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Abstract: Timely and accurate detection of diseases plays a significant role in attaining optimal
growing conditions of olive crops. This study evaluated the use of two machine learning algorithms,
Random Forest (RF) and XGBoost (XGB), in conjunction with the feature selection methods Recursive
Feature Elimination (RFE) and Mutual Information (MI), for detecting stress in olive trees using
hyperspectral data. The research was conducted in Halkidiki, Northern Greece, and focused on
identifying stress caused by biotic and abiotic factors through the analysis of hyperspectral images.
Both the RF and XGB algorithms demonstrated high efficacy in stress classification, achieving roc-auc
scores of 0.977 and 0.955, respectively. The study also highlighted the effectiveness of RFE and MI in
optimizing the classification process, with RF and XGB requiring a reduced number of hyperspectral
features for an optimal performance of 1.00 on both occasions. Key wavelengths indicative of stress
were identified in the visible to near-infrared spectrum, suggesting their strong correlation with
olive tree stress. These findings contribute to precision agriculture by demonstrating the viability of
using machine learning for stress detection in olive trees, and underscores the importance of feature
selection in improving classifier performance.

Keywords: feature selection; hyperspectral; machine learning; random forest; stress detection; UAV;
XGBoost

1. Introduction

The olive tree, scientifically known as Olea europea L., is a widely cultivated tree that
has been an integral part of Mediterranean agriculture over the past centuries. The fruit,
oil, and branches of olive trees have been closely linked, culturally and economically, with
Mediterranean history. Approximately 80 percent of the world’s table olives and 98 percent
of the world’s olive oil come from Mediterranean countries. The European Union (EU) is the
world’s largest producer, consumer, and exporter of olive oil, accounting for over 67 percent
of annual global production (almost 2 million tons). Producing about 66, 15, and 13 percent,
respectively, of the total EU output, these two million tons of olive oil are divided among
three Mediterranean EU countries: Spain, Italy, and Greece [1]. Currently, over 750 million
olive trees are cultivated worldwide, 95 percent of which are in the Mediterranean region.
A total of nine EU Member States—Spain, Italy, Greece, Portugal, Cyprus, France, Croatia,
Slovenia, and Malta—have olive tree plantations. In 2016, the European Union’s olive
production was worth EUR 2255 million and 10,908,000 tons [2].

Italy and Spain are the primary consumers of olive oil within the EU, exhibiting an
annual consumption of over 500,000 tons each. Meanwhile, Greece boasts the highest
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per capita consumption of olive oil within the EU, with an estimated average of 12 kg
per individual per annum. The EU comprises roughly 53 percent of global consumption.
The yearly olive output and product quality exhibit interannual variability, which can be
attributed to the impact of plant protection issues. The olive tree, known for its longevity
and ability to withstand drought, faces numerous biotic stressors such as pests, diseases, and
weeds that restrict its development and yield. Bactrocera oleae, Prays oleae, Euphyllura spp.,
Saissetia oleae, Parlatoria oleae, and Eriophyidae mites are considered to be the most significant
pests in the context of olive cultivation. Additionally, Cycloconium oleaginum, Verticillium
dahliae, Glomerella cingulata, and Pseudomonas syringae pv. savastanoi are recognized as relevant
pathogens affecting olive trees and require the employment of pesticides for chemical control
wherever possible [3].

In agriculture, pests, diseases, and climate extremes like high temperatures and ex-
cessive rain can cause plant stress throughout the entire lifecycle. Grace and Levitt [4]
claim plants encounter numerous environmental stressors. Abiotic physicochemical stres-
sors include drought, cold, heat, and high salt, while biotic stressors include herbivory,
disease, and allelopathy. Stress generates reactive oxygen species (ROS) at the cellular and
molecular levels, according to the literature. ROS are powerful oxidizers that can disrupt
membranes and plant DNA. The term ‘plant stress’ is often used broadly, requiring a more
precise explanation. Lichtenthaler [5] defined plant stress as “Any adverse circumstance
or substance that hampers or impedes the metabolic processes, growth, or developmental
progression of a plant.” Many natural and anthropogenic factors can cause vegetation stress.

Plant diseases have remained a challenge for the horticultural industry, reducing crop
yields and quality. The effect of this is an overload of pressure, both financially for agri-
cultural companies, and globally for the agricultural economy. Measures that prioritise
stress detection can prevent these notable disasters [6]. Many of these methods are difficult
to access and require specialized expertise, making their implementation challenging for
farmers. These projects often require significant financial and resource investment. The lack
of reliable, specialized, and extensive services makes it difficult for farmers to proactively
contain epidemics using ground-level detection methods [7]. In stress definition, a classifi-
cation model’s method for detecting a stress factor—such as disease—on an experimental
target, such as a plant or field, is crucial.

Remote sensing in the field of crop protection can be implemented by deploying
multispectral or hyperspectral sensors, which capture data across various wavelengths of
light. As also discussed in a review by Zheng et al. [8], remote sensing data can be analysed to
monitor plant health and detect stress factors such as diseases, pests, or nutrient deficiencies.
By analysing changes in the spectral reflectance of crops over time, farmers and agronomists
can make informed decisions about irrigation, the application of fertilizers, pesticides, and
other crop management practices [9]. This proactive approach enables precision agriculture,
minimizes environmental impact, and enhances yield by addressing issues promptly and
accurately. Sensor technologies may be implemented for precise and successful control
of plant diseases in different fields, as discussed by Mahlein et al. [10] and Navrozidis
et al. [11]. In particular, UAVs mounted with a variety of sensors have been used to detect
diseases, as shown in the works of Ahmadi et al., Kerkech et al. and Amarasingam et al.,
respectively [12–14].

Hyperspectral sensors specifically allow for the detection of diseases by taking ad-
vantage of the multitude of available spectral bands, in order to find correlations between
spectral regions or wavelengths and damaged plant tissues. The potential of hyperspectral
sensors using spectral signature fluctuations as a diagnostic and quantification tool for
plant diseases is thoroughly discussed in a review by Thomas et al. [15].

An efficient way to utilise hyperspectral data for plant stress detection tasks is to use
neural networks [16] or machine learning models for automated detection [17]. Hyperspec-
tral data can also be combined with other forms of data such as LiDAR for disease detection
purposes, as was demonstrated in the work of Yu et al. [18], where they combined uav-
mounted hyperspectral and LiDAR sensors to detect pine wilt disease, applying Random
Forests and feature selection methods.
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Ensemble modelling is a machine learning process for creating classification and
regression models that has proved highly efficient in related tasks, such as crop disease
detection through utilization of hyperspectral data, and has been widely used for related
objectives from the scientific community [19]. Key algorithms for this approach are Random
Forests, as shown in the works of [20,21], and Extreme Gradient Boosting (XGBoost), as
highlighted in [22,23].

Some works [19,24,25] also suggest that using specialized feature selection algorithms,
such as Recursive Feature Elimination, can further enhance the performance of machine
learning algorithms for classification tasks related to plant phenotyping when using hyper-
spectral data.

Although a number of research studies [26–30] have been conducted concerning disease
detection in olive trees, this body of research is notably sparse, presenting an opportunity
for expansion. This study addresses this shortfall by providing an applied pipeline process,
which leads to selected hyperspectral information related to the detection of plant stress
attributed to a variety of biotic and abiotic stressors in olive trees.

Specifically, the aims of this work were to utilise hyperspectral data and machine
learning to:

• Determine whether the presence of initial stress symptoms in individual olive trees
can be detected with sufficient accuracy using two ensemble classification algorithms,
Random Forest (RF) and Extreme Gradient Boosting (XGBoost–XGB ver. 2.0.2.);

• Identify the potential of two feature selection techniques, RFE and MI, to optimise the
modelling process;

• Determine what is the minimum required number of spectral features to produce the
best performing models;

• Identify the corresponding wavelengths in the highlighted features from the previously
tested feature selection methods.

This article is structured as follows: Section 2 details the experimental site, datasets,
and feature selection methods and models used in this research. Section 3 is dedicated to
presenting the results. The findings are then discussed in Section 4, considering the context
of other studies. Finally, the article concludes with Section 5.

2. Materials and Methods
2.1. Experimental Site

The experimental site was located in Halkidiki (Figure 1), a region in Northern Greece
that is characterized by its robust agricultural industry.
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A significant portion of the agricultural land in this area is dedicated to the production
of olive trees. The production of extra virgin olive oil and table olives in the region is
facilitated by many native varieties such as ‘Halkidikis’, ‘Amfissis’, ‘Kalamon’, ‘Galano’,
‘Metagitsi’, and ‘Agioritiki’. The ‘Halkidikis’ cultivar is highly regarded and favoured in the
region because of its exceptional quality. However, it is also very susceptible to several
challenges, both biotic and abiotic, with water stress being an ongoing concern.

The predominant crops in the region primarily comprise cereal crops and olives. In
addition, there are dispersed agroforestry systems that consist of olive trees cultivated
alongside cereals and herbs, serving as cover crops. The density of these trees typically
amounts to roughly 800 trees per hectare. The area exhibits a mean annual temperature of
16.5 ◦C and a mean annual precipitation of 598 mm. In order to optimise crop production,
a significant proportion of farmers employ irrigation techniques, predominantly relying on
privately-owned groundwater pumps. This practice results in an environment favourable
to the expansion and propagation of soil-borne fungal infections, including Verticillium
dahliae, as well as airborne pathogens such as Spilocaea oleaginea and Cercospora beticola. The
disease caused by S. oleagina is commonly known as peacock’s eye on an international basis,
and as cycloconium within the region in which it occurs. Similarly, C. beticola is responsible
for inducing the condition referred to as olive leaf spot. The disease induced by V. dahliae
is referred to as Verticillium wilt, characterized by symptoms that closely match those
observed in olive trees under severe water stress (Figure 2), and is progressively affecting a
growing number of agricultural areas annually.
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Figure 2. Olive tree under water stress symptoms caused by the pathogen Verticillium dahliae.

The period between April and June in Northern Greece holds significance in the
optimal growth of olive trees since it heavily affects their blooming stage. The producer of
the experimental field (Figure 3) informed the research team about ongoing and accelerated
infections observed each year caused by Verticillium wilt.

The infected trees were removed, and their remains were burned in an attempt to
confine pathogen spread to neighbouring trees. Despite these efforts, some symptoms of
initial infection could be observed in trees neighbouring infected trees.
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2.2. Datasets and Pre-Processing
2.2.1. Data Collection

The sampling procedure for this experiment was conducted on 13 May 2021. Records
of 76 trees in the olive field were collected by the researchers to assess initial symptoms
of stress present in olive trees. The records were assessments for verticillium and other
soil-borne pathogens, cycloconium, and other stressors. Each type of stressor assessment
was accompanied by a numerical assessment ranging from 0 to 9, describing the infection
levels present in each tree. After summing the three stressor assessments, the values for
each sample concerning stress intensity ranged from 0 to 27.

A UAV platform with a rotary wing vehicle with 8 rotors was employed, with a Cubert
S185 (CUBERT-GmbH, Germany) hyperspectral imager mounted on the platform. The im-
ager obtained 138 available spectral band data with a spectral imaging interval of 4 nm,
including a panchromatic band and 137 spectral bands in the range of 450–950 nm. The
main parameters of the imager are listed in Table 1.

Table 1. Cubert S185 spectral imager main parameters.

Parameters Description

Wavelength range 450–950 nm
Sampling interval 4 nm
Full width at half maximum 532 nm@8 nm

850 nm@25 nm
Bands 137
Focal length 16 nm
Horizontal field of view 22◦

Digital resolution 12 bit
Detector specification Area assay Si CCD
Weight 490 g
Power DC 12 V, 15 W

The hyperspectral data acquisition process involved both radiometric and spectral
calibration of the hyperspectral imager. Radiometric calibration was carried out using
standard white reference panels, to correct for sensor noise and ensure accurate radiance
measurements. Spectral calibration was also performed, using known spectral light sources
to ensure precise wavelength alignment and accuracy. These calibrations were conducted
in controlled laboratory settings prior to data collection, and were supplemented with field
calibrations to account for environmental variability. In total, 15 .tiff hyperspectral images
were collected for this experiment, capturing a different amount of trees in each image
depending on the density of each particular location in the field (Figure 4).
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Figure 4. Hyperspectral image of olive trees, displayed with varying green hues, and digitized tree
circumferences, outlined in red. In the centre of each olive tree the sample number recorded during
visual assessments can be seen.

2.2.2. Pre-Processing

QGIS software (ver. 3.28.0) was used to load and extract the hyperspectral information in
the form of Digital Numbers (DN) of each image and each band of the imager. This procedure
involved digitizing the circumference of each tree/sample in the collected hyperspectral
images, as seen in Figure 4. Then, the ‘zonal statistics multiband’ add-on for QGIS [31] was
used to compute zonal statistics for each digitized tree/sample. The zonal statistics were
associated with pixels enclosed by the digitized polygon shape of the tree vegetation.

The statistics computed for each band and each sample, regarding pixel values, were
the count of pixels in the polygon; the sum; mean; median; standard deviation; minimum;
maximum; range; minority; majority; and variance. This resulted in a matrix with 11 statis-
tics for 137 bands, totalling an amount of 1507 independent variables for each sample.
These will be called ‘features’ in the rest of the manuscript, based on the manner in which
they were used by the classifiers.

Python 3 and Jupyter notebooks were used in the Visual Studio code IDE for additional
data pre-processing. The zonal statistics and tree/sample records were loaded in a data
frame using the Pandas python library.

A threshold of 10% was selected for attributing the ‘stressed’ or ‘healthy’ labels in each
sample, meaning that samples that presented symptoms of damage or stress in over 10% of
their vegetation were categorized as showing early signs of infection or abiotic stress and
were classified as ‘stressed’.

The features were normalized in a range of −1 to 1, to remove the effect of varying
numerical ranges in the dataset during the following steps of the modelling procedure.

To address the issue of class imbalance and, specifically, the number of positive in-
stances in the minority class, the Synthetic Minority Over-Sampling Technique (SMOTE)
was used [32]. SMOTE is an algorithm for addressing class imbalance in machine learning.
It identifies the minority class, which was the ‘stressed’ class; selects instances; and gen-
erates synthetic samples by interpolating between them and, in this case, their 2 nearest
neighbours. By adding these synthetic instances to the original data, SMOTE effectively
balances class distributions, preventing bias toward the majority class and improving the
model’s ability to learn from the minority class.
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2.3. Feature Selection Methods and Modelling

Two feature selection and elimination methods were tested. The first was Recursive
Feature Elimination (RFE), which is a feature selection technique used to systematically
reduce the dimensionality of a dataset. RFE was used as follows: Initially, a machine learning
model or classifier is trained using all available features. In our case this was tested with RF
and XGB. Subsequently, the least significant features are identified and removed from the
dataset. The model is then retrained with the reduced feature set. This process is iteratively
repeated until a specified number of features remain. By selecting and retaining only the
most informative features, RFE supports the enhancement of model interpretability, reduces
overfitting, and potentially improves predictive accuracy. This is particularly important for
the specified study, where redundant features or noise may be present.

The RFE method includes removing the x worst performing features during iterations
for training the selected classifier, and has a step parameter to determine x. This is par-
ticularly useful for datasets such as this, where there is a high number of features, and
training and evaluating models and features slows the process considerably. To address
this, a step higher than 1 can be selected to remove more features during each iteration
and lower the duration of the RFE process. This, however, may remove a feature that has a
low—but not the worst—performance in an iteration, but may result in being one of the top
performing features that will eventually remain in the pool of optimal features. During this
experiment the step for worst performing feature removal was 1, to avoid losing valuable
information. At the same time, not knowing beforehand the number of features that would
be considered optimal for our case, an iteration was used to run RFE while selecting an
increasing number of features to keep in, up to 10, and evaluating the changes in model
performance for both classifiers.

The second method employed was Mutual Information (MI) feature selection, which
is an approach used to assesses the degree of dependence between individual features
and the target labels. MI quantifies the information shared between the features and the
target labels, with higher values indicating stronger associations. In the context of feature
selection, features with the highest MI scores are selected, while features with lower scores
are discarded. This ensures that the spectral information most discriminative for identifying
stressed labels is effectively utilized, enhancing the performance of the classification models
employed using the features selected by MI for training and validation.

The machine learning algorithms employed and compared in this research were
Random Forest (RF) and Extreme Gradient Boosting (XGB), without focusing on excessive
hyperparameter optimization to assess classification performances, but rather on an out-
of-the-box employment of the algorithms to assess the models’ performance based on the
utilization of the two feature selection methods. RF [33] is an ensemble learning method
that operates by constructing a multitude of decision trees during training. The output for
classification tasks, such as detecting plant stress, is determined by the mode of the classes’
output by individual trees. While RF does not follow a single equation, its operation can
be summarized as follows: For a set of training data X and labels Y, RF creates multiple
decision trees. Each tree Ti gives a prediction Yi for input X. The final prediction is the
mode of these outputs. In this study, the input data for RF is comprised of spectral bands’
zonal statistics derived through hyperspectral images of olive trees, processed into a set of
spectral features. The output is the classification of the incidence of stress in the trees.

XGB [34] is a gradient-boosting framework that builds an ensemble of decision trees
in a sequential manner, where each tree attempts to correct the mistakes of its predecessor.
This method is particularly effective for complex datasets, like hyperspectral imagery. The
objective function in XGBoost combines a loss function L(Θ) and a regularization term
Ω(Θ). The model is built by adding trees that minimize this function, with predictions yi
updated in each round n as:

ŷn
i = ŷ(n−1)

i + η × fn(xi) (1)

where fn is the decision tree added at the nth round, and η is the learning rate.
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XGB was selected as it uses many parameters to allow the algorithm to avoid overfit-
ting and, although more complicated to set up compared to RF, it usually provides better
performance and robustness. The flowchart in Figure 5 describes the pipeline process
followed in this study.
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Figure 5. A flowchart diagram displaying the workflow followed in this study.

The generated models were evaluated using the area under the receiver operating
characteristic curve (roc-auc) metric, which provides a summarized assessment of the
models’ discriminatory power by measuring the trade-off between the true positive rate,
or sensitivity, and the false positive rate, or 1-specificity. The values for the roc-auc per-
formance metric range between 0.5, for models with the lowest performance that provide
random classifications, and 1, for models with excellent performance.

3. Results

The results displayed that initial symptoms of diseases can be detected through the use
of hyperspectral data with an accuracy of 100% using a RF and an XGB classifier, alongside
feature selection methods to reduce the dimensions of the available dataset.

The RF and XGB classifiers were trained with the initial dataset of 1507 features, to
compare changes in performance with the use of the fewer features that were obtained after
applying the two feature selection methods. RF produced a model with a roc-auc of 0.977,
slightly outperforming XGB, which produced a model with 0.955 roc-auc. The associated
confusion matrices for the RF and XGB models can be seen in Figures 6 and 7, respectively.
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Table 2, below, provides an overview of the combination of the tested models and
feature selection methods, together with the resulting roc-auc performances and optimal
number of features. A more detailed description is presented in the following sub-sections.

Table 2. Synopsis of results for all tested methods.

Classifier Type Feature Selection Methods Number of Features Roc-Auc Score

RF No feature selection 1507 0.977
XGB No feature selection 1507 0.955
RF RFE 5 1.00
XGB RFE 2 1.00
RF MI 3 1.00
XGB MI 3 1.00

3.1. Recursive Feature Elimination Results
3.1.1. Random Forest

Based on Figure 8, for RF classifiers the performance with only one feature was 0.864,
and when using two features a performance of 0.977 was achieved, which is the same as
when using all 1507 features. Performance remained the same when increasing the features
from two to four, and achieved the highest performance of 1.00 when using the five best
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contributing features. The wavelengths and statistics associated with the features used for
creating the model with the best performance were 650 nm (majority), 669 nm (majority),
687 nm (sum), 691 nm (sum), and 695 nm (sum). Adding more features than five drops the
performance to 0.977, and it is safe to assume that it remains so for all following additions
of features, as it is the same performance observed when training the classifier with all
available features.
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3.1.2. XG Boost

XG Boost classifiers achieved a high performance even when using one feature, having
a roc-auc of 0.909. The highest performance is achieved when training an XG Boost classifier
with the two optimal features, having a score of 1.00. The wavelengths and statistics
associated with the optimal features are 654 nm (majority) and 680 nm (sum). When using
additional features for training classifiers, model performance drops to 0.955, which also
matches the performance achieved when using all 1507 available features (Figure 9).
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3.1.3. Mutual Information Results

MI was used to acquire the optimal ten features for predicting our target classes. As
MI does not select features based on a classifier selected by the user as opposed to RFE, the
derived features are the same in both cases. The target objective here was to identify how
many features of those selected by MI are required to achieve the highest performance for
both classifiers.
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For RF it can be observed in Figure 10 that three features are enough to produce a
model with a score of 1.00, although using just one or two features still results in models
with high performance, having roc-auc scores of 0.909 and 0.977, respectively, the latter
also being the score for the RF classifier trained with the initial dataset of 1507 features. The
wavelengths and statistics associated with the three optimal features are 552 nm (majority),
760 nm (majority) and 935 nm (range). While adding a fourth feature still results in an
exceptional model with a score of 1.00, it is unnecessary, and continuing to add more
features above four for classifier training drops performance to scores of 0.977 and lower,
which, while still being high, do not provide better-performing models.
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Figure 10. Bar graph depicting the performance of RF classifiers trained in an increasing number of
optimal features sorted by significance using Mutual Information.

Figure 11 displays the performance of XGB classifiers for an increasing number of
optimal features as selected by MI. Here, the pattern for the obtained scores is identical to
the scores also obtained by RF up to using four optimal features. After that, XGB classifiers
also provided high scores of 1.00 for additional features up to seven, and then dropped
from eight features onward to a—still high—score of 0.932. Following the same logic as
before, it was deemed that using additional features beyond the first three, while still
having optimal scores, does not provide any benefit to the model. Because both models
require three optimal features, as highlighted by MI, to produce the model with the highest
quality, the wavelengths associated with the optimal features are the same for both cases,
being 552 nm (majority), 760 nm (majority), and 935 nm (range).
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4. Discussion
4.1. Evaluation of Classifier Performance

The findings from this study provide a comprehensive evaluation of the detection of
stress in olive trees using hyperspectral data analysed with RF and XGB classifiers. Both the
RF and XGB algorithms performed exceptionally well in detecting stress, with RF having a
slight edge with a roc-auc of 0.977 compared to the 0.955 of XGB when trained with the full
set of features, as was the case in a study by Adam et al. where they used a Random Forest
algorithm and hyperspectral data to detect early stages of leaf spot disease in maize [35]. The
performance of these models suggests that machine learning approaches, specifically ensemble
methods like RF and XGB, can effectively distinguish stress signatures in hyperspectral images
of olive trees. This has also been demonstrated in a case of detecting Xyllela fastidiosa in trees
using a machine learning framework utilizing RF, XGB, and Gradient boosting [36].

4.2. Feature Selection Insights

A notable result from this study was the impact of feature selection on the classifier
performance. Both algorithms achieved optimal performance with a minimal subset of
features. For RF, the performance when using RFE peaked with five features, and for
XGB, a perfect roc-auc score was obtained with two optimal features. This indicates that
the dimensionality of the data can be significantly reduced without loss of performance,
and highlights that XGB was more efficient than RF when reducing dimensionality in the
dataset using RFE. This is also a critical insight for practical applications as it can reduce
computational cost and complexity, as shown in [37] where dimensionality reduction
was applied to hyperspectral data collected from a UAV-mounted camera, resulting in
better-performing algorithms using fewer spectral features for training.

The stability of performance with an increasing number of features until a certain
threshold supports the idea that beyond a critical point, additional features may introduce
noise rather than informative variance. This is evident as the performance for RF does
not improve past five features, and for XGB past two features, which emphasizes the
importance of an appropriate feature selection method in hyperspectral data analysis.

The application of MI as a feature selection method also resulted in equal, optimal
performance for both classifiers when the top three features were used. The consistent
achievement of perfect scores with a model using just three features derived from MI is
particularly noteworthy, implying that MI effectively captures the most relevant informa-
tion for stress detection in olive trees, and its classifier-agnostic nature makes the selected
features robust across different machine learning methods.

The fact that both RF and XGB classifiers did not benefit from additional features
beyond the optimal number selected by MI further reinforces the idea that a small number
of highly informative features can be sufficient for accurate classification, as also suggested
by [38]. This finding is crucial for hyperspectral data processing where hundreds of features
are often available, and selecting the most informative ones is challenging.

4.3. Correlation between Highlighted Wavelengths and Olive Tree Diseases

The study’s results have several implications for the analysis of hyperspectral data in
agriculture. The high performance achieved with a limited number of features implies that
there could be specific wavelengths that are particularly informative of stress in olive trees.
This could lead to the development of simplified and more cost-effective sensors that only
capture key wavelengths.

Additionally, the observed high roc-auc scores suggest that the selected wavelengths
and statistical measures (majority, sum, and range) at those wavelengths are likely to be
closely associated with the physiological changes in stressed olive trees.

Olive tree diseases such as Verticillium wilt, peacock’s eye, and olive leaf spot can
manifest in ways that potentially alter the reflectance properties captured in the highlighted
wavelengths. These diseases often lead to physiological changes such as chlorosis, defoliation,
and disruption of water transport, which can be detected through hyperspectral imaging.
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The wavelengths identified in the study as optimal for stress detection in olive trees—
650 nm, 669 nm, 687 nm, 691 nm, 695 nm, 552 nm, 760 nm, and 935 nm—span across the
visible to near-infrared (NIR) spectrum. In the context of plant physiology, wavelengths
in the visible spectrum, particularly around 650–680 nm, are known to correspond to the
absorption of chlorophyll, which is a critical pigment involved in photosynthesis. The detec-
tion of stress at these wavelengths could suggest alterations in chlorophyll content, which
is often a response to stress factors such as disease, nutrient deficiencies, or water stress.

For instance, Verticillium wilt may lead to a decline in chlorophyll content as it interferes
with water uptake and causes wilting and yellowing of leaves. The wavelengths in the visible
spectrum (650–680 nm), which are sensitive to chlorophyll content as also mentioned in [39],
would likely reflect these changes. A decline in chlorophyll may result in higher reflectance
in these bands, which could be what the classifiers are picking up as indicators of stress.

Similarly, peacock’s eye and olive leaf spot are fungal diseases that create lesions on
leaves, potentially increasing reflectance in the green spectrum (around 552 nm) due to leaf
discoloration and structure alteration. These diseases could also impact the NIR reflectance
(760 nm and 935 nm) by affecting the internal leaf structure and water content, both of
which are critical to the spectral signature in these regions.

Furthermore, the 695 nm wavelength falls within the red edge region, which is sensi-
tive to chlorophyll concentration and can indicate changes in leaf cellular structure often
associated with stress responses [40]. The performance of classifiers using features at these
wavelengths confirms their relevance in detecting physiological changes in the trees.

In the NIR spectrum, the wavelengths of 760 nm and 935 nm are associated with water
content in the plant tissues and water stress, which is also related to Verticillium wilt. The
760 nm wavelength is close to the water absorption feature, which can indicate changes in
plant water status—a common stress response in plants [41]. The 935 nm wavelength is
also associated with water, but is more related to water vapor in the atmosphere, which
may influence the detection of stress through changes in the transpiration rates.

Interestingly, there is a commonality in the key wavelengths identified by both RF and
XGB classifiers after feature selection, particularly those identified by MI—552 nm, 760 nm,
and 935 nm. The 552 nm wavelength, located in the green region of the spectrum, is known
to reflect plant vigour and health, with stressed plants typically reflecting more green light
due to chlorophyll breakdown or leaf thinning.

The recurrence of certain wavelengths among the tested methods suggests that there
are specific spectral features strongly correlated with stress in olive trees. The consistency
of these wavelengths across different feature selection methods and classifiers underscores
their potential as reliable indicators of stress.

4.4. Novelty and Uncertainties

While the use of RF and XGB algorithms in hyperspectral data analysis has been
established, their application to olive trees, especially for stress detection, is relatively
unexplored. This study tailors these advanced machine learning techniques specifically to
the nuances of olive tree physiology and stress indicators. The current research goes beyond
the mere application of RF and XGB classifiers, and provides detailed analysis on the impact
of feature selection, particularly demonstrating how a minimal subset of hyperspectral
features can achieve optimal performance. This insight is crucial for practical applications, as
it suggests that efficient and cost-effective monitoring of crop health is feasible with reduced
computational complexity. The specific wavelengths that are most informative regarding
stress detection in olive trees are also analysed in depth, providing not only an application
of a machine learning model, but a detailed assessment of the physiological implications of
spectral signatures’ correlations with various olive tree stressors. The consistency in the key
wavelengths, identified by both RF and XGB classifiers with both feature selection methods,
provides a robust validation of these spectral features as reliable indicators of stress. This
cross-methodological agreement strengthens the case for these specific wavelengths being
critical in stress detection.
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This study on hyperspectral data for disease detection in olive groves, though insightful,
is limited by dataset specificity and disease range. Although the findings are significant,
limitations exist in the form of dataset specificity and disease range. Additionally, while
successfully utilising feature selection methods like RFE and MI, the efficacy of these
methods in broader applications remains to be tested. There is a possibility that the features
identified as most informative in this study may not be as effective in different scenarios or
with different diseases. Also, olive trees are susceptible to a wide range of biotic and abiotic
stresses, and the ability of the algorithms to detect other types of stress remains untested.
Expanding the scope of the research to include a wider array of olive tree diseases and stress
factors would provide a more comprehensive understanding of the algorithms’ capabilities.

4.5. Practical Applications

Utilizing the findings of this research creates potential for building simplified hyper-
spectral cameras focusing on the most informative wavelengths for olive stress detection.
Such specialized equipment could significantly streamline field surveys and reduce opera-
tional costs. Furthermore, embedding the highlighted, optimized machine learning models
into real-time monitoring systems could revolutionise precision agriculture, facilitating
early detection and more effective management of diseases in olive trees.

5. Conclusions

This research aimed to assess the effectiveness of machine learning algorithms, specifi-
cally Random Forest and XGBoost, combined with feature selection techniques, in detecting
stress in olive trees through hyperspectral imaging. The study’s findings provide substantial
evidence that machine learning classifiers can discern stress signatures with high accuracy
when trained on hyperspectral data.

The RF classifier demonstrated a slightly superior performance, closely followed by the
XGB, indicating that both classifiers are highly competent in identifying stress conditions.
Feature selection emerged as a critical step in the classification process, with Recursive
Feature Elimination and Mutual Information being instrumental in enhancing the classifiers’
performance by identifying the most informative features, emphasizing the power of feature
reduction to not only maintain, but also improve classification accuracy.

A set of wavelengths that were particularly predictive of stress was highlighted, sug-
gesting that targeted hyperspectral imaging could become a more cost-effective approach
to stress detection in precision agriculture.

Following studies should aim to validate these findings across diverse environmental
conditions and olive varieties; explore additional machine learning techniques; and aim to
integrate these into practical monitoring systems for comprehensive disease management.
By simplifying data collection and processing, more efficient and timely decision making is
enabled in plant protection measures, potentially reducing losses due to stress and diseases.
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