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Abstract: Parameter estimation is important in weather radar signal processing. Time-domain pro-
cessing (TDP) and frequency-domain processing (FDP) are two basic parameter estimation methods
used in the weather radar field. TDP is widely used in operational weather radars because of its high
efficiency and robustness; however, it must be assumed that the received signal has a symmetrical
or Gaussian power spectrum, which limits its performance. FDP does not require assumptions
about its power spectrum model and has a seamless connection to spectrum analysis; however,
its application performance has not been fully validated to ensure its robustness in an operational
environment. In this study, we introduce several technical details in FDP, including window function
selection, aliasing correction, and noise correction. Additionally, we evaluate the performance of
FDP and compare the performance of FDP and TDP based on simulated and measured weather
in-phase/quadrature (I/Q) data. The results show that FDP has potential for operational applications;
however, further improvements are required, e.g., windowing processing for signals mixed with
severe clutter.

Keywords: weather radar; parameter estimation; frequency domain processing; simulation

1. Introduction

Weather radar is an indispensable active remote sensing observation equipment in
the meteorological field and plays an important role in precipitation estimation [1,2],
hydrometeor classification [3,4], and microphysical retrieval [5,6]. The principle of weather
radar can be summarized in the following three steps (as shown in Figure 1): (1) weather
radar emits electromagnetic waves into the atmosphere; (2) when the electromagnetic
waves “touch” targets (e.g., rain, snow, hail, and other non-meteorological targets that are
not the focus of this study) along their propagation path, scattering occurs in all directions
and a back-scattering signal is received by the radar; (3) valuable information about the
scattering targets (e.g., their size, phase, shape, and orientation) can be extracted by properly
processing the received signal. This third step is key to determining whether the radar can
provide any operational benefits.

The received signal usually undergoes processes such as amplification, mixing, filter-
ing, and digitization [7] and finally generates in-phase/quadrature (I/Q) data (also known
as time-series data or Level I data) represented by a series of complex voltages. The I/Q
data are the sum of the scattering signals of all randomly distributed targets in the sampling
volume and can be approximated as a Gaussian random process [8]. For meteorological
researchers, operational personnel, and other users of weather radar, I/Q data can be
difficult (and unnecessary) to understand. The base data (including several radar variables
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such as the reflectivity factor at horizontal polarization (ZH), radial velocity (υr), spectrum
width (συ), differential reflectivity (ZDR), differential phase (φDP), and co-polar correlation
coefficient (ρHV)) and their patterns—that intuitively reflect atmospheric dynamics and mi-
crophysical characteristics—are more in line with their actual requirements. The process of
“translating” I/Q data into base data is called parameter estimation in the field of weather
radar and is an important link in weather radar signal processing [9].
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Figure 1. Schematic diagram of the weather radar principle presented in the form of signal/data flow.

There are two basic parameter estimation approaches—namely, frequency domain
processing (FDP) using the power/cross-spectrum and time-domain processing (TDP) us-
ing the auto/cross-correlation function. Each approach has advantages and disadvantages;
however, the essential information available is identical [9]. Because weather radar signal
processing has extremely high requirements for real-time performance, TDP has been
more widely used in operational weather radar systems than FDP owing to its advantages
in terms of operating efficiency. Owing to the wide operational application of TDP, its
problems have been exposed as quickly and comprehensively as possible. Through decades
of investigations by researchers and engineers in the field of weather radar, existing TDP
problems have been continuously explored, analyzed, optimized, and solved.

Melnikov and Zrnic [10] proposed one-lag TDP for dual-polarization weather radars,
which used 1-lag correlations to estimate ZDR and ρHV , making them immune to noise. This
estimator assumed that συ of the horizontal and vertical polarization was consistent, which
was expected to hold for most precipitation observed at elevation angles lower than 20◦.
However, the standard deviation (SD) of one-lag TDP was larger than that of conventional
TDP (based on zero-lag) when συ was broadening (e.g., wider than 6 m/s). Lei et al. [11]
proposed a multi-lag TDP to improve parameter estimation performance at a low signal-
to-noise ratio (SNR). The principle was to estimate the zero-lag correlations (affected
by noise) by performing Gaussian fitting on the non-zero-lag correlations (immune to
noise). The evaluation results showed that the bias and/or SD of estimated radar variables
could be significantly improved if συ was low or moderate. However, this estimator had
greater requirements for sample number (M) and Nyquist velocity (υa) [12]. To reduce
the impact of noise, conventional TDP directly subtracts the noise power from zero-lag
correlations. Noise power is typically measured after each volume scan. Specifically,
the blue-sky noise power is routinely measured as part of an online system calibration
performed at a high antenna elevation angle, which is scaled for use at lower antenna
elevations using predetermined correction factors to account for thermal radiation from
the ground [13]. Because noise may vary considerably at different azimuth angles, the
noise power estimation mentioned above may not be representative of a specific location,
which can cause substantial bias in the estimation of polarimetric variables, especially ρHV .
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Ivic et al. [12] proposed a radial-based noise power estimation technique that improved
the temporal and spatial resolutions of the noise power and thus reduced the bias of ρHV
estimates. Ivic [14,15] later proposed a series of improved and hybrid TDP methods to
further reduce the number of invalid values of ρHV .

Currently, TDP still has inherent defects that have no solutions. For example, pulse-
pair processing is the most common method for estimating υ and συ in TDP [16]. However,
the estimation of υr (συ) assumes that the received signal has a symmetrical (Gaussian)
power spectrum. Janssen and Speck [17] performed a statistical analysis of the power
spectrum of weather signals, and their results showed that the non-Gaussian (e.g., asym-
metrical or multipeaked) power spectrum accounted for approximately one-fourth of the
total amount. Research results in [18–21] showed that the power spectra from some se-
vere convective weather signals (e.g., tornados, hail, and lightning) presented bimodal or
broad-spectrum characteristics. When the non-Gaussian weather signals appear, the TDP
assumptions are no longer satisfied, and there will be an estimation bias if TDP is still used.

Compared to TDP, FDP exhibits inferior operating efficiency. However, with the devel-
opment of computer technology, FDP can satisfy real-time operational requirements [22].
The most important advantage of FDP is its seamless connection to spectral analysis, which
makes it more flexible for clutter suppression [23,24], range and Doppler ambiguity resolu-
tion [25,26], and severe weather identification [27,28]. Additionally, FDP does not require
assumptions to be made regarding the power spectrum model; therefore, it can be used
to estimate radar variables accurately, even if there is a non-Gaussian power spectrum
signal. However, the application performance of FDP must be fully validated to ensure
its robustness in an operational environment. This paper introduces some of the technical
details of FDP. Moreover, in this study, the performance of FDP and a comparison between
FDP and TDP were evaluated using ideal weather I/Q data generated based on the signal
simulation technique and measured weather I/Q data.

The remainder of this paper is organized as follows: Section 2 describes the signal sim-
ulation technique, FDP, and conventional TDP (using TDP instead for the sake of brevity).
Section 3 introduces several details of FDP (including window function selection, alias-
ing correction, and noise correction) and analyzes their performance based on simulated
weather I/Q data. Section 4 presents a comparison of the performance of FDP and TDP
based on simulated and measured weather I/Q data. Finally, a summary and conclusions
are presented in Section 5.

2. Simulation and Estimation Methods
2.1. I/Q Data Simulator

The most well-known single-polarization I/Q data simulator in the weather radar
field is the one proposed by Zrnic [29], which has served us well in developing and
testing new weather radar signal processing algorithms over the past few decades [10,24].
Curtis [30] introduced several modifications to its accuracy and performance while keeping
the basic framework unchanged; this was adopted in this study. To simulate the dual-
polarization I/Q data, two realizations of single-polarization I/Q data were combined
using the approach proposed by Galati and Pavan [31]. All the simulations mentioned in
this paper are for weather signals and use the Gaussian spectral model.

The simulator inputs are υa, M, the echo power for horizontal polarization (Ph), υr,
συ, ZDR, φDP, ρHV , and the noise power from the horizontal and vertical channels (Nh and
Nv). The simulator outputs are the I/Q data for the horizontal and vertical polarization
channels (Vh(m) and Vv(m); argument m denotes the mth pulse, which is a non-negative
integer less than M). The simulation process can be summarized as follows:

1. Set the simulation length Ms = max (2k + 1, M + k), where k = ceil[ υa
πσυ

√
ln 10

5 AT ].
The auto-correlation threshold (AT) can be calculated as follows:

AT = min {25, 10 +
5

ln10
[
πσυ(M− 1)

υa
]
2
}; (1)
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2. Generate an ideal Gaussian power spectrum (Sh( f ); the argument f denotes the
spectral index) based on the given mean (i.e., υr) and SD (i.e., συ), as follows:

Sh( f ) =
1√

2πσ2
υ

e−(υ( f )−υr)
2/2σ2

υ , (2)

which can be computed on an extended Nyquist co-interval (from −lυa to lυa),
where l denotes an integer factor, and its setting depends on the spectral thresh-
old (ST = Ph − Nh + 35). Specifically, the spectrum must be extended to cover the
frequency range up to ST below its peak. Then, alias the extended spectrum to
produce a spectrum on the desired Nyquist co-interval (from −υa to υa);

3. Set all values in the spectrum to zero, which is greater than ST below the peak of the
spectrum;

4. Appropriately scale the Sh( f ) so that the signal power is equal to the desired Ph;
5. Simulate an independent and identically distributed complex Gaussian random pro-

cess W( f ) with zero mean, unit variance, and Ms length;
6. Multiply W( f ) by the square root of the result of Step 4 and perform the inverse

discrete Fourier transform (IDFT) to transform from the frequency domain to the time
domain, as follows:

Vh(m) =
1

Ms
∑Ms−1

f=0

√
Sh( f )W( f )ej2πm f /Ms ; (3)

7. Repeat Steps 2–6 to generate Vh2(m) (the extra “2” in the subscript is for the conve-
nience of distinguishing it from Vh(m)). Vv(m) can be calculated as follows:

Vv(m) = [ρHVVh(m) +
√

1− ρHV2Vh2(m)]
ejφDP
√

ZDR
; (4)

8. Return the first M samples from the Ms simulated samples;
9. To add noise to the simulated signal, an independent and identically distributed

Gaussian random process Wh(m) (Wv(m)) is generated with zero mean, variance Nh
(Nv), and M length. Then, add it to Vh(m) (Vv(m)).

2.2. TDP

The auto-correlation function from the horizontal or vertical polarization (R̂h, v(n)) and
the cross-correlation function (Ĉhv(n)) estimated from Vh(m) and Vv(m) can be expressed
as follows [8]:

R̂h,v(n) =
1

M− n∑M−n−1
m=0 V∗h,v(m + n)Vh,v(m), (5)

Ĉhv(n) =
1

M− n∑M−n−1
m=0 V∗h (m + n)Vv(m), (6)

where n denotes the lag number and ∧ denotes the estimated value.
Once the correlation functions are obtained, the radar variables can be estimated using

TDP. The specific estimation equations are listed in the first column of Table 1 [8]. ẐH can
be estimated from P̂h [22], as follows:

ZH = 10 log10P̂h + c + 20log10 s + As, (7)

where c and s denote the radar constant and slant range from the radar, respectively, A
denotes the two-way gaseous attenuation correction factor, which is sensitive to radar
bands, and the default values of the S, C, and X bands are 0.016, 0.019, and 0.024 dB/km,
respectively.
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Table 1. Estimation equations for TDP and FDP.

TDP FDP

P̂h,v = R̂h,v(0)− Nh,v P̂h,v =
M−1
∑

f=0
Ŝh,v( f )

υ̂r = ∠R̂h(1)
λ

4πTs υ̂r =
∑M−1

f=0 υ( f )Ŝh( f )
P̂h

σ̂υ =

√
2ln |P̂h|
|R̂h(1)|

λ
4πTs

σ̂υ =

√
∑M−1

f=0 (υ( f )−υ̂r)
2 Ŝh( f )

P̂h

ẐDR = 10log10
P̂h
P̂v

ẐDR = 10log10
P̂h
P̂v

φ̂DP = 180
π ∠Ĉhv(0) φ̂DP = 180

π ∠
M−1
∑

f=0
Ŝhv( f )

ρ̂HV =
|Ĉhv(0)|√

P̂h P̂v
ρ̂HV =

∣∣∣∑M−1
f=0 Ŝhv( f )

∣∣∣√
P̂h P̂v

2.3. FDP

The first step of FDP is to perform the discrete Fourier transform (DFT) on Vh, v(m) to
generate the complex amplitude spectrum (Fh, v( f )) [32], as follows:

Fh,v( f ) =
1
M∑M−1

m=0 d(m)Vh,v(m)e−j2πm f /M, (8)

where d(m) denotes the data window.
The second step is to estimate Ŝh, v( f ) and the cross-spectrum (Ŝhv( f )) as follows [32]:

Ŝh,v( f ) =
∣∣Fh,v( f )

∣∣2 − Nh,v

M
, (9)

Ŝhv( f ) = Fh( f )F∗v ( f ). (10)

Once Ŝh,v( f ) and Ŝhv( f ) are obtained, the radar variables can be estimated using FDP.
The specific estimation equations are listed in the second column of Table 1 [32,33]. The ẐH
estimation of FDP is the same as that of TDP.

3. FDP Details
3.1. Window Function Selection

The I/Q data are obtained by finite pulse sampling; thus, it can cause spectral leakage
owing to the discontinuity of the ends when performing DFT—that is, the energy at a
specific frequency can spread to other frequencies [8]. In general, a window function is
used to mitigate spectral leakage, which is a set of coefficients with the same length as the
I/Q data and has a maximum value centered on it, tapering to near zero at the ends [34].
However, windowing can produce side effects such as reducing the number of effective
samples and power loss. This study provides a quantitative assessment of these effects
based on simulations. To ensure the universality of our conclusions, we designed two sets
of simulation experiments (Sim1 and Sim2) for two typical precipitation types, namely,
convective and stratiform precipitation.

The parameters used in the simulations are listed in Table 2. For simplicity, we set
Nh,v to 0 dB so that Ph,v can be regarded as SNRh,v. Considering that the echo intensity
of convective precipitation is higher than that of stratiform precipitation, we set the Ph of
convective precipitation to a large value (30 dB), whereas that of stratiform precipitation
was set to a relatively small value (15 dB), but not to a value that is significantly affected by
noise. Based on a statistical analysis of the actual observations and a theoretical analysis
of the physical model [35,36], συ, ZDR, and ρHV of stratiform precipitation were set at
1.5, 0.5, and 0.99, respectively, while those of convective precipitation were set at 3.5,
2.5, and 0.98, respectively. Because the value of υr (φDP) has no effect on the simulation
results, υr (φDP) for both types of precipitation was set at 0 m/s (50◦). For each experiment,
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10,000 realizations of I/Q data were simulated with a υa of 26.8 m/s—that is, a pulse
repetition frequency of 1000 Hz and radar frequency of 2.8 GHz. M was set at 16, 32, 64,
128, and 256.

Table 2. Parameters used in the simulation. Nh,v is set at 0 dB, υa is set at 26.8 m/s, and r is set at
10,000 in all simulations.

Ph (dB) υr (m/s) συ (m/s) ZDR(dB) φDP (deg) ρHV M

Sim1 30

0

3.5 2.5
50

0.98 16, 32, 64, 128,
256Sim2 15 1.5 0.5 0.99

Sim3

30

1, 2, 4

/ / /

64

Sim4 4 16, 32, 64

Sim5 16.8, 21.8,
23.8, 25.8

2.5 64
Sim6 0, 5, 10, 15,

20, 25, 30

0

1.5 50 0.985

Sim7 30 0.5, 1, 1.5, 2, 2.5,
3, 3.5, 4, 4.5

/ / /

128
Sim8 0, 5, 10, 15,

20, 25, 30

2.5Sim9 30 16, 32, 64, 128,
256Sim10 30, 25, 20 −12, 0, 12

Sim11 30 −10, 10 64

The parameters used in the FDP are listed in Table 3. In addition to using a rectangular
window (i.e., without using a window function) when performing DFT, the window
functions commonly used in weather radar signal processing were used to compare their
performance, including the Hamming, Hann, Chebyshev (50 dB), Blackman, and Nuttall
windows [23,24,33]. Noise correction was not used as the SNR was sufficiently high such
that the additional impact of noise correction was not introduced.

Table 3. Parameters used in the FDP.

Window Function Aliasing Correction Noise Correction

Sim1 Rectangle, Hamming, Chebyshev, Hann,
Blackman, Nuttall

No
No

Sim2

Sim3
Hamming

Sim4

Sim5

Rectangle, Hamming (only for συ)

CS, CP

Sim6

CP

ZT, HY

Sim7

HY
Sim8

Sim9

Sim10

Sim11
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The bias and SD of the radar variables can be used to quantify the simulation results
for an objective evaluation. Using Ph as an example:

Bias(Ph) =
1
r ∑r

i=1P̂h(i)− Ph, (11)

SD(Ph) =

√
1
r ∑r

i=1

[
P̂h(i)− Ph

]2, (12)

where r denotes the number of realizations, P̂h(i) denotes the estimation result of the ith
simulation, and Ph denotes the simulation input, which can be considered to be the true
value.

The bias in the estimation of the radar variables for convective precipitation is shown in
Figure 2. Ph estimates of the other window functions—except for the rectangular window—
cause a significant power loss. Although there is some alleviation as M increases, the bias
still exceeds 4 dB for 256 samples (typically not achievable by operational weather radar
systems). Other window functions have a smaller υr estimate bias compared to that of the
rectangular window when M is small, the maximum difference being only approximately
0.15 m/s at 16 samples. For the συ estimates, all other window functions have a smaller bias
than that of the rectangular window, indicating that spectral leakage has been effectively
alleviated. Although the difference between the two decreases as M increases, it is still
close to 1 m/s for 256 samples. The bias of the estimation results of polarimetric variables
(i.e., ZDR, φDP, and ρHV) is essentially the same under the different window functions.
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The SDs of the radar variable estimations for convective precipitation are shown in
Figure 3 and clearly show that there are two situations. First, for radar variables other
than συ, the estimation results using the rectangular window have an SD smaller than
those of other window functions, and the SD increases as the taper of the window function
increases. This can be understood as the effect of reducing the number of effective samples.
Conversely, the συ estimates have a maximum SD when using the rectangular window,
whereas the SD differences between the other window functions are negligible.
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The bias and SD of the radar variable estimations for stratiform precipitation are shown
in Figures 4 and 5; the most significant difference between them and those of convective
precipitation lies in the συ estimates. Compared with Figure 2c, the bias of the συ estimates
using the rectangular window is less significant compared to those using other window
functions (Figure 4c). Unlike Figure 3c, the συ estimate using the rectangular window has
the lowest SD (Figure 5c). Additionally, the συ estimates of stratiform precipitation have a
characteristic that its bias and SD decrease as the taper of the window function decreases
(except for the rectangular window).
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It should be noted that the power loss caused by the window functions can be compen-
sated for by normalizing the window function. The normalized window function dN(m)
can be calculated as follows [24,32]:

dN(m) =
d(m)√

1
M ∑M−1

m=0 d(m)2
. (13)

The performance of this method was evaluated based on simulations (Sim3 and Sim4),
which generated known power I/Q data for different συ (1, 2, and 4 m/s) and M (16,
32, and 64). Ph (SNRh) was set to a large value (30 dB) to avoid noise. Because only a
power analysis was required, a single-polarization I/Q data simulation was performed
(polarimetric variables were not set). Consideration of the other input parameters was
similar to that in the simulation mentioned above. Only the Hamming window was used as
an example in the analysis. The difference between the Ph estimates using the normalized
Hamming window and those using the rectangular window (regarded as its true value)—
that is, ∆Ph—is shown in Figure 6 using a histogram. The mean and SD of ∆Ph with different
συ and M are listed in Table 4. It is evident that as συ or M decreases, the distribution
becomes less concentrated (an increase in SD as shown in Table 4), gradually sloping
toward the positive side (an increase in the mean as shown in Table 4). Consequently, the
adoption of this method decreases the quality of the power estimates. Therefore, even if
this method is used for power compensation, it results in a decrease in the performance of
Ph estimates.

Based on the above analysis, we can conclude that the use of window functions
(except for the rectangular window) in performing DFT is beneficial for improving the
accuracy of συ estimates. For other radar variables, the use of window functions (except for
the rectangular window) results in a decrease in the number of effective samples and an
increase in the SD. Therefore, two types of DFT are performed in FDP—that is, one for συ

estimates using a window function with a low taper (the default is the Hamming window),
and another for other radar variable estimates using a rectangular window.
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Table 4. Mean and SD of the difference between the Ph estimates using the normalized Hamming
window and the Ph estimates using the rectangular window with different συ and M.

συ M

1 m/s 2 m/s 4 m/s 16 32 64

Mean 0.374 dB 0.194 dB 0.101 dB 0.223 dB 0.121 dB 0.04 dB

SD 1.641 dB 1.282 dB 0.948 dB 1.344 dB 0.96 dB 0.677 dB

3.2. Aliasing Correction

Figure 7a shows a schematic of the power spectrum of a typical weather signal. The
change in υr of the target detected by the radar is represented by the translation of the
entire distribution along the horizontal axis. In the field of radar meteorology, the positive
(negative) υr is specified as moving away from (toward) the radar, which corresponds to
the movement in the direction indicated by the red (green) arrow in Figure 7a.

Based on the sampling theorem, υa is the maximum measurable υr of the radar (i.e.,
−υa to υa is the measurement range of υr) [8]. As the absolute value of υr increases, a
part of the power spectrum exceeds this measurement range. At this time, a spectrum-
aliasing phenomenon appears—that is, the part of the power spectrum that exceeds this
measurement range moves back into the measurement range from the other side (Figure 7b).
As shown in the second row, second column of Table 1, the physical meaning of the υr
estimates of FDP is the power-weighted average spectral Doppler velocity. Consequently,
when spectrum aliasing occurs, it inevitably causes a bias in the υr estimates, as well as a
bias in the συ estimates (the third row, second column of Table 1). The υr and συ estimates
are collectively referred to as Doppler estimates in the following discussion.

This paper introduces two spectrum-aliasing correction methods. The first one is
named the circular shifting method (CS), and its procedure is described as follows:

1. Find the spectral Doppler velocity with maximum power in the power spectrum
(vmax), which can be used as an approximate υr estimate.

2. The power spectrum distribution can be rearranged by circular shifting, such that
the corresponding position of vmax is adjusted to zero. This can cause the estimation
results to be immune to or minimized by spectrum aliasing.

3. Perform the Doppler estimates of FDP using the equations given in Table 1.
4. Add vmax to the estimation result of υr in Step 3 to obtain the final υr estimates.
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The second method is the complex plane method (CP). Its principle is to represent the
velocity as a complex number and perform Doppler estimates in the complex plane to avoid
the discontinuity caused by the real-valued velocity. The modified Doppler estimation
equations are [33]:

υ̂r =
υa

π
∠[∑M−1

f=0 Ŝh( f )ejπυ( f )/υa ], (14)

σ̂υ =

√
υa2

π2P̂h
∑M−1

f=0 Ŝh( f )[∠ejπ(υ( f )−υ̂r)/υa ]
2
, (15)

In this study, we compared the Doppler estimates before and after aliasing correc-
tion using different aliasing correction methods (CS and CP) based on simulation exper-
iments (Sim5). υr was configured to be 16.8 (υa − 10), 21.8 (υa − 5), 23.8 (υa − 3), and
25.8 (υa − 1) m/s, facilitating the analysis of the impact of aliasing and the corresponding
correction performance under different υr. συ was set to a relatively moderate 2.5 m/s. The
setting of the other parameters was similar to that of the other above-mentioned simulation
experiments and will not be repeated.

The difference between the Doppler estimates of the simulated I/Q data and input
of the simulation (∆vr and ∆σv) is shown in Figure 8 by means of a violin plot, where the
blue, orange, and yellow circles represent the results before correction, after correction
using CS, and after correction using CP, respectively. It is worth mentioning that velocity
unfolding was conducted on ∆vr, that is, ∆vr was added to 2υa when it was less than −υa.
The mean and SD of each distribution shown in Figure 8 are listed in Table 5 to provide a
quantitative comparison.
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Table 5. Mean and SD of the difference between the Doppler estimates of the simulated I/Q data and
the input of the simulation for different υr in Sim5.

υr
Mean SD

16.8 21.8 23.8 25.8 16.8 21.8 23.8 25.8

No correction
∆vr −0.025 −1.018 −5.263 −11.285 0.708 1.029 3.448 11.906

∆σv 0.141 3.892 11.057 18.635 0.434 2.233 4.085 3.257

CS
∆vr 0.01 0.002 0.012 0.005 0.551 0.555 0.55 0.549

∆σv 0.104 0.107 0.112 0.108 0.434 0.435 0.435 0.433

CP
∆vr 0.006 −0.003 0.008 0.001 0.561 0.565 0.56 0.558

∆σv 0.103 0.106 0.111 0.108 0.434 0.434 0.435 0.433

As shown in Figure 8 and Table 5, both the Doppler estimates before and after aliasing
correction exhibit good and similar estimation performances (i.e., the mean and SD of ∆vr
and ∆σv are around 0 m/s) when υr is 16.8 m/s because the distribution of the power
spectrum is far removed from υa, such that almost no spectrum aliasing exists. As υr
increases to 21.8 m/s, the Doppler estimates before and after the aliasing correction begin to
diverge. Specifically, the performance of Doppler estimates after aliasing correction remains
the same as those when υr is 16.8 m/s, while the υr (σv) estimates before aliasing correction
exhibit negative (positive) bias. This can be considered to be a small portion of the aliased
power spectrum. When υr increases to 23.5 and 25.5 m/s, the proportion of power spectrum
aliasing increases considerably, resulting in a more evident bias of Doppler estimates, ∆σv
even exceeding 20 m/s. It should be noted that when υr is 25.5 m/s, the υr estimate
sometimes has a positive bias. This is because when the power spectrum is split into two
parts with similar sizes owing to aliasing and the proportion of the negative velocity side
is higher, the υr estimate is a negative value. Thus, ∆vr will be a positive value smaller
than υa after velocity unfolding. In contrast to the situation before aliasing correction, the
performance of Doppler estimates after aliasing correction remains unchanged for all υr.
In addition, the correction performance of CS and CP are similar, whether based on the
qualitative comparison in Figure 8 or the quantitative comparison in Table 5.

In summary, the two proposed methods satisfactorily correct the spectrum aliasing,
such that the performance of Doppler estimates of FDP is independent of the value of υr,
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which is beneficial to improving the performance of Doppler estimates when υr is close
to the edge of the measurement range. However, considering factors such as algorithm
complexity, CP is used for spectrum-aliasing correction in the follow-up to this paper.

3.3. Noise Correction

The noise received by the radar can be divided into internal and external sources [13].
Noise power from outside the radar includes thermal radiation from the ground, sun, sky,
and precipitation. Noise power within the radar originates from the semiconductor noise,
thermal noise of ohmic resistances or conductance, and noise current of the charge carrier
currents. Noise affects the estimation of the radar variables; however, the extent of its
influence is not constant. The estimation accuracy of the radar variables exhibits good
performance even without noise correction when the SNR is sufficiently large (e.g., greater
than 20 dB), whereas noise will have a considerable impact on the estimation accuracy of
the radar variables when the SNR is low, particularly for polarimetric variables [37]. As
mentioned in Section 1, many studies on TDP have focused on alleviating the influence of
noise on parameter estimation [10,11], which is sufficient to reflect the importance of noise
correction.

As expressed in Equation (9), the noise correction in FDP involves subtracting the noise
power per discrete frequency (i.e., Nh,v divided by M) from Ŝh,v( f ). However, certain details
require further discussion. When the SNR is low, Ŝh,v( f ) at some discrete frequencies may
be lower than the noise power. At this time, the intuitive processing method uses the
zero-truncated method (ZT) because negative power has no physical meaning. However,
under the assumption that Nh,v is accurately measured, this can lead to incomplete noise
removal, thus introducing positive bias in the Ph estimates, and further causing bias in
some other radar variable estimates (e.g., ZDR and ρHV).

In this study, we proposed a hybrid noise correction method (HY). Specifically, for the
estimation of Ph, ZDR, and ρHV , negative power at some discrete frequencies is allowed dur-
ing the noise correction process, such that the noise can be completely removed. However,
for Doppler estimates, noise correction still uses the ZT method because the calculation
involves using Ŝh( f ) as a weight. Noise correction is not involved in φDP estimation owing
to the Ŝhv( f ) not being affected by noise.

This study compared the estimation performance of FDP before and after noise correc-
tion using different noise correction methods (ZT and HY) through simulation experiments
(Sim6). Ph was set from 0 to 30 dB in steps of 5 dB to analyze the noise correction per-
formance under different SNR values. The polarimetric variable values were set to the
averages of those used in Sim1 and Sim2 to ensure compatibility with both types of precipi-
tation. The setting of the other parameters was similar to that of the other above-mentioned
simulation experiments and will not be repeated.

The bias and SD of the estimation of the radar variables are shown in Figures 9 and 10,
respectively, where the blue, red, and yellow lines represent the results without noise
correction, using the ZT and HY methods, respectively. When the estimation performance
of a specific radar variable is the same under different noise processing methods (e.g.,
the υr estimates using the ZT and HY methods), only the bias and SD of one method are
shown. It is evident from Figure 9 that for all radar variables (except φDP), the estimated
results without noise correction have maximum bias. Additionally, compared with the ZT
method, the HY method has better correction performance on estimations of Ph, ZDR, and
ρHV . Notably, when the SNR exceeds 20 dB, the three lines tend to coincide and it is no
longer important to determine which noise correction method should be used or whether
to perform noise correction.
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As shown in Figure 10, the SDs of the estimations of Ph, ZDR, and ρHV show a different
characteristic from their bias under the three different noise processing methods—that is,
the HY method has the maximum SD, whereas the ZT method takes second place, and the
minimum SD occurs without noise correction.

To understand this phenomenon, we performed a statistical analysis of the Ph estimates
under different noise processing methods when the SNR was 0 dB, as shown by the
histogram in Figure 11. It is evident that the Ph estimates without noise correction have
the narrowest distribution, and the distribution is concentrated in the region greater than
0 dB. After noise correction, the distribution shifts to the negative side and gradually
widens. Because the noise correction performance of the HY method is superior to that of
the ZT method, the Ph estimates obtained using the HY method have more offsets, and
the distribution is approximately centered at 0 dB. The 10,000 Ph estimates appear as a
distribution rather than as a single value because of the randomness introduced in the I/Q
data simulation (Steps 5 and 9 in Section 2.1).
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When performing noise correction, the expected noise power (input of the simula-
tion) was subtracted from the total power rather than from the actual noise power. This
introduced additional randomness and increased the possible value range of Ph estimates,
which is characterized by distribution broadening and an increase in the SD. Therefore, the
SD of the estimation of Ph, ZDR, and ρHV with noise correction can be expected to improve
for actual observations. As shown in Figure 10b,c, except for the σv estimates with an SNR
of 0 dB, the SD of the Doppler estimates exhibited little difference before and after noise
correction. The increase in the SD of the σv estimates with noise correction when the SNR
was 0 dB was due to the randomness caused by the residual noise. By contrast, υr estimates
were less affected by residual noise.

In summary, the parameter estimation performance improved after noise correction
and the HY method exhibited better performance in the Ph, ZDR, and ρHV estimates than
the ZT method.

4. FDP and TDP Performance Comparison

Currently, TDP is widely used in operational weather radars [22]. To prove that FDP
has the potential to replace TDP in operational applications, it is necessary to adequately
compare the performances of the two to clarify the advantages of FDP over TDP. Moreover,
the remaining FDP defects need to be improved. It is worth mentioning that this study only
focuses on the difference between FDP and TDP performance (i.e., υr and συ estimates),
whereas the estimation of other radar variables with the same FDP and TDP performance
is not analyzed here, as it has been fully analyzed in existing research [8,38].

4.1. Based on Simulated I/Q Data
4.1.1. Gaussian Power Spectrum

First, the weather signals were analyzed under ideal conditions (i.e., the power spec-
trum had a Gaussian distribution). The performance of FDP and TDP under different συ

(from 0.5 to 4.5 m/s in steps of 0.5 m/s), SNR (from 0 to 30 dB in steps of 5 dB), and M (16,
32, 64, 128, and 256) were compared using three simulation experiments (Sim7, Sim8, and
Sim9). As presented in Table 2, only one of the above three parameters was set as a variable
in each simulation, with the other two parameters being set to their ideal values. Because
only the υr and συ estimates were analyzed, the polarimetric variables were not set in the
simulations. The FDP parameter settings are listed in Table 3, whereas TDP was performed
strictly based on the method described in Section 2.2.
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As shown in Figure 12, the Doppler estimates of FDP and TDP exhibit little difference
in most cases under different parameter configurations—that is, the difference in the bias
or SD between the two is less than 0.5 m/s. The main difference between the two methods
is reflected primarily in the SD of συ estimates at different συ (Figure 12d), the bias of συ

estimates and SD of υr estimates at different SNRs (Figure 12f,g), the bias in συ estimates
and SD of υr and συ estimates at different M (Figure 12j,k,l), respectively. As shown in
Figure 12d, the SD of the συ estimates of FDP increases linearly with increasing συ, while
that of TDP first decreases before increasing. When συ is 0.5 m /s, the SD of συ estimates
of TDP is approximately 0.4 m/s larger than that of FDP, which shows that FDP has an
advantage when συ is low. As shown in Figure 12f,g,j,k, when SNR is low (less than 10 dB)
or M is less than 64, FDP has a larger bias in συ estimates and SD in υr estimates than those
of TDP. However, as shown in Figure 12l, when M is less than 64, the συ estimate of FDP
has a smaller SD than that of TDP.
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Figure 12. Bias and SD of Doppler estimates based on FDP and TDP for different συ, SNR, and M.
(a) Bias of v̂r for different συ; (b) bias of σ̂υ for different συ; (c) SD of v̂r for different συ; (d) SD of σ̂υ for
different συ; (e) bias of v̂r for different SNR; (f) bias of σ̂υ for different SNR; (g) SD of v̂r for different
SNR; (h) SD of σ̂υ for different SNR; (i) bias of v̂r for different M; (j) bias of σ̂υ for different M; (k) SD
of v̂r for different M; and (l) SD of σ̂υ for different M.

In summary, when συ is low, FDP is more advantageous than TDP in συ estimates,
but when SNR is low or M is small, the Doppler estimates performance of FDP still has a
certain gap compared with that of TDP.

4.1.2. Non-Gaussian Power Spectrum

We then compared the performances of FDP and TDP under non-Gaussian power
spectrum conditions. Non-Gaussian power spectrum signals are not generated directly
by simulation, but by combining several Gaussian power spectrum signals, as has been
applied in some existing studies [19,32]. As mentioned in Section 1, one of the advantages
of FDP over TDP is that no assumptions are required regarding the distribution of the
power spectrum. Consequently, we used the FDP estimation results as a baseline, and the
difference between them and the TDP estimation results was considered a bias.

The simulations primarily involved two types of non-Gaussian power spectrum
signals—namely, asymmetric power spectrum signals (Sim10) and bimodal power spec-
trum signals (Sim11). Asymmetric power spectrum signals have been observed in some
hailstorms [20], and their distribution appears to broaden and tilt toward one side of the
positive or negative velocity. In Sim10, the asymmetric power spectrum signals were gener-
ated by combining three Gaussian power spectrum signals, a typical example of which is
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shown in Figure 13a. Ph (υr) of the three Gaussian power spectrum signals were set at 30,
25, and 20 dB (−12, 0, 12 m/s), respectively, to simulate the tilt characteristics. Bimodal
power spectrum signals have appeared in actual observations and numerical simulations of
tornados [18,19], their distribution appearing as two Gaussian power spectrum signals with
similar amplitudes. In Sim11, we generated bimodal power spectrum signals by combining
two Gaussian power spectrum signals, a typical example of which is shown in Figure 13b.
Ph of the two Gaussian power spectrum signals was set at 30 dB, and υr was set at −10 and
10 m/s, respectively. The configurations of the other parameters listed in Tables 2 and 3 are
similar to those of other simulation experiments and are not explained in detail.

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 22 
 

 

The simulations primarily involved two types of non-Gaussian power spectrum sig-
nals—namely, asymmetric power spectrum signals (Sim10) and bimodal power spectrum 
signals (Sim11). Asymmetric power spectrum signals have been observed in some hail-
storms [20], and their distribution appears to broaden and tilt toward one side of the pos-
itive or negative velocity. In Sim10, the asymmetric power spectrum signals were gener-
ated by combining three Gaussian power spectrum signals, a typical example of which is 
shown in Figure 13a. 𝑃  (𝜐 ) of the three Gaussian power spectrum signals were set at 30, 
25, and 20 dB (−12, 0, 12 m/s), respectively, to simulate the tilt characteristics. Bimodal 
power spectrum signals have appeared in actual observations and numerical simulations 
of tornados [18,19], their distribution appearing as two Gaussian power spectrum signals 
with similar amplitudes. In Sim11, we generated bimodal power spectrum signals by com-
bining two Gaussian power spectrum signals, a typical example of which is shown in Fig-
ure 13b. 𝑃  of the two Gaussian power spectrum signals was set at 30 dB, and 𝜐  was set 
at −10 and 10 m/s, respectively. The configurations of the other parameters listed in Tables 
2 and 3 are similar to those of other simulation experiments and are not explained in detail. 

 
Figure 13. Typical non-Gaussian power spectrum signals based on simulations. (a) Asymmetric 
power spectrum signal; (b) Bimodal power spectrum signal. 

The biases of the Doppler estimates of TDP relative to that of FDP (∆𝑣  and ∆𝜎 ) for 
the two non-Gaussian power spectrum signals are shown in Figure 14; the mean and SD 
of 𝑣  and 𝜎  of FDP for an asymmetric (bimodal) power spectrum signal are −7.379 and 
7.778 m/s (0.015 and 10.094 m/s), respectively. As shown in Figure 14a, for the asymmetric 
power spectrum signal, the 𝑣  estimates of TDP have a relatively large bias (−1.476 m/s), 
but the distribution of the bias is relatively concentrated (SD is 0.424 m/s). By contrast, the 𝑣  estimates of the TDP for the bimodal power spectrum signals exhibit unbiased charac-
teristics, but the estimation results are not stable, with an SD of up to 1.706 m/s. As shown 
in Figure 14b, for the asymmetric power spectrum signal, the 𝜎  estimates of TDP exhibit 
a small negative bias (−0.38 m/s), but those of TDP for the bimodal power spectrum signal 
exhibit a positive bias of up to 1.275 m/s. For both non-Gaussian power spectrum signals, 
the SD of 𝜎  estimates of TDP relative to that of FDP is approximately 0.7 m/s. 

Figure 13. Typical non-Gaussian power spectrum signals based on simulations. (a) Asymmetric
power spectrum signal; (b) Bimodal power spectrum signal.

The biases of the Doppler estimates of TDP relative to that of FDP (∆vr and ∆συ) for
the two non-Gaussian power spectrum signals are shown in Figure 14; the mean and SD
of vr and συ of FDP for an asymmetric (bimodal) power spectrum signal are −7.379 and
7.778 m/s (0.015 and 10.094 m/s), respectively. As shown in Figure 14a, for the asymmetric
power spectrum signal, the vr estimates of TDP have a relatively large bias (−1.476 m/s),
but the distribution of the bias is relatively concentrated (SD is 0.424 m/s). By contrast,
the vr estimates of the TDP for the bimodal power spectrum signals exhibit unbiased
characteristics, but the estimation results are not stable, with an SD of up to 1.706 m/s.
As shown in Figure 14b, for the asymmetric power spectrum signal, the συ estimates of
TDP exhibit a small negative bias (−0.38 m/s), but those of TDP for the bimodal power
spectrum signal exhibit a positive bias of up to 1.275 m/s. For both non-Gaussian power
spectrum signals, the SD of συ estimates of TDP relative to that of FDP is approximately
0.7 m/s.

In summary, for non-Gaussian (e.g., asymmetric or bimodal) power spectrum signals,
the Doppler estimate results of TDP can be biased or fluctuate considerably if FDP is used
as the benchmark, indirectly indicating that for non-Gaussian power spectrum signals, FDP
has more advantages over TDP in Doppler estimates.
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4.2. Based on Measured I/Q Data

In addition to the I/Q data generated based on the simulations, I/Q data observed
by the S-band dual-polarization standard weather radar deployed in Changsha (CSSR;
operated by the China Meteorological Administration for weather radar calibration appli-
cations) were used for the comparative evaluation of FDP and TDP. The CSSR observed a
severe storm using the range-height indicator mode at 0728 UTC on 9 August 2023. The
estimation of ZH , υr, and συ based on FDP and the difference in Doppler estimates between
FDP and TDP (∆vr and ∆συ) with an M of 64 are shown in Figure 15. The maximum ZH
exceeds 60 dBZ and συ is up to 10 m/s above the severe echo (the region highlighted by the
red dotted line), which can be regarded as an indicator of the non-Gaussian power spec-
trum to a certain extent. As shown in Figure 15e,d, ∆vr and ∆συ are close to 0 m/s in most
regions, indicating that the power spectrum at these positions presents an approximate
Gaussian distribution. However, as συ increases, the absolute values of ∆vr and ∆συ in
some regions appear to have abnormally large values, particularly in the regions with large
συ (highlighted by the red dotted line), indicating that the power spectrum deviates from
the Gaussian distribution.

We selected two typical range gates from the region highlighted by the red dotted line
in Figure 15 and plotted their power spectra in Figure 16. The power spectrum shown in
Figure 16a has a distribution similar to that shown in Figure 13a—that is, it is wide and has
a certain slope at the top (the red dotted line is an auxiliary line for easy understanding).
The υr and συ estimates based on FDP are 0.471 and 8.852 m/s, and ∆vr and ∆συ are −2.281
and 0.358 m/s, respectively. The power spectrum shown in Figure 16b has a multi-peak
structure (obtained by subjectively adding three semi-ellipses to assist in identifying the
positions of the peaks). The υr and συ estimates obtained based on FDP are 9.766 and
9.494 m/s, and ∆vr and ∆συ are 1.128 and 2.631 m/s, respectively.

It is evident from the above analysis that the conclusions based on actual observations
are consistent with those of simulations and existing research—that is, the performances
of FDP and TDP are almost the same for the Gaussian power spectrum, whereas there
is a certain deviation in the estimation results of TDP relative to those of FDP for the
non-Gaussian power spectrum, further demonstrating that FDP generates better Doppler
estimates than TDP for the non-Gaussian power spectrum.
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of FDP and TDP are almost the same for the Gaussian power spectrum, whereas there is 
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Figure 15. A severe storm observed by CSSR using the range-height indicator mode at 0728 UTC on
9 August 2023. (a) ZH ; (b) υr; (c) συ; (d) ∆vr; and (e) ∆συ. The red dotted lines highlight the region
with large συ.
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the top of the power spectrum. Three semi-ellipses with different colors to assist in identifying the
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5. Discussion

Currently, TDP is widely used for parameter estimation of operational weather radars
owing to its high efficiency and robustness. Compared with TDP, the primary advantage
of FDP is that it has a seamless connection to spectrum analysis and does not require
assumptions about its power spectrum model. However, some specific FDP steps have not
been described in detail in existing studies, and it is still unclear whether its performance
satisfies the requirements of weather radar operational applications. Consequently, this
study focused on these two issues.

This study introduced the technical details of FDP from three perspectives—that is, the
window function selection, spectrum-aliasing correction, and noise correction. Additionally,
the performance of FDP and the comparison between FDP and TDP were analyzed through
11 simulations and actual observations of the CSSR.
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Although the evaluation results presented in this paper showed that FDP has potential
for operational applications, problems that must be improved during the research process
still exist; for example, when weather and clutter signals are mixed, windowing processing
must be performed to reduce the influence of the spectrum leakage of the clutter signal.
Thus, how to balance this with the estimation performance needs to be studied further.
Moreover, the Doppler estimates performance of FDP still has a certain gap compared
with that of TDP under some specific conditions, e.g., SNR is low or M is small. In
addition to improving the shortcomings of FDP through the continuous development of
new techniques, combining FDP and TDP in a similar way to [39] appears to be a promising
short-term compromise.

It is worth mentioning that the study of FDP presented in this paper is only the first
step, and the FDP performance will further be improved, and an attempt to use it in an
operational environment will be conducted in the future.

6. Conclusions

The main results of this study can be summarized as follows:

1. The use of window functions (except for the rectangular window) in performing DFT
was beneficial for improving the accuracy of συ estimates. For other radar variables,
the use of window functions (except for the rectangular window) resulted in a decrease
in the number of effective samples and an increase in the SD. Therefore, two types
of DFT were performed in FDP, one for συ estimates using a window function with
a low taper (the default being the Hamming window), and another for other radar
variables estimates using a rectangular window;

2. Both aliasing correction methods described in this paper satisfactorily corrected
the spectrum aliasing, such that the performance of Doppler estimates of FDP was
independent of the value of υr, which was beneficial in improving the performance of
Doppler estimates when υr was close to the edge of the measurement range. However,
owing to advantages such as algorithm complexity, CP should be a better choice for
operational applications;

3. The parameter estimation performance improved after noise correction, and the HY
method introduced in this study exhibited a better performance in Ph, ZDR, and ρHV
estimates than the ZT method;

4. For Gaussian power spectrum signals, FDP was more advantageous than TDP in συ

estimates when συ was low, while the Doppler estimate performance of FDP exhibited
a certain gap compared to that of TDP when the SNR was low or M was small;

5. For non-Gaussian (e.g., asymmetric or multi-peak) power spectrum signals, the
Doppler estimate results of TDP were biased or fluctuated considerably if FDP was
used as the benchmark, indirectly demonstrating that FDP exhibited more advantages
than TDP in Doppler estimates for non-Gaussian power spectrum signals.
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