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Abstract: China is one of the countries with the largest citrus cultivation areas, and its citrus industry
has received significant attention due to its substantial economic benefits. Traditional manual forestry
surveys and remote sensing image classification tasks are labor-intensive and time-consuming,
resulting in low efficiency. Remote sensing technology holds great potential for obtaining spatial
information on citrus orchards on a large scale. This study proposes a lightweight model for citrus
plantation extraction that combines the DeepLabV3+ model with the convolutional block attention
module (CBAM) attention mechanism, with a focus on the phenological growth characteristics of
citrus in the Guangxi region. The objective is to address issues such as inaccurate extraction of citrus
edges in high-resolution images, misclassification and omissions caused by intra-class differences, as
well as the large number of network parameters and long training time found in classical semantic
segmentation models. To reduce parameter count and improve training speed, the MobileNetV2
lightweight network is used as a replacement for the Xception backbone network in DeepLabV3+.
Additionally, the CBAM is introduced to extract citrus features more accurately and efficiently.
Moreover, in consideration of the growth characteristics of citrus, this study augments the feature
input with additional channels to better capture and utilize key phenological features of citrus,
thereby enhancing the accuracy of citrus recognition. The results demonstrate that the improved
DeepLabV3+ model exhibits high reliability in citrus recognition and extraction, achieving an overall
accuracy (OA) of 96.23%, a mean pixel accuracy (mPA) of 83.79%, and a mean intersection over
union (mIoU) of 85.40%. These metrics represent an improvement of 11.16%, 14.88%, and 14.98%,
respectively, compared to the original DeepLabV3+ model. Furthermore, when compared to classical
semantic segmentation models, such as UNet and PSPNet, the proposed model achieves higher
recognition accuracy. Additionally, the improved DeepLabV3+ model demonstrates a significant
reduction in both parameters and training time. Generalization experiments conducted in Nanning,
Guangxi Province, further validate the model’s strong generalization capabilities. Overall, this study
emphasizes extraction accuracy, reduction in parameter count, adherence to timeliness requirements,
and facilitation of rapid and accurate extraction of citrus plantation areas, presenting promising
application prospects.

Keywords: citrus extraction; DeepLabV3+; CBAM; lightweight; Guangxi region

1. Introduction

China is one of the countries with the widest areas of citrus cultivation [1], primarily
concentrated in the southern regions, especially Guangxi Province. The citrus industry
has emerged as a cornerstone industry for poverty alleviation and rural revitalization
in the region, attracting considerable attention due to its substantial economic benefits.
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Accurate acquisition of planting areas and spatial distribution information of citrus or-
chards holds critical importance in guiding the scientific development of the citrus industry.
Remote sensing technology offers tremendous potential for large-scale acquisition of spa-
tial information for citrus orchards. Threshold-based and edge detection methods are
well-established traditional approaches to image segmentation. In threshold segmenta-
tion [2], the grayscale levels of an image are divided based on one or multiple thresholds,
assigning pixels with similar grayscale values to the same class according to specific rules.
The selection of appropriate threshold values significantly influences the effectiveness of
the segmentation algorithm, underscoring the importance of threshold selection. In 2021,
Houssein et al. introduced a threshold image segmentation method based on the black
widow optimization algorithm [3], utilizing maximum entropy thresholding and Otsu’s
method to determine the optimal threshold for the image. Although numerous effective
threshold segmentation algorithms are in use, traditional methods may struggle to meet
the requirements of more detailed and precise segmentation, making multidimensional
threshold segmentation more suitable for efficient targeting of images. In 2019, Qin et al.
proposed a multi-level thresholding method for images based on subspace elimination
optimization [4]. Zhao et al. introduced a chaos-randomized ant colony optimization
approach, employing two-dimensional maximum entropy for multi-threshold image seg-
mentation [5]. In 2020, Di Martino et al. employed the particle swarm optimization method
(PSO) for multi-level threshold extraction of compressed images during threshold segmen-
tation through fuzzy transformations [6]. However, as the number of thresholds for image
feature acquisition increases, the time complexity grows exponentially. Therefore, Eusuff
et al. proposed a novel image segmentation method based on the shuffled frog leaping
algorithm (SFLA) [7], demonstrating significant performance in breast cancer segmentation.
In 2022, Chen et al. integrated the SFLA algorithm with maximum entropy thresholding for
multi-threshold image segmentation [8], resulting in improved time complexity. Edges, as
fundamental image features, reflect variations in grayscale values among different regions
and expose abrupt changes in image characteristics along these boundaries, thus serving as
a basis for image segmentation. One commonly employed method in practical research for
edge detection and segmentation is the parallel edge detection technique that harnesses
differential operators. In 2020, Chen et al. devised a remote sensing image road recognition
algorithm by integrating recursive operators and wavelet transform [9]. In 2021, Xu et al.
segmented remote sensing images captured by drones and employed traditional edge
operators to determine suitable thresholds for segmentation [10], thus demonstrating the
applicability of conventional edge operators in high-definition image segmentation tasks.
While traditional operators can achieve satisfactory edge detection speed, they may fall
short in distinguishing multiple categories of edge features within complex scenes. In 2021,
Chetia et al. proposed an edge detection algorithm that enhanced the quantum representa-
tion of the Sobel operator [11], leveraging non-maximum suppression and multi-threshold
methods. Jan designed a novel edge detection algorithm (CLoG) based on the Canny and
LoG operators [12]. In 2023, Roy et al. introduced an unsupervised edge detection method
grounded on local standard deviation [13], attaining precise detection of cell nuclei during
the segmentation of stained tissue pathology images. These improved algorithms have all
demonstrated enhanced detection performance.

Although traditional methods are capable of segmenting the geometric or color fea-
tures of images, they exhibit low accuracy in segmentation and poor resilience to noise.
Furthermore, they are only suitable for relatively simple images and perform inadequately
when confronted with complex imagery, such as remote sensing images. Consequently,
machine learning methods grounded in mathematical statistics have gained popularity. In
2022, Ali et al. introduced a novel method based on data-driven principles [14], offering
automatic determination of the optimal number of clusters (k). They applied this method to
satellite images of the Islamabad region captured by the Sentinel-2B satellite. This technique
provided concrete evidence for urban and forest planning and demonstrated promising
time complexity when applied to large satellite image datasets. Furthermore, in 2020,
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Mahata et al. developed an unsupervised segmentation model that combined K-means
and cellular automata algorithms for land cover segmentation in satellite images [15]. A
decision tree is a supervised classification algorithm that partitions data into multiple
subgroups to construct a classifier. The partitioning strategy is based on the criterion that
yields the largest heterogeneity. In 2020, Pastorino et al. introduced a novel approach
that combines Markov models with decision algorithms for processing multi-resolution
remote sensing images [16]. Experimental results demonstrated the superior segmentation
effectiveness of this new method compared to traditional approaches. Random Forest
(RF) is an ensemble of decision trees that are randomly constructed during training for the
purpose of learning [17]. By reducing the sample size compared to individual decision
trees, Random Forest effectively decreases the risk of overfitting. In 2019, Dong et al. pro-
posed a method that integrates Random Forest with Convolutional Neural Networks [18].
Experimental results demonstrated the accurate segmentation of bamboo forests from
other subtropical vegetation in high-resolution remote sensing images using this method.
The SVM (Support Vector Machine) is a prominent supervised machine learning classifier
widely employed in image recognition [19]. It establishes a discriminative hyperplane
to identify the optimal classification boundary that maximizes the margin between data
points of different classes in a higher-dimensional space, thus capturing more distinctive
features within the high-dimensional feature space. In 2021, Razaque et al. introduced an
enhanced SVM approach combining the Radial Basis Function (RBF) and linear SVM for
land classification in remote sensing imagery [20]. Empirical results validated the efficacy
of this improved SVM method in remote sensing classification. However, when handling
high-resolution remote sensing images, the SVM algorithms focusing solely on Euclidean
distance might disregard the global distribution of samples.

In 2012, the emergence of AlexNet popularized Convolutional Neural Networks
(CNNs) and other deep learning methods within the academic community [21]. Researchers
have also introduced this technology into the field of image segmentation to address the
limitations of traditional segmentation methods. CNNs can accurately extract surface
information, including buildings, vegetation, waterways, and roads, from remote sensing
images. Several studies have demonstrated significant achievements of CNNs in remote
sensing image segmentation [22]. Yang et al. successfully employed CNNs to extract
mature rice fields and automatically estimate rice yield [23], while Su et al. improved the
CNN method for identifying rice in agricultural remote sensing imagery [24]. As one of the
pioneering deep learning networks applied in image segmentation, Fully Convolutional
Neural Networks (FCNs) have the capacity to accomplish end-to-end segmentation while
overcoming the limitations associated with input image sizes [25,26]. FCNs have demon-
strated promising performance in handling larger remote sensing datasets and complex
semantic segmentation scenarios [27]. However, the series of convolutional and pooling
operations employed by FCNs may potentially degrade the resolution of feature maps,
resulting in a loss of spatial information. With regard to capturing comprehensive contex-
tual information of images, FCNs may struggle to effectively leverage global information
and certain local features, thereby leading to diminished performance in extracting small
targets. In order to address the limitation of FCNs in acquiring comprehensive global
information, Chen et al. introduced the DeepLab model [28,29]. This model enhances the
accuracy of pixel positioning and expands the receptive field through the utilization of
dilated convolutions and conditional random fields. Building upon the DeepLab frame-
work, Chen et al. subsequently proposed DeepLabV2, DeepLabV3, and DeepLabV3+,
progressively improving the algorithm’s segmentation performance. Wang et al. utilized
DeepLabV3+ to perform segmentation on forest remote sensing images [30], successfully
achieving accurate segmentation in forest fire scenarios. Wang et al. improved the overall
segmentation accuracy by incorporating an attention mechanism into DeepLabV3+ [31].
Additionally, Du et al. achieved high precision by combining DeepLabV3+ with object-
based image analysis methods for annotating remote sensing images [32]. In addition to
the DeepLab series of networks, several other deep learning models have shown promising
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performance in remote sensing image segmentation. One such model is UNet, which
follows an encoder-decoder architecture for image semantic segmentation. UNet intro-
duces a unique U-shaped structure, where the initial half serves as the feature extraction
component, while the latter half employs upsampling on deep features to restore unutilized
spatial feature information. Gu et al. combined the strengths of Transformer and CNNs,
proposing an adaptive enhanced Swin Transformer known as AESwin-UNet for remote
sensing segmentation [33]. This model exhibits commendable performance in semantic
segmentation tasks.

In addition to the commonly used methods mentioned above, there are specific models
for remote sensing image segmentation that are designed for particular tasks. In their study
conducted in 2022, Hou et al. found that most deep learning networks prioritize capturing
comprehensive contextual information [34], which can lead to the loss of edge features in
remote sensing images. To address this issue, the authors proposed the Boundary Sensitive
Network (BSNet), which integrates the Dynamic Hybrid Gradient Convolution (DHGC)
and the CSA attention mechanism. Experimental results on the Vaihingen, Potsdam, and
iSAID remote sensing datasets demonstrated that BSNet produces clearer boundaries. Like-
wise, in 2020, Li et al. developed a post-processing CNN model (PP-CNN) to capture spatial
information in winter wheat remote sensing images [35]. This approach involves statistical
analysis to acquire prior knowledge of classes, thereby improving classification accuracy.
The method achieved a 94.4% accuracy on a high-resolution remote sensing dataset in the
Feicheng winter wheat production area of Shandong. Overall, recent studies on remote
sensing image segmentation methods primarily focus on deep learning approaches based
on convolutional neural networks. These approaches explore various aspects such as
encoder-decoder structures, feature extraction, and attention mechanisms to enhance the
segmentation performance of the models.

Despite the fact that multispectral remote sensing photos provide more spatial in-
formation and adequate feature scales, most current studies focus on hyperspectral remote
sensing images. On the contrary, there have been few investigations into feature infor-
mation extraction from multispectral pictures. In this respect, this study introduces the
DeepLabV3+ network, which combines the attention mechanism module and the citrus
feature channel to improve citrus recognition accuracy. The experimental findings demon-
strate that the model developed in this paper can meet the accuracy requirements of feature
information extraction and perform better for citrus classification. This study provides sig-
nificant support for the use of multispectral images in citrus identification, as well as novel
ideas for improving the accuracy and efficiency of remote sensing image processing. It also
allows for regional precision agriculture and for more scientific policy implementation.

2. Materials and Methods
2.1. Study Area and Data
2.1.1. Study Area

The research was conducted in the Yangshuo County, located in Guilin City, Guangxi
Province, China (24◦28′N~25◦4′N, 110◦13′E~110◦40′E), as indicated in Figure 1. Yangshuo
County is situated in the northeastern part of Guangxi Province, adjacent to the urban area
of Guilin [36]. It has an approximate area of 1436 km2. The terrain in the study area is
primarily characterized by karst hills and uneven topography. There are numerous rivers
in the area, predominantly flowing from the northwest to the southeast, with elevations
ranging from 200 to 500 m and a relative height difference of 50 to 300 m. Yangshuo
County falls under the subtropical monsoon climate of Central Asia, exhibiting warm
and sunny weather with relatively abundant rainfall. These climatic characteristics con-
tribute to a moderate temperature in the area, which is favorable for crop growth and
abundant vegetation.
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Figure 1. Study area. (a) Geographic location of the study area. (b) Main study area, i.e., Yangshuo
County, Guangxi Province. (c,d) show the labeled areas of citrus samples (marked by yellow and
green blocks). The images used are GF-2 images with pseudo-color components (R = near-infrared,
G = red, B = green).

2.1.2. Data

This study utilized Gaofen-2 (GF-2) satellite imagery as the data source for remote
sensing, aligning with the requirement for high spatial resolution. The parameters of GF-2
satellite data are provided in Table 1 [37]. GF-2 imagery consists of a panchromatic band
and four multispectral bands: red, green, blue, and near-infrared. The panchromatic band
offers a spatial resolution of 1 m, delivering precise image information. The multispectral
bands exhibit a spatial resolution of 4 m, maintaining a relatively high resolution suitable for
multispectral information extraction. Four cloud-free GF-2 images captured on 28 October
2021 were carefully collected and downloaded within the study area. This particular time
period was selected due to the substantial growth and yellowing of citrus fruits. As a
result, the canopy vegetation information weakens, therefore causing a decline in NDVI
values [38].

Table 1. Parameters of GF-2 satellite data.

Parameters Multispectral Panchromatic

Spectral range

0.45~0.52 µm

0.45~0.90 µm
0.52~0.59 µm
0.63~0.69 µm
0.77~0.89 µm

Spatial resolution 4 m 1 m
width 45 km

Side-swing capability ±35◦

Revisit period 5 days
Coverage period 69 days
Orbital altitude 631 km

The GF-2 image data from the study area underwent preprocessing using ENVI
software (version 5.3.1), an image visualization environment. The preprocessing workflow
for the multispectral images involved radiometric calibration, atmospheric correction, and
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orthorectification. On the other hand, the panchromatic image underwent radiometric
calibration and orthorectification. Radiometric calibration facilitates the mapping of digital
values in remote sensing images to actual radiometric measurements, establishing a precise
relationship between pixel values and ground reflectance or radiance [39]. Atmospheric
correction is employed to remove the effects of atmospheric scattering and absorption
during data transmission, thereby restoring the accurate reflectance information from
the Earth’s surface. Orthorectification corrects image distortions caused by variations in
terrain, ensuring pixel alignment with their corresponding ground locations. Finally, the
NNDiffuse pan-sharpening fusion method was applied to merge the panchromatic and
multispectral images [40], resulting in a multispectral remote sensing image with a spatial
resolution of 1 m. These preprocessing steps play a critical role in ensuring the provision of
accurate and reliable information for subsequent analyses, particularly in precise image
classification and feature extraction.

2.2. Methods
2.2.1. Improved DeepLabV3+ Network Modeling

During the process of visual interpretation, the identification of citrus orchards on
satellite remote sensing images poses several challenges. These challenges arise from
the difficulty of distinguishing citrus orchards from other land objects, primarily due to
the presence of complex semantic information and rich detailed content in the images.
To overcome these challenges, it is essential for the segmentation network to possess
outstanding capabilities in extracting fine-grained details. In conventional segmentation
networks, such as the original DeepLabV3+ network, they are commonly employed for
handling complex and diverse datasets that involve various object features and large
amounts of data. The backbone of these networks tends to be intricate, enabling them
to learn more intricate patterns of features. However, for citrus recognition tasks, these
networks may exhibit unnecessary drawbacks, including substantial computational costs
and training difficulties. To address these issues, our study incorporates the lightweight
MobileNetV2 backbone network into the encoder-decoder structure of DeepLabV3+ as the
encoder component for feature extraction. The MobileNetV2 network possesses relatively
fewer parameters, introduces more direct connections, is easier to train, and converges
faster than the Xception structure. Furthermore, we introduce dilated convolutions to
expand the receptive field of convolutional layers, leading to improved capture of the
semantic information in the images and significantly enhanced computational speed. As a
result, MobileNetV2 proves to be a suitable model for efficiently identifying citrus in remote
sensing images. Additionally, we augment the feature input by increasing the number of
channels based on the growth characteristics of citrus. This adjustment is motivated by
the fact that during the rapid fruit swelling period in October, the normalized difference
vegetation index (NDVI) values of citrus significantly decrease compared to other crops.
By incorporating additional channels in the feature input, our model gains the ability
to better capture and utilize this crucial feature, consequently enhancing the accuracy
of citrus recognition. Such customization targeting citrus-specific features improves the
model’s adaptability and performance in citrus growth and characteristic analysis, thereby
strengthening its capacity for recognizing citrus orchards. The introduction of the channel
attention module (CBAM) plays a pivotal role in our model as it enables a more focused
extraction of key information and accurate feature representation of citrus [41]. This module
enhances the model’s grasp of detailed information within the images while also capturing
the spatial correlation of pixels in larger areas, facilitating more precise recognition of citrus
within different regions. Consequently, this improvement greatly enhances the performance
of our model in identifying citrus orchards of varying sizes, enabling it to comprehensively
cover a wide range of citrus orchard types and improve its overall performance and
applicability. Figure 2 illustrates the network model diagram utilized in our study.
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2.2.2. Backbone Feature Extraction Network

MobileNet is a lightweight deep neural network that was introduced by Google in
2016 to cater to embedded devices like mobile phones. MobileNetV2 is an upgraded
version of MobileNetV1 that maintains simplicity, eliminates the need for special operators,
and improves accuracy [42]. The key enhancement in MobileNetV2 is the introduction
of a new activation function called ReLU6 [43], which restricts the maximum output
value to 6. The purpose behind this design is to ensure high numerical resolution even
in scenarios with low precision. In traditional network architectures, convolutions with
ReLU activation functions are commonly used for normalization during the process of
feature extraction. However, employing ReLU activation functions in low-dimensional
spaces can result in the loss of valuable information. In order to overcome this challenge,
MobileNetV2 adopts a linear bottleneck structure where the ReLU activation function
is replaced by a linear function. This substitution minimizes the loss of crucial network
information. Consequently, this innovation enhances the efficiency and accuracy of the
network, especially in resource-limited environments and on embedded devices. As a
result, MobileNetV2 is able to adapt better to various application scenarios and achieve
exceptional performance in lightweight deep learning tasks. The structural parameters of
MobileNetV2 utilized in this experiment are presented in Table 2. In the table, t denotes the
expansion factor, c indicates the depth of the output feature matrix, n signifies the number
of internal widening layers in the bottleneck structure, and s refers to the stride [44].
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Table 2. MobileNetV2 structure parameter table.

Input Operator t c n s

2242 × 3 Conv2d – 32 1 2
1122 × 32 Bottleneck 1 16 1 1
1122 × 16 Bottleneck 6 24 2 2
562 × 24 Bottleneck 6 32 3 2
282 × 32 Bottleneck 6 64 4 2
142 × 96 Bottleneck 6 96 3 1
142 × 96 Bottleneck 6 160 3 2
72 × 160 Bottleneck 6 320 1 1
72 × 320 Conv2d 1 × 1 – 1280 1 1

72 × 1280 Avgpool 7 × 7 – – 1 –
12 × 1 × k Conv2d 1 × 1 – k – –

2.2.3. Convolutional Block Attention Module

The application of attention mechanisms in image processing is aimed at acquiring
the contextual information present in the image in order to capture relevancy and help
the model prioritize important regions while disregarding irrelevant information. These
mechanisms include the channel attention module and the spatial attention module, which,
respectively, emphasize the significance of feature channels and spatial regions within the
image. The channel attention module, known as CAM, aids in identifying feature channels
critical for a specific task by analyzing the relationships between different channels and
optimizing the allocation of feature maps, thereby enhancing model performance. On
the other hand, the spatial attention module, referred to as SAM, focuses on determining
the importance of pixel regions within the image. This module facilitates a better under-
standing of local regions, particularly for accurately extracting edge features. The CBAM
introduces these two attention mechanisms and employs a sequential structure of channel
and spatial attention, considering the analysis dimensions of channels and spatial scopes.
This enables neural networks to process image features meticulously, while attending to
information at various scales. Furthermore, the CBAM is known for its lightweight nature
and seamless integration into different neural networks, thereby enhancing the versatility
and performance of the models. In conclusion, the utilization of attention mechanisms
allows the model to concentrate on crucial information, leading to more precise and effi-
cient extraction of edge features, thereby enhancing model performance and improving the
understanding of the image.

The CBAM structure [43], illustrated in Figure 3, comprises the channel attention
module and the spatial attention module. Within the channel attention module, pooling
is applied to the input feature map to acquire weight information for each channel. Sub-
sequently, this weight information is propagated to the spatial attention module. In turn,
the spatial attention module employs both maximum and average pooling operations
on the feature values of each specific point throughout all channels on the input feature
map. These operations effectively capture features at various scales. The weights for each
feature point on the input feature map are then derived using the identical procedures
as those employed within the channel attention module. Lastly, the obtained weights are
employed to perform weighted convolutions on the original input feature map, leading
to the generation of deep features that integrate multi-scale contextual information. In
summary, the CBAM structure, through its channel attention and spatial attention modules,
enables multi-scale feature extraction on the input feature map. This enhancement results
in a refined comprehension of image content and improved analytical and recognition
capabilities for the model.
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2.2.4. Evaluation Metrics

To assess the performance of the enhanced citrus recognition model, multiple valida-
tion metrics were utilized in this study, namely overall accuracy (OA), recall intersection
over union (IoU), F1-score, mean intersection over union (mIoU), and mean pixel accuracy
(mPA). These metrics are derived from accuracy measurement techniques that rely on the
confusion matrix. The confusion matrix tabulates pixel values in the images according
to the true and predicted classes, providing insights into the model’s performance on a
given dataset. The rows and columns of the matrix represent the true values and predicted
values, respectively (Table 3).

Table 3. Confusion matrix (TP represents the pixels in which citrus was correctly identified; FP
represents pixels where citrus was incorrectly identified as non-citrus; TN represents the pixels where
non-citrus was correctly identified; FN represents pixels where non-citrus was incorrectly identified
as citrus).

Confusion Matrix Citrus Non-Citrus

Citrus TP FN
Non-Citrus FP TN

The calculation formulas for each parameter and intermediate variable are as follows:
OA represents the overall accuracy of predicting citrus. Recall represents the proportion
of correctly predicted citrus pixels to all actual citrus pixels. Precision represents the
proportion of actual citrus pixels within the pixels predicted as citrus by the model. F1-
score is the harmonic mean of precision and recall. IoU (intersection over union) is the ratio
of the intersection area between the predicted region and the actual region to the union
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area. mIoU (mean intersection over union) is the average IoU for all classes. mPA (mean
pixel accuracy) is the average proportion of correctly classified pixels among all classes.

OA =
TP + TN

TP + TN + FP + FN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1− score =
2× Precision× Recall

Precision + Recall
(4)

IoU =
TP

TP + FN + FP
(5)

mIoU =
1

N + 1

N

∑
i=0

IoU (6)

mPA =
1

k + 1

k

∑
i=0

TP
TP + FN

(7)

2.2.5. Dataset Production

High-resolution remote sensing imagery from the Gaofen-2 (GF-2) satellite was utilized
in this study to analyze the research area. The image data was combined with ground
survey data and manual visual interpretation to create a dataset for training deep learning
models. The annotation process involved labeling citrus orchard areas as “citrus” and other
land cover types as “background” using ArcGIS software (version 10.8). The annotated
images were then cropped into patches of size 512× 512, resulting in a total of 2403 training
samples. The dataset was randomly divided into an 80:20 ratio for training and validation,
respectively, to ensure enough data for training and assessing recognition accuracy. To
combat the issues of overfitting and limited training sample size, data augmentation
techniques were implemented to enhance the model’s generalization capability. These
steps aimed to provide an adequate number of training samples to accurately identify
and classify citrus using deep learning models. This process contributes to the model’s
robustness and performance in diverse circumstances.

2.2.6. Experimental Setting

The experiments in this study were carried out on the Windows 11 operating system.
The computer utilized an NVIDIA GeForce RTX2060Super GPU with 8G memory, running
on CUDA version 12.2. The deep learning network was constructed using PyTorch version
1.12.1. The software environment was established using Anaconda (Python 3.9). The initial
learning rate of the model was set to 0.01, with the learning rate decayed using cosine
annealing. The SGD optimizer was employed with a batch size of five, and a total of
300 epochs were executed.

3. Results and Analyses
3.1. Model Training Results

To validate the effectiveness of the improved DeepLabV3+ model in citrus recognition,
this study compared it with three classical semantic segmentation models (DeepLabV3+,
UNet, and PSPNet) while keeping other training parameters consistent. The results demon-
strated that the improved DeepLabV3+ model achieved the highest recognition accuracy
among the four models. Table 4 presents the accuracy results of the improved DeepLabV3+
model and other classical semantic segmentation models in citrus recognition tasks. From
Table 4, it can be observed that the overall accuracy (OA) of all models exceeded 80%,
indicating the strong performance of deep learning in citrus recognition. Considering
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the six evaluations metrics collectively, the improved DeepLabV3+ model significantly
outperformed the other three models in terms of citrus recognition accuracy. As shown in
Figure 4, the improved DeepLabV3+ model achieved an overall accuracy (OA) of 96.23%,
a mean intersection over union (mIoU) of 83.79%, and a mean pixel accuracy (mPA) of
85.40%. Compared to the original model, these figures improved by 11.16%, 14.88%, and
14.98% respectively. Compared to the UNet model, they improved by 15.81%, 18.21%, and
17.07% respectively. Compared to PSPNet, they improved by 14.91%, 19.56%, and 16.34%,
respectively. These results indicate that the improved DeepLabV3+ model excels in citrus
extraction tasks in terms of performance.

Table 4. Comparison of extraction accuracy of various models for citrus.

Models IoU Recall OA F1-Score mIoU mPA

Improved DeepLabV3+ 0.8078 0.8894 0.9623 0.9583 0.8379 0.8540
DeepLabV3+ 0.7046 0.8125 0.8507 0.8478 0.6891 0.7042

UNet 0.6839 0.7923 0.8042 0.8312 0.6558 0.6833
PSPNet 0.6902 0.8087 0.8132 0.8377 0.6423 0.6906
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From Figure 5, it is evident that all four network models successfully identified and
extracted large-scale citrus orchards. However, the improved DeepLabV3+ model demon-
strated noticeable superiority in citrus recognition. The original DeepLabV3+ model, UNet,
and PSPNet yielded relatively poor results, with evident misclassification and omission
problems. These models produced predicted images with fragmented misclassified regions,
erroneously identifying spectral information resembling citrus vegetation as actual citrus.
Moreover, they struggled to effectively handle scattered areas of citrus vegetation. In terms
of citrus recognition, the improved DeepLabV3+ model outperformed the other models
significantly. This improvement involved replacing the backbone network for feature
extraction and integrating the CBAM to enhance the model’s attention to crucial features.
Consequently, the occurrence of noise reduced noticeably in the results, the integrity of veg-
etation areas improved, and overall recognition performance was enhanced. The improved
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DeepLabV3+ model achieved more accurate extraction of edge information from citrus
vegetation, thereby alleviating misclassification and omission issues. These results indicate
that through enhancing the backbone network and integrating the CBAM, the improved
DeepLabV3+ model exhibits superior performance in citrus recognition tasks. It enhances
its ability to handle scattered citrus vegetation, consequently reducing misclassification
and omission problems and improving overall recognition effectiveness.
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Figure 5. Citrus extraction results using four different models, where the black area is the background
area, the gray is the citrus sample labeled area, and the white is the citrus area extracted by the models.
Among the three special plots selected, plot (a) contains roads and water, plot (b) contains complex
and fragmentary citrus planting areas, and plot (c) contains concentrated citrus planting areas.

3.2. Ablation Experiment

To assess the efficacy of incorporating attention mechanism modules into both the
backbone feature extraction network and the decoder component, four distinct experimen-
tal approaches were formulated and subsequently compared in this study. The findings of
these experiments are presented in Table 5.

Table 5. Ablation experiment results.

Scheme OA (%) mIoU (%) mPA (%) Training Time (h)

1 85.07 68.91 70.42 9.23
2 88.39 71.33 72.10 4.51
3 92.34 78.57 79.83 4.69
4 96.23 83.79 85.40 4.75

Scheme 1 utilizes the traditional DeepLabV3+ network architecture with Xception as
the backbone network. In Scheme 2, MobileNetV2 replaces the backbone network from
Scheme 1. Scheme 3 further extends Scheme 2 by incorporating the CBAM into the decoder
part. Lastly, Scheme 4 enhances Scheme 2 by integrating an attention mechanism into the
decoder part of the backbone feature extraction network.

The results of the ablation experiments highlight the advantages of Scheme 2’s model
over the traditional DeepLabV3+ model, with fewer parameters and reduced training time,
yet still achieving commendable performance in citrus extraction tasks. These findings sup-
port the rationale for replacing the backbone feature extraction network, thereby reducing
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model complexity. Comparatively, Scheme 3 and Scheme 4 yield improved performance,
exhibiting higher overall accuracy (OA) and mean intersection over union (mIoU). Notably,
Scheme 4 demonstrates the most significant enhancement, emphasizing the effectiveness of
integrating attention mechanisms in both the encoder and decoder for enhancing citrus
recognition accuracy. Consequently, we can conclude that by employing the lightweight
MobileNetV2 network to replace the backbone network and by incorporating attention
mechanisms in the encoder and decoder, the performance of citrus recognition tasks can be
substantially improved.

3.3. Migrability of the Segmentation Model

The majority of validation data used for remote sensing image segmentation originate
from the same study area as the training data, which does not effectively demonstrate the
robustness of the segmentation model. Although numerous segmentation models achieve
high accuracy on their validation data, their performance diminishes when applied to di-
verse regions. This decline is primarily attributed to insufficient training samples or limited
model generalization capabilities. In order to validate the transferability of the enhanced
model, tests were conducted in Nanning City, located in Guangxi Province. The experiment
also used the GF-2 satellite image as the remote sensing data source on 3 October 2021,
and a consistent preprocessing process was applied to the image. The outcomes of these
tests are presented in Figure 6. The improved model demonstrates a comparable level of
accuracy in citrus extraction within Nanning City, indicating its considerable transferability
and suggesting its potential for broader application and promotion.
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4. Discussion
4.1. Model Evaluation

This study aims to optimize and improve the DeepLabV3+ semantic segmentation
model to address the challenges posed by complex scenes in high-resolution image clas-
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sification. Traditional classification methods perform inadequately in such scenarios. We
focused on addressing various issues, including the presence of numerous network pa-
rameters, long training time, and poor convergence. To overcome these challenges, we
implemented improvements to the DeepLabV3+ semantic segmentation model. Firstly,
we replaced the backbone network of the original model with a lightweight MobileNetV2
network, thereby reducing the model’s complexity. Secondly, we introduced the CBAM
attention mechanism module to enhance the model’s ability to grasp semantic informa-
tion. Many studies have been conducted on improving recognition accuracy through the
incorporation of attention mechanisms into models. For instance, Wang et al. utilized
the CBAM to enhance the discriminative capability of ecological environment elements
in the Yangtze River source area [45]. Similarly, Liu et al. successfully resolved the prob-
lem of unclear edges and rough contours in winter wheat extraction by incorporating the
CBAM [46]. These enhancements resulted in substantial improvements in training accuracy
and efficiency. Furthermore, we developed a citrus classification extraction model based
on GF-2 remote sensing images, which serves as a potent tool for extracting tree species
information from high-resolution remote sensing images. Compared to other classification
methods, Liang et al. achieved a spatial recognition of orange orchards in the study area by
constructing multiple spectral vegetation indices, with an overall accuracy of 82.75% [38].
Our research findings demonstrate that the enhanced DeepLabV3+ model outperforms
both the original model and other classification methods in citrus recognition. However,
further improvements are necessary to enhance extraction accuracy. The complexity of
citrus semantic information in remote sensing images, coupled with our relatively small
dataset, necessitates caution in employing deeper and more complex models to prevent
overfitting, which could diminish recognition accuracy. The upgraded DeepLabV3+ model
exhibits the capability to focus on local information related to the target object, while the
CBAM attention mechanism enables the network to prioritize pixels in fragmented citrus
plantations and suppress other sources of interference. These enhancements enhance the
efficiency and accuracy of the model, resulting in more comprehensive citrus recognition.
Nonetheless, we still face substantial challenges in accurately recognizing citrus in com-
plex and fragmented plots, as these areas may contain interfering elements that hinder
accurate classification.

4.2. Future Prospects

Due to the data-driven nature of deep learning technology, the GF-2 satellite images
utilized in this study exhibit high similarity and comparable feature distributions in the
acquired image characteristics over a specific time period. These characteristics can be
effectively captured through deep neural networks, indicating the favorable adaptability of
the proposed methodology. It is essential to incorporate satellite remote sensing images
from various sources into the training set and fine-tune the network training parameters.
The enhanced citrus recognition model in this study can be further improved in several
aspects. For instance, measures can be taken to enhance training accuracy and leverage a
broader range of multi-source remote sensing images for transfer learning, thereby strength-
ening the model’s generalization abilities. Additionally, this research intends to address
the identification, classification, and subsequent analysis of complex and fragmented cit-
rus plantations by exploiting multispectral remote sensing information and integrating
it with practical agricultural practices. With the increasing availability of high-resolution
remote sensing images and the growing demand for information in modern agricultural
cultivation, conducting comprehensive ground surveys to obtain representative features
and crop interpretation indicators becomes imperative. Establishing localized crop sample
datasets contributes to overcoming the limitations associated with sample extraction in
deep learning-based crop classification, consequently promoting the application and ad-
vancement of deep learning in crop remote sensing monitoring. Moreover, by harnessing
the rich geometric structures and texture features present in high-resolution remote sensing
images, deep learning methods excel at feature learning for extracting specific tree species
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plots. Subsequently, by utilizing multi-source high-resolution remote sensing data, pre-
cise classification and extraction of major crops at the plot scale can be achieved, leading
an accurate agricultural census, precision management of agricultural production, and
adjustments in crop planting structures.

5. Conclusions

This study introduces a lightweight citrus extraction model based on the DeepLabV3+
semantic segmentation model and the CBAM attention mechanism module. The model
adopts the lightweight MobileNetV2 as its backbone network and incorporates the CBAM
module. By considering the growth characteristics of citrus, the model includes additional
channels in the feature input. This approach effectively resolves the issues present in
existing classical semantic segmentation models, such as inaccurate citrus edge extraction,
misclassification caused by intra-class differences, and the challenges associated with nu-
merous network parameters and long training time. In the study area, the proposed model
achieves superior results in terms of overall accuracy (OA), mean pixel accuracy (mPA),
and mean intersection over union (mIoU) for citrus extraction, achieving percentages of
96.23%, 83.79%, and 85.40%, respectively. Moreover, it outperforms other comparative
models while minimizing the number of model parameters and training time. Nanning
City in Guangxi Province has affirmed the robust generalization ability of this model. To
summarize, this model ensures accurate extraction, reduces the number of parameters
and training time, and exhibits strong generalization ability. Consequently, it is highly
recommended for further promotion and application.
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17. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm.
Remote Sens. 2016, 114, 24–31. [CrossRef]

18. Dong, L.; Du, H.; Mao, F.; Han, N.; Li, X.; Zhou, G.; Zhu, D.e.; Zheng, J.; Zhang, M.; Xing, L.; et al. Very High Resolution Remote
Sensing Imagery Classification Using a Fusion of Random Forest and Deep Learning Technique—Subtropical Area for Example.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 13, 113–128. [CrossRef]

19. Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011,
66, 247–259. [CrossRef]

20. Razaque, A.; Ben Haj Frej, M.; Almi’ani, M.; Alotaibi, M.; Alotaibi, B. Improved Support Vector Machine Enabled Radial Basis
Function and Linear Variants for Remote Sensing Image Classification. Sensors 2021, 21, 4431. [CrossRef]

21. Alex, K.; Ilya, S.; Geoffrey, E.H. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60,
84–90.

22. Li, X.; Xu, F.; Xia, R.; Li, T.; Chen, Z.; Wang, X.; Xu, Z.; Lyu, X. Encoding Contextual Information by Interlacing Transformer and
Convolution for Remote Sensing Imagery Semantic Segmentation. Remote Sens. 2022, 14, 4065. [CrossRef]

23. Yang, Q.; Shi, L.; Han, J.; Zha, Y.; Zhu, P. Deep convolutional neural networks for rice grain yield estimation at the ripening stage
using UAV-based remotely sensed images. Field Crops Res. 2019, 235, 142–153. [CrossRef]

24. Su, Z.; Wang, Y.; Xu, Q.; Gao, R.; Kong, Q. LodgeNet: Improved rice lodging recognition using semantic segmentation of UAV
high-resolution remote sensing images. Comput. Electron. Agric. 2022, 196, 4065. [CrossRef]

25. Zhou, H.; Zhang, J.; Lei, J.; Li, S.; TU, D. Image Semantic Segmentation Based on FCN-CRF Model. In Proceedings of the 2016
International Conference on Image, Vision and Computing, Palmerston North, New Zealand, 21–22 November 2016.

26. Li, X.; Xu, F.; Liu, F.; Lyu, X.; Tong, Y.; Xu, Z.; Zhou, J. A Synergistical Attention Model for Semantic Segmentation of Remote
Sensing Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5400916. [CrossRef]

27. Tian, L.; Zhong, X.; Chen, M.; Wang, P. Semantic Segmentation of Remote Sensing Image Based on GAN and FCN Network
Model. Sci. Program. 2021, 2021, 9491376. [CrossRef]

28. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolu-
tional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [CrossRef]
[PubMed]

29. Li, X.; Xu, F.; Liu, F.; Xia, R.; Tong, Y.; Li, L.; Xu, Z.; Lyu, X. Hybridizing Euclidean and Hyperbolic Similarities for Attentively
Refining Representations in Semantic Segmentation of Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5003605.
[CrossRef]

30. Wang, Z.; Peng, T.; Lu, Z. Comparative Research on Forest Fire Image Segmentation Algorithms Based on Fully Convolutional
Neural Networks. Forests 2022, 13, 1133. [CrossRef]

31. Wang, Z.; Wang, J.; Yang, K.; Wang, L.; Su, F.; Chen, X. Semantic segmentation of high-resolution remote sensing images based on
a class feature attention mechanism fused with Deeplabv3+. Comput. Geosci. 2022, 158, 104969. [CrossRef]

32. Du, S.; Du, S.; Liu, B.; Zhang, X. Incorporating DeepLabv3+ and object-based image analysis for semantic segmentation of very
high resolution remote sensing images. Int. J. Digit. Earth 2020, 14, 357–378. [CrossRef]

33. Gu, X.; Li, S.; Ren, S.; Zheng, H.; Fan, C.; Xu, H. Adaptive enhanced swin transformer with U-net for remote sensing image
segmentation. Comput. Electr. Eng. 2022, 102, 108223. [CrossRef]

https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210)
https://doi.org/10.1016/j.eswa.2022.116511
https://doi.org/10.1109/ACCESS.2020.3012997
https://doi.org/10.3390/rs13183652
https://doi.org/10.1007/s11128-020-02944-7
https://doi.org/10.1016/j.future.2021.03.005
https://doi.org/10.1007/s12652-021-03308-4
https://doi.org/10.3390/sym14061149
https://doi.org/10.1515/jisys-2019-0155
https://doi.org/10.3390/rs13050849
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1109/JSTARS.2019.2953234
https://doi.org/10.1016/j.isprsjprs.2010.11.001
https://doi.org/10.3390/s21134431
https://doi.org/10.3390/rs14164065
https://doi.org/10.1016/j.fcr.2019.02.022
https://doi.org/10.1016/j.compag.2022.106873
https://doi.org/10.1109/TGRS.2023.3243954
https://doi.org/10.1155/2021/9491376
https://doi.org/10.1109/TPAMI.2017.2699184
https://www.ncbi.nlm.nih.gov/pubmed/28463186
https://doi.org/10.1109/LGRS.2022.3225713
https://doi.org/10.3390/f13071133
https://doi.org/10.1016/j.cageo.2021.104969
https://doi.org/10.1080/17538947.2020.1831087
https://doi.org/10.1016/j.compeleceng.2022.108223


Remote Sens. 2023, 15, 5614 17 of 17

34. Hou, J.; Guo, Z.; Wu, Y.; Diao, W.; Xu, T. BSNet: Dynamic Hybrid Gradient Convolution Based Boundary-Sensitive Network for
Remote Sensing Image Segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5624022. [CrossRef]

35. Lin, Z.; Guo, W. Cotton Stand Counting from Unmanned Aerial System Imagery Using MobileNet and CenterNet Deep Learning
Models. Remote Sens. 2021, 13, 2822. [CrossRef]

36. Li, L.; Li, H.; Peng, L.; Li, Y.; Zhou, Y.; Chai, F.; Mo, Z.; Chen, Z.; Mao, J.; Wang, W. Characterization of precipitation in the
background of atmospheric pollutants reduction in Guilin: Temporal variation and source apportionment. J. Environ. Sci. 2020,
98, 1–13. [CrossRef] [PubMed]

37. Li, Y.; Wang, C.; Wright, A.; Liu, H.; Zhang, H.; Zong, Y. Combination of GF-2 high spatial resolution imagery and land surface
factors for predicting soil salinity of muddy coasts. Catena 2021, 202, 105304. [CrossRef]

38. Liang, C.; Huang, Q.; Wang, S.; Wang, C.; Yu, Q.; Wu, W. Identification of citrus orchard under vegetation indexes using
multi-temporal remote sensing. Trans. Chin. Soc. Agric. Eng. 2021, 37, 168–176. (In Chinese) [CrossRef]

39. Kuang, X.; Guo, J.; Bai, J.; Geng, H.; Wang, H. Crop-Planting Area Prediction from Multi-Source Gaofen Satellite Images Using a
Novel Deep Learning Model: A Case Study of Yangling District. Remote Sens. 2023, 15, 3792. [CrossRef]

40. Sun, W.; Chen, B.; Messinger, D.W. Nearest-neighbor diffusion-based pan-sharpening algorithm for spectral images. Opt. Eng.
2014, 53, 013107. [CrossRef]

41. Li, X.; Xu, F.; Lyu, X.; Gao, H.; Tong, Y.; Cai, S.; Li, S.; Liu, D. Dual attention deep fusion semantic segmentation networks of
large-scale satellite remote-sensing images. Int. J. Remote Sens. 2021, 42, 3583–3610. [CrossRef]

42. Mo, L.; Fan, Y.; Wang, G.; Yi, X.; Wu, X.; Wu, P. DeepMDSCBA: An Improved Semantic Segmentation Model Based on DeepLabV3+
for Apple Images. Foods 2022, 11, 3999. [CrossRef] [PubMed]

43. Ma, R.; Wang, J.; Zhao, W.; Guo, H.; Dai, D.; Yun, Y.; Li, L.; Hao, F.; Bai, J.; Ma, D. Identification of Maize Seed Varieties Using
MobileNetV2 with Improved Attention Mechanism CBAM. Agriculture 2022, 13, 11. [CrossRef]

44. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.

45. Wang, C.; Zhang, R.; Chang, L. A Study on the Dynamic Effects and Ecological Stress of Eco-Environment in the Headwaters of
the Yangtze River Based on Improved DeepLab V3+ Network. Remote Sens. 2022, 14, 2225. [CrossRef]

46. Liu, J.; Wang, H.; Zhang, Y.; Zhao, X.; Qu, T.; Tian, H.; Lu, Y.; Su, J.; Luo, D.; Yang, Y. A Spatial Distribution Extraction Method for
Winter Wheat Based on Improved U-Net. Remote Sens. 2023, 15, 3711. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TGRS.2022.3176028
https://doi.org/10.3390/rs13142822
https://doi.org/10.1016/j.jes.2020.03.029
https://www.ncbi.nlm.nih.gov/pubmed/33097139
https://doi.org/10.1016/j.catena.2021.105304
https://doi.org/10.11975/j.issn.1002-6819.2021.24.019
https://doi.org/10.3390/rs15153792
https://doi.org/10.1117/1.OE.53.1.013107
https://doi.org/10.1080/01431161.2021.1876272
https://doi.org/10.3390/foods11243999
https://www.ncbi.nlm.nih.gov/pubmed/36553741
https://doi.org/10.3390/agriculture13010011
https://doi.org/10.3390/rs14092225
https://doi.org/10.3390/rs15153711

	Introduction 
	Materials and Methods 
	Study Area and Data 
	Study Area 
	Data 

	Methods 
	Improved DeepLabV3+ Network Modeling 
	Backbone Feature Extraction Network 
	Convolutional Block Attention Module 
	Evaluation Metrics 
	Dataset Production 
	Experimental Setting 


	Results and Analyses 
	Model Training Results 
	Ablation Experiment 
	Migrability of the Segmentation Model 

	Discussion 
	Model Evaluation 
	Future Prospects 

	Conclusions 
	References

