep learning models; (3) it is
continually updateable and often available in near real-time, thereby allowing for ongoing
monitoring and surveillance (note that LiDAR data are not continuously updated and
updates must not rely on this source); (4) it performed better than the existing approaches
for reference data validated by regional unseen ground truth data. Whether the kind of deep
learning approach presented here or other machine learning methods provide better and
more effective classification results must be explored in future studies. A focus on change
detection using the methods presented here to account for changes in wetland extents over
time would be particularly interesting and critical for effective wetland conservation.

Author Contributions: Conceptualization, V.B.; Methodology, V.B. and A.J.G.; Validation, V.B.,
Z.V., A.J.G. and E.F.; Formal analysis, V.B.; Writing—original draft, V.B., Z.V., A.J.G. and E.F.
Writing— review & editing, V.B., Z.V., A.J.G. and E.F.; Visualization, V.B., and A.J.G. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The results can be viewed at https://vegar.users.earthengine.app/
view/deeplearningmodel2 (accessed on 20 January 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, X.; Chen, M.; Yang, G.; Jiang, B.; Zhang, J. Wetland ecosystem services research: A critical review. Glob. Ecol. Conserv. 2020,

22, e01027. [CrossRef]
2. Magnussen, K.; Bjerke, J.W.; Brattland, C.; Nybø, S.; Vermaat, J. Verdien av Økosystemtjenester fra Våtmark; Menon-Publikasjon:

Oslo, Norway, 2018. (In Norwegian)
3. Villa, J.A.; Bernal, B. Carbon sequestration in wetlands, from science to practice: An overview of the biogeochemical process,

measurement methods, and policy framework. Ecol. Eng. 2018, 114, 115–128. [CrossRef]
4. Taillardat, P.; Thompson, B.S.; Garneau, M.; Trottier, K.; Friess, D.A. Climate change mitigation potential of wetlands and the

cost-effectiveness of their restoration. Interface Focus 2020, 10, 20190129. [CrossRef]
5. IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services; Intergovernmental Science-

Policy Platform on Biodiversity and Ecosystem Services (IPBES): Paris, France, 2019.
6. Sievers, M.; Hale, R.; Parris, K.M.; Swearer, S.E. Impacts of human-induced environmental change in wetlands on aquatic animals.

Biol. Rev. 2018, 93, 529–554. [CrossRef]

https://vegar.users.earthengine.app/view/deeplearningmodel2
https://vegar.users.earthengine.app/view/deeplearningmodel2
http://doi.org/10.1016/j.gecco.2020.e01027
http://doi.org/10.1016/j.ecoleng.2017.06.037
http://doi.org/10.1098/rsfs.2019.0129
http://doi.org/10.1111/brv.12358


Remote Sens. 2023, 15, 1203 14 of 15

7. Nybø, S.; Evju, M.; Fagsystem for Fastsetting av God Økologisk Tilstand. Forslag fra et Ekspertråd. Ekspertrådet for Økologisk
Tilstand, 247 s. 2017. Available online: https://www.regjeringen.no/no/dokument/rapportar-og-planar/id438817/ (accessed on
20 January 2023).

8. Bryn, A.; Strand, G.-H.; Angeloff, M.; Rekdal, Y. Land cover in Norway based on an area frame survey of vegetation types. Nor.
Geogr. Tidsskr. 2018, 72, 131–145. [CrossRef]

9. Ahlstrøm, A.P.; Bjørkelo, K.; Fadnes, K. AR5 Klassifikasjonssystem. Klassifisering av Arealressurser. NIBIO Bok: Ås, Norway,
2019; Volume 5. (In Norwegian)

10. Norwegian Map Authorities. Produktspesifikasjon N50 Kartdata: Versjon April 2017; Statens Kartverk: Hønefoss, Norway, 2017.
(In Norwegian)

11. Statistics Norway. 09594: Arealbruk og Arealressurser, Etter Arealklasser (km2) (K) (B) 2011–2022. Statistikkbanken (ssb.no); Statistics
Norway: Oslo, Norway, 2023.

12. Eriksen, E.L.; Ullerud, H.A.; Halvorsen, R.; Aune, S.; Bratli, H.; Horvath, P.; Volden, I.K.; Wollan, A.K.; Bryn, A. Point of view:
Error estimation in field assignment of land-cover types. Phytocoenologia 2018, 49, 135–148. [CrossRef]

13. Ullerud, H.A.; Bryn, A.; Halvorsen, R.; Hemsing, L.Ø. Consistency in land-cover mapping: Influence of field workers, spatial
scale and classification system. Appl. Veg. Sci. 2018, 21, 278–288. [CrossRef]

14. Erikstad, L.; Strand, G.-H.; Bentzen, F.; Salberg, A.-B. Arealrepresentativ Overvåking Basert på Fjernanalyse. Flyfototolkning i
Fjell og Myrnatur—NINA Rapport 743; Norsk Institutt for Naturforskning: Trondheim, Norway, 2011. (In Norwegian with
English Abstract)

15. Burrough, P.A.; McDonnell, R.A. Principles of Geographical Information Systems; Oxford University Press: Oxford, Uk, 1998.
16. Norwegian Environment Agency. In Wetland restoration plan, Norway (2021–2025); Report M-1903; NIBIO Bok: Oslo, Norway, 2021.
17. Mahdianpari, M.; Granger, J.E.; Mohammadimanesh, F.; Salehi, B.; Brisco, B.; Homayouni, S.; Gill, E.; Huberty, B.; Lang, M.

Meta-analysis of wetland classification using remote sensing: A systematic review of a 40-year trend in North America. Remote
Sens. 2020, 12, 1882. [CrossRef]

18. Venter, Z.S.; Nowell, M.S.; Bakkestuen, V.; Ruud, A.; Kruse, M.; Skrindo, A.B.; Kyrkjeeide, M.O.; Singsaas, F.T. Literature Review of
Wetland Remote Sensing and Mapping; NINA Rapport 2014; Norsk Institutt for Naturforskning: Trondheim, Norway, 2021.

19. Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Homayouni, S.; Gill, E. The first wetland inventory map of Newfoundland
at a spatial resolution of 10 m using sentinel-1 and sentinel-2 data on the google earth engine cloud computing platform. Remote
Sens. 2019, 11, 43. [CrossRef]

20. d’Andrimont, R.; Yordanov, M.; Martinez-Sanchez, L.; Eiselt, B.; Palmieri, A.; Dominici, P.; Gallego, J.; Reuter, H.I.; Joebges, C.;
Lemoine, G.; et al. Harmonised LUCAS in-situ land cover and use database for field surveys from 2006 to 2018 in the European
Union. Sci. Data 2020, 7, 352. [CrossRef]

21. Solórzano, J.V.; Mas, J.F.; Gao, Y.; Gallardo-Cruz, J.A. Land Use Land Cover Classification with U-Net: Advantages of Combining
Sentinel-1 and Sentinel-2 Imagery. Remote Sens. 2021, 13, 3600. [CrossRef]

22. Ma, L.; Liu, Y.; Zhang, A.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review.
ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [CrossRef]

23. Dang, K.B.; Nguyen, M.H.; Nguyen, D.A.; Phan, T.T.H.; Giang, T.L.; Pham, H.H.; Nguyen, T.N.; Tran, T.T.V.; Bui, D.T. Coastal
Wetland Classification with Deep U-Net Convolutional Networks and Sentinel-2 Imagery: A Case Study at the Tien Yen Estuary
of Vietnam. Remote Sens. 2020, 12, 3270. [CrossRef]

24. DeLancey, E.R.; Simms, J.F.; Mahdianpari, M.; Brisco, B.; Mahoney, C.; Kariyeva, J. Comparing Deep Learning and Shallow
Learning for Large-Scale Wetland Classification in Alberta, Canada. Remote Sens. 2020, 12, 2. [CrossRef]

25. Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote
sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [CrossRef]

26. Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J.
Photogramm. Remote Sens. 2017, 130, 277–293. [CrossRef]

27. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial
analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

28. Bisong, E. Google Colaboratory. In Building Machine Learning and Deep Learning Models on Google Cloud Platform; Apress: Berkeley,
CA, USA, 2019. [CrossRef]

29. Moen, A. National atlas of Norway. Vegetation; Norwegian Mapping Authority: Hønefoss, Norway, 1999.
30. Bakkestuen, V.; Erikstad, L.; Halvorsen, R. Step-less models for regional environmental variation in Norway. J. Biogeogr. 2008,

35, 1906–1922. [CrossRef]
31. Sigmond, E.M.O. Brukerveiledning til Berggrunnskart over Norge. Nasjonalatlas for Norge; Statens Kartverk: Hønefoss, Norway, 1985.

(In Norwegian)
32. Statistics Norway. Skog, Fjell og Vidde Dominerer-SSB; Statistics Norway: Oslo, Norway, 2017.
33. Halvorsen, R.; Skarpaas, O.; Bryn, A.; Bratli, H.; Erikstad, L.; Simensen, T.; Lieungh, E. Towards a systematics of ecodiversity: The

EcoSyst framework. Glob. Ecol. Biogeogr. 2020, 29, 1887–1906.
34. Venter, Z.S.; Sydenham, M.A.K. Continental-Scale Land Cover Mapping at 10 m Resolution Over Europe (ELC10). Remote Sens.

2021, 13, 2301. [CrossRef]

https://www.regjeringen.no/no/dokument/rapportar-og-planar/id438817/
http://doi.org/10.1080/00291951.2018.1468356
http://doi.org/10.1127/phyto/2018/0293
http://doi.org/10.1111/avsc.12368
http://doi.org/10.3390/rs12111882
http://doi.org/10.3390/rs11010043
http://doi.org/10.1038/s41597-020-00675-z
http://doi.org/10.3390/rs13183600
http://doi.org/10.1016/j.isprsjprs.2019.04.015
http://doi.org/10.3390/rs12193270
http://doi.org/10.3390/rs12010002
http://doi.org/10.1016/j.rse.2020.111716
http://doi.org/10.1016/j.isprsjprs.2017.06.001
http://doi.org/10.1016/j.rse.2017.06.031
http://doi.org/10.1007/978-1-4842-4470-8_7
http://doi.org/10.1111/j.1365-2699.2008.01941.x
http://doi.org/10.3390/rs13122301


Remote Sens. 2023, 15, 1203 15 of 15

35. Gómez-Giráldez, P.J.; Pérez-Palazón, M.J.; Polo, M.J.; González-Dugo, M.P. Monitoring Grass Phenology and Hydrological
Dynamics of an Oak–Grass Savanna Ecosystem Using Sentinel-2 and Terrestrial Photography. Remote Sens. 2020, 12, 600.
[CrossRef]

36. Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-Destructive Optical Detection of Pigment Changes during
Leaf Senescence and Fruit Ripening. Physiol. Plant. 1999, 106, 135–141. [CrossRef]

37. Pflugmacher, D.; Rabe, A.; Peters, M.; Hostert, P. Mapping Pan-European Land Cover Using Landsat Spectral-Temporal Metrics
and the European LUCAS Survey. Remote Sens. Environ. 2019, 221, 583–595. [CrossRef]

38. Griffiths, P.; Nendel, C.; Pickert, J.; Hostert, P. Towards National-Scale Characterization of Grassland Use Intensity from Integrated
Sentinel-2 and Landsat Time Series. Remote Sens. Environ. 2019, 238, 111124. [CrossRef]

39. Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979,
8, 127–150. [CrossRef]

40. Snyder, A.; Fulé, P.; Crouse, J. Comparison of burn severity assessment using Differenced Normalized Burn Ratio and ground
data. Int. J. Wildland Fire 2005, 14, 189–198. [CrossRef]

41. Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of Green-Red Vegetation Index for Remote Sensing of
Vegetation Phenology. Remote Sens. 2010, 2, 2369–2387. [CrossRef]

42. Cao, Q.; Miao, Y.; Wang, H.; Huang, S.; Cheng, S.; Khosla, R.; Jiang, R. Non-destructive estimation of rice plant nitrogen status
with Crop Circle multispectral active canopy sensor. Field Crops Res. 2013, 154, 133–144. [CrossRef]

43. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance
of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]

44. Gitelson, A.A.; Zur, Y.; Chivkunova, O.B.; Merzlyak, M.N. Assessing carotenoid content in plant leaves with reflectance
spectroscopy. Photochem. Photobiol. 2002, 75, 272–281. [CrossRef]

45. Gitelson, A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS.
Remote Sens. Environ. 1996, 58, 289–298. [CrossRef]

46. Maleki, M.; Arriga, N.; Barrios, J.M.; Wieneke, S.; Liu, Q.; Peñuelas, J.; Janssens, I.A.; Balzarolo, M. Estimation of Gross Primary
Productivity (GPP) Phenology of a Short-Rotation Plantation Using Remotely Sensed Indices Derived from Sentinel-2 Images.
Remote Sens. 2020, 12, 2104. [CrossRef]

47. Zhuang, J.; Yang, J.; Gu, L.; Dvornek, N. Shelfnet for fast semantic segmentation. In Proceedings of the 2019 International
Conference on Computer Vision Work ICCVW, Seoul, Korea, 27–28 October 2019; pp. 847–856.

48. Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.;
Ilyushchenko, S.; et al. Dynamic World, Near real-time global 10 m land use land cover mapping. Sci. Data 2022, 9, 251. [CrossRef]

49. Chollet, F. Keras. 2015. Available online: https://keras.io. (accessed on 5 January 2023).
50. Stumpf, A.; Michéa, D.; Malet, J.-P. Improved Co-Registration of Sentinel-2 and Landsat-8 Imagery for Earth Surface Motion

Measurements. Remote Sens. 2018, 10, 160. [CrossRef]
51. Halabisky, M.; Babcock, C.; Moskal, L.M. Harnessing the Temporal Dimension to Improve Object-Based Image Analysis

Classification of Wetlands. Remote Sens. 2018, 10, 1467. [CrossRef]
52. Muro, J.; Varea, A.; Strauch, A.; Guelmami, A.; Fitoka, E.; Thonfeld, F.; Diekkrüger, B.; Waske, B. Multitemporal optical and radar

metrics for wetland mapping at national level in Albania. Heliyon 2020, 6, e04496. [CrossRef]
53. Wang, J.; Bretz, M.; Dewan, M.A.A.; Delavar, M.A. Machine learning in modelling land-use and land cover-change (LULCC):

Current status, challenges and prospects. Sci. Total Environ. 2022, 822, 153559. [CrossRef]
54. Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
55. Mahdavi, S.; Salehi, B.; Granger, J.; Amani, M.; Brisco, B.; Huang, W. Remote sensing for wetland classification: A comprehensive

review. GIScience Remote Sens. 2018, 55, 623–658. [CrossRef]
56. Ball, J.E.; Anderson, D.T.; Chan, C.S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges

for the community. J. Appl. Remote Sens. 2017, 11, 042609. [CrossRef]
57. Hoeser, T.; Bachofer, F.; Kuenzer, C. Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A

Review—Part II: Applications. Remote Sens. 2020, 12, 3053. [CrossRef]
58. Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in Vegetation Remote Sensing.

ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [CrossRef]
59. Ulmas, P.; Liiv, I. Segmentation of satellite imagery using U-Net models for land cover classification. arXiv 2020, arXiv:2003.02899.
60. Sumbul, G.; Charfuelan MDemir, B.; Markl, V. Bigearthnet: A large-scale benchmark archive for remote sensing image under-

standing. In Proceedings of the IEEE International Conference on Geoscience and Remote Sensing Symposium, Yokohama, Japan,
28 July–2 August 2019; pp. 5901–5904.

61. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention—MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science; Navab, N.,
Hornegger, J., Wells, W., Frangi, A., Eds.; Springer: Cham, Switzerland, 2015; Volume 9351. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/rs12040600
http://doi.org/10.1034/j.1399-3054.1999.106119.x
http://doi.org/10.1016/j.rse.2018.12.001
http://doi.org/10.1016/j.rse.2019.03.017
http://doi.org/10.1016/0034-4257(79)90013-0
http://doi.org/10.1071/WF04010
http://doi.org/10.3390/rs2102369
http://doi.org/10.1016/j.fcr.2013.08.005
http://doi.org/10.1016/S0034-4257(02)00096-2
http://doi.org/10.1562/0031-8655(2002)075&lt;0272:ACCIPL&gt;2.0.CO;2
http://doi.org/10.1016/S0034-4257(96)00072-7
http://doi.org/10.3390/rs12132104
http://doi.org/10.1038/s41597-022-01307-4
https://keras.io.
http://doi.org/10.3390/rs10020160
http://doi.org/10.3390/rs10091467
http://doi.org/10.1016/j.heliyon.2020.e04496
http://doi.org/10.1016/j.scitotenv.2022.153559
http://doi.org/10.1186/s40537-019-0197-0
http://doi.org/10.1080/15481603.2017.1419602
http://doi.org/10.1117/1.JRS.11.042609
http://doi.org/10.3390/rs12183053
http://doi.org/10.1016/j.isprsjprs.2020.12.010
http://doi.org/10.1007/978-3-319-24574-4_28

	Introduction 
	Methods 
	Study Area 
	Preparation of the Predictor Stack 
	Preparation of the Training Data 
	Computing 
	Unseen Validation Dataset 

	Results 
	Discussion 
	Conclusions 
	References

