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Abstract: Semantic segmentation plays a pivotal role in the intelligent interpretation of remote sensing
images (RSIs). However, conventional methods predominantly focus on learning representations
within the spatial domain, often resulting in suboptimal discriminative capabilities. Given the
intrinsic spectral characteristics of RSIs, it becomes imperative to enhance the discriminative potential
of these representations by integrating spectral context alongside spatial information. In this paper,
we introduce the spectrum-space collaborative network (SSCNet), which is designed to capture
both spectral and spatial dependencies, thereby elevating the quality of semantic segmentation
in RSIs. Our innovative approach features a joint spectral–spatial attention module (JSSA) that
concurrently employs spectral attention (SpeA) and spatial attention (SpaA). Instead of feature-
level aggregation, we propose the fusion of attention maps to gather spectral and spatial contexts
from their respective branches. Within SpeA, we calculate the position-wise spectral similarity
using the complex spectral Euclidean distance (CSED) of the real and imaginary components of
projected feature maps in the frequency domain. To comprehensively calculate both spectral and
spatial losses, we introduce edge loss, Dice loss, and cross-entropy loss, subsequently merging
them with appropriate weighting. Extensive experiments on the ISPRS Potsdam and LoveDA
datasets underscore SSCNet’s superior performance compared with several state-of-the-art methods.
Furthermore, an ablation study confirms the efficacy of SpeA.

Keywords: semantic segmentation; remote sensing images; spectral attention; spectral and spatial
contexts; loss function

1. Introduction

Remote sensing images (RSIs) are acquired through intermediate imaging sensors,
typically mounted on satellites, aircraft, and unmanned aerial vehicles (UAVs), enabling
non-contact observation of terrestrial objects [1]. A comprehensive semantic understanding
of RSIs significantly influences various downstream applications, including water resource
management [2,3], land cover classification [4–6], urban planning [7–9], and hazard as-
sessment [10,11]. To achieve the precise labeling of individual pixels with specific classes,
semantic segmentation [12], originally designed for natural image processing, has been
successfully applied to RSIs with exceptional performance.

Traditional segmentation methods primarily relied on manually crafted features as
guidance for pixel recognition. In the initial stages, classical techniques such as logis-
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tic regression [13] and distance measures [14] were favored for their stability and user-
friendliness. Subsequently, more advanced models, including support vector machines
(SVMs) [15], Markov random fields (MRFs) [16], random forests (RFs) [17], and conditional
random fields (CRFs) [18], were developed to enhance the classification process. How-
ever, despite the introduction of robust classifiers, the use of artificially selected features
inherently limited overall performance, particularly in terms of accuracy.

Deep convolutional neural networks (DCNNs) have gained prominence for their
exceptional performance in a multitude of computer vision tasks [19–21]. DCNNs possess
the ability to automatically derive task-specific features, making them an optimal choice
for handling complex scenarios. Consequently, the remote sensing community has be-
come increasingly intrigued by the potential application of DCNNs in processing RSIs.
This interest has led to the development of several DCNN-based RSI interpretation meth-
ods, showcasing their adaptability in comprehending multi-source and multi-resolution
RSIs [22,23]. While these methods have significantly improved representation learning and
classifier training, they are fundamentally constrained by the fixed geometry of convolu-
tional neural networks, resulting in limited local receptive fields and short-range contextual
awareness. Moreover, RSI presents unique challenges due to its broad scope, diverse
objects, and varying resolutions compared to natural imagery.

Upon comprehensive review, it is evident that leveraging contextual information
offers a promising approach to enhancing the discriminative capacity of learned represen-
tations. Two distinct methodologies have been proposed to integrate extensive contextual
knowledge, thereby enriching pixel-wise representations within segmentation networks.
Initially, several studies have incorporated different-scale dilated convolutional layers
and pooling functions to capture multi-scale features. For instance, in the realm of RSI
semantic segmentation, MLCRNet [24] introduced multi-level context aggregation and
achieved superior performance on benchmark datasets such as ISPRS Potsdam [25] and
Vaihingen [26]. Furthermore, Shang et al. devised a multi-scale feature fusion network
using atrous convolutions [27], and Du et al. crafted a similar semantic segmentation
network tailored for mapping urban functional zones [28].

A sophisticated approach involves the incorporation of attention modules designed
to capture long-range dependencies. Attention, a cognitive process focusing selectively
on specific information while disregarding other perceptible data, plays a pivotal role in
human cognition and survival [29,30]. Leveraging the self-attention mechanism (SAM), the
network can concentrate on information-rich regions, thereby enhancing the representation
of crucial areas. Consequently, segmentation accuracy has witnessed a substantial rise with
the emergence of attention-based methods [31]. In the realm of RSIs, Li et al. introduced
innovative strategies for addressing the challenge of segmenting large-scale satellite RSI,
including dual attention and deep fusion techniques [32]. Li et al. proposed a multi-
attention network that extracts contextual dependencies while maintaining computational
efficiency [33]. HCANet was developed to amalgamate cross-level contextual and attentive
representations through the utilization of the attention mechanism [34]. EDENet skillfully
learned edge distributions through the design of a distribution attention module, effectively
injecting edge information in a learnable manner [35]. Lei et al. proposed LANet, which
bridges the gap between high-level and low-level features by incorporating a patch atten-
tion module to focus locally [36]. In summary, the attention mechanism has demonstrated
its superiority in the field of RSI, enabling models to recognize and accommodate diverse
intra-class variances and subtle inter-class distinctions [37].

However, all the aforementioned methods were primarily designed for processing
RSI and learning features within the spatial domain without giving due consideration
to their spectral properties. In the realm of image processing, the inner body and edges
correspond to low and high-frequency components, respectively. This relationship is
visually represented in Figure 1, where we illustrate an RSI and provide a frequency image.
In Figure 1c, we showcase the low-frequency component, while Figure 1d presents the
high-frequency component, solidifying this assumption. Furthermore, self-attention is



Remote Sens. 2023, 15, 5610 3 of 24

fundamentally developed to enhance the internal consistency of objects through similarity
measurement. However, self-attention employs identical learnable parameters for all
frequency components, hindering its ability to simultaneously enhance internal consistency
and inter-object edge contouring. Therefore, the effective utilization of frequency domain
features, particularly in learning the spectral context inherent in remote sensing images,
becomes paramount.
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Figure 1. Illustration of frequency domain features. (a) Raw image, (b) 2D FFT transformed frequency
image, (c) low-frequency components, and (d) high-frequency components.

In summary, we contend that while learning representations of remote sensing images
using convolutional neural networks and self-attention mechanisms within the spatial
domain enhance internal consistency, they inadequately incorporate spectral contexts and
erode edge details. Hence, this observation suggests the need to optimize learned repre-
sentations in both the frequency and spatial domains, requiring skillful aggregation across
these domains. To address these challenges, this paper introduces a novel approach. Firstly,
we propose a joint spectral–spatial attention (JSSA) that deploys spectral attention (SpeA)
and spatial attention (SpaA) in parallel. Instead of mere feature-level aggregation, we
devise a post-weighted summation of the two attention maps to create a unified attention
map that concurrently incorporates spectral and spatial contexts. To facilitate this, we for-
mulate a novel loss function to train the network in learning discriminative representations
within the spectral and spatial domains. Finally, this integrated approach results in the
spectrum-space collaborative network (SSCNet), which accurately performs pixel-level
segmentation of ground objects in remote sensing images. The primary contributions of
this work are summarized as follows:

(1) We propose a SpeA for capturing the spectral context in the frequency domain. SpeA
first maps the feature map into the frequency domain using a 2D fast Fourier transform
(2D FFT) layer. Considering that the transformed features may be complex, we com-
pute pairwise similarity by measuring the complex spectral Euclidean distance (CSED)
of the real and imaginary parts. Subsequently, we create SpeA maps by weighted
summation, enabling the prioritization of spectral features in attention modeling.

(2) To comprehensively model and utilize contexts that span spectral and spatial do-
mains, we present the JSSA module. For spatial contexts, we incorporate position-
wise self-attention as a parallel SpaA branch. Through an attention fusion (Attn-
Fusion) module, we merge the attention maps obtained from SpeA and SpaA. This
results in JSSA producing an attention map that considers both spectral and spatial
contexts simultaneously.

(3) We formulate a hybrid loss function (HLF) that encompasses both spectral and spatial
losses. Concerning the high-frequency components, we calculate edge loss. While
promoting the inner consistency of objects, mainly represented by low-frequency
components, we introduce Dice loss to compensate. Simultaneously, we employ
cross-entropy loss to supervise the spatial aspects. By combining these losses with
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appropriate weights, we establish a hybrid loss function that facilitates the network in
learning discriminative representations within both the frequency and spatial domains.

(4) Complementing the above-mentioned designs, we propose the SSCNet, a seman-
tic segmentation network for remote sensing images. Thorough experimentation
demonstrates its superior performance compared with other state-of-the-art methods.
Furthermore, an ablation study corroborates the efficacy of the SpeA component.

This paper is structured as follows. Section 2 provides an overview of related research
in semantic segmentation of RSI and methods focused on frequency domain-based learning.
Section 3 introduces the comprehensive network architecture along with the individual
sub-modules and their formulations. Section 4 compiles and compares the findings based
on two prominent RSI datasets to verify the model’s performance, followed by in-depth
discussions. Section 5 offers conclusions drawn from this study and outlines potential
future research directions.

2. Related Works
2.1. Semantic Segmentation for RSIs

Semantic segmentation of RSIs aims to accurately assign pixel-level semantic labels
corresponding to land cover types. Despite the advancements in computer vision, it has
not yet led to a revolutionary transformation in the field of semantic segmentation for
RSIs [38,39]. From an image processing perspective, semantic segmentation of remote
sensing images and natural images exhibits several key distinctions. RSIs typically feature
intricate details in diverse landscapes and often incorporate multiple spectral bands for
enhanced discrimination. These images are susceptible to acquisition challenges, including
cloud cover and seasonal variations, and demand georeferencing for geospatial analysis.
RSIs contain a wide array of complex objects, such as buildings and vegetation, and are
commonly employed in geospatial applications like land cover classification. In contrast,
natural images possess very high spatial resolution and portray everyday objects and
scenes under more controlled conditions. The complexity of objects in natural images is
comparatively simpler, encompassing common subjects like animals and vehicles, and
their utility extends to visual recognition and image editing tasks. These distinctions
necessitate tailored image processing techniques and methodologies to address the specific
requirements and challenges.

Significant enhancements are imperative in the domain of RSIs. Pastorino et al., build-
ing upon fully convolutional networks (FCNs), introduced a novel FCN variant by incorpo-
rating probabilistic graphical models. This model capitalizes on the inherent multi-scale
nature of FCNs, aligning them with a hierarchical Markov model to address multi-scale
data representations. The outcomes based on ISPRS Vaihingen and Potsdam datasets un-
derscore remarkable improvements [40]. Additionally, Tao et al. devised MSNet, utilizing
a dual-branch architecture to integrate comprehensive spectral information, leading to
enhanced segmentation accuracy [41]. Similarly, Wang et al. presented DFANet, which
encompasses a feature representation layer, intermediate and deep feature aggregation
layers, and a feature aggregation module. This framework adeptly manages intricate
transitions between distinct ground areas by capturing features at various resolutions,
merging multi-scale features, assembling them into spatial feature maps, and optimizing
results through a conditional random field module [42]. ResUNet-a [43] extends the U-Net
baseline by introducing residual connections, atrous convolutions, pyramid scene parsing,
pooling, and multi-tasking inference. Notably, it achieves remarkable accuracy despite
having a high number of parameters. Likewise, PSE-UNet integrates principal component
analysis (PCA) and attention mechanism based on U-Net to promote semantic segmenta-
tion of hyperspectral images [44]. Associated with PCA, PSE-UNet introduces cumulative
variance contribution rate (CVCR) as a new metric for PCA-based dimensionality reduction.
Taking advantage of the stable performance of U-Net architecture, Wei et al. proposed the
DCCaps-UNet, a novel U-shaped hyperspectral image semantic segmentation model that
leverages depthwise separable and conditional convolution capsule networks to enhance
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spatial information utilization and segmentation efficiency with fewer samples [45]. Al-
though these designs effectively capture multi-scale features and enhance results through
post-processing, they do not yet achieve optimal pixel-wise semantic inference due to
limitations in contextual understanding.

Due to the versatile nature of the attention mechanism, RSIs have experienced sig-
nificant exploration. The attention mechanism provides an effective means of learning
and utilizing diverse RSI features beyond conventional convolution-only variants. For
instance, Li et al. [32] introduced an innovative approach to enhance shallow layer features
using spatial attention and deep layer features with channel attention, thereby enrich-
ing contextual clues for feature decoding. RAANet, incorporating residual connections,
combines atrous spatial pyramid pooling with an attention mechanism, producing results
that underscore the efficacy of the attention mechanism [46]. Zhang et al. [47] devised a
hybrid network for segmenting very high-resolution remote sensing images, merging a
Swin transformer and a CNN. This network features an encoder-decoder structure, spa-
tial context modeling, a U-shaped decoder, and a boundary detection branch. Extensive
experiments conducted on ISPRS benchmarks demonstrate that the network achieves the
second-highest overall accuracy. Addressing the geo-homogeneity of superpixels in RSIs,
Li et al. introduced HCANet [34], which hybridizes multi-level elements to enhance local
representations without distorting the original pixel semantics. Similarly, LANet [36] treats
local regions as semantically related objects and then proceeds to compute object-wise
dependencies. In a parallel fashion, multiple attention modules are combined to ensure
the extraction of ample contextual dependencies. In [48], an approach called attention
aggregation feature pyramid network (A2-FPN) for the automatic segmentation of land
in high-resolution remote sensing images was proposed. It enhances feature learning
through an attention aggregation module (AAM), consequently enhancing segmentation
accuracy. Comprehensive experiments conducted on four datasets validate the effective-
ness of A2-FPN. More recently, Sun et al. introduced SPANet [49], a convolutional neural
network designed to address the challenge of precisely segmenting small-scale objects and
boundaries. SPANet amalgamates high-level and low-level features through a successive
pooling attention module and a feature fusion module, thereby improving the accuracy of
object edge segmentation. Experimental results demonstrate the effectiveness of SPANet on
two remote sensing datasets. Li et al. [50] proposed a synergistic attention module (SAM)
that jointly models spatial and channel affinities in remote sensing images. Similarly, a
threshold attention network (TANet) designed for semantic segmentation in remote sensing
images was introduced in [51]. TANet employs a threshold attention mechanism (TAM)
to efficiently model feature dependencies, thereby reducing computational complexity. It
combines an attentional feature enhancement module and a threshold attention pyramid
pooling module, resulting in superior performance on the ISPRS Vaihingen and Potsdam
datasets when compared to state-of-the-art models.

In summary, enhancing segmentation depends on the extraction and effective uti-
lization of informative cues. However, conventional approaches primarily operate within
the spatial domain while overlooking the inherent spectral properties. Moreover, these
methods often result in distorted contextual information, especially in the spectral domain.
To address this issue, our proposal involves synergistically modeling spectral and spatial
contexts in an attentive manner. This approach refines the representation to preserve both
spectral expressions and spatial details, consequently providing informative and valuable
cues to boost discriminability.

2.2. Learning in Frequency Domain

Learning representations in the frequency domain offer a wealth of patterns for image
understanding tasks. Ref. [52] employs frequency domain features for image classification,
while Ref. [53] presents a model conversion algorithm to transform spatial-domain CNN
models into the frequency domain. Ref. [54], on the other hand, sidesteps complex model
transition procedures by utilizing SE blocks to select frequency channels. In addition,
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Ref. [55] introduces a frequency channel attention network. As can be observed, learning
representations in the frequency domain allows the model to explicitly capture and process
this spectral information, which may be less apparent in the spatial domain. Moreover,
spectral analysis in the frequency domain can help discriminate subtle differences in
spectral signatures of various land cover classes. By representing the data in the frequency
domain, the model can better distinguish between materials or features that have similar
spatial characteristics but distinct spectral properties, such as different types of vegetation
or soil.

The frequency domain representations offer a natural framework for modeling spectral
context. Spectral information often reveals correlations and interdependencies that are most
effectively captured in the frequency domain. By learning representations in this domain,
it becomes possible to harness this spectral context, which, in turn, proves beneficial in
comprehending the intricate interactions across various spectral bands.

To summarize, the acquisition of representations in the frequency domain for spectral
analysis in remote sensing images provides a robust approach to leverage the inherent spec-
tral attributes of the data. This methodology enhances the model’s capacity to differentiate
between different land cover classes, boosts its generalization capability, and facilitates the
incorporation of spectral context into the semantic segmentation process. Ultimately, this
results in more precise and resilient outcomes in remote sensing applications.

3. The Proposed Method
3.1. Overall Framework

As illustrated in Figure 2, the proposed SSCNet adopts the encoder-decoder architec-
ture. SSCNet primarily introduces enhancements in two key areas. Firstly, we introduce
a JSSA module, which comprehensively models and leverages contextual information
spanning both the frequency and spatial domains. In the frequency domain, we generate a
SpeA attention map, thoughtfully considering the spectral properties. Meanwhile, within
the spatial domain, the position-wise self-attention mechanism captures context from the
spatial-channel perspective. Post-fusion by the AttnFusion module, these two attention
maps collectively provide JSSA with a well-rounded contextual foundation. JSSA effectively
extends the integration of spectral context alongside the prevailing spatial-domain-based
methodologies. Secondly, for the representation of high-frequency components, we incor-
porate edge distributions obtained from the ground truth to supervise the network. For the
low-frequency ones, we introduce Dice loss to promote a low distortion in the inner con-
sistency of objects. In correspondence, we formulate a hybrid loss function that embraces
both spectral and spatial losses with appropriate weighting. This design encourages the
network to learn informative spectral and spatial cues concurrently, thereby enhancing the
discriminative capability of the acquired representation.
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3.2. Joint Spectral–Spatial Attention

In this subsection, we provide a detailed exposition of the joint spectral–spatial at-
tention (JSSA). Firstly, the pipeline of JSSA is depicted in Figure 3. In essence, JSSA
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simultaneously employs SpeA and SpaA. Subsequently, an attention fusion layer performs
post-fusion, employing weighted summation of the attention maps generated by SpeA
and SpaA. This architectural choice facilitates the generation of the JSSA’s attention map,
which jointly evaluates pixel-wise correlations across both the frequency and spatial do-
mains. To elaborate further, this process effectively captures and aggregates spectral and
spatial contexts, subsequently enhancing feature refinement. This is followed by a matrix
multiplication and element-wise summation, resulting in the acquisition of JSSA-refined
representations. The precise steps are elucidated below.
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Figure 3. Details of JSSA.

Considering the input feature of JSSA, denoted as Finput ∈ RC×H×W , where C, H, and
W represent the number of channels, height, and width, respectively, in the SpeA branch,
Finput undergoes an initial transformation into the frequency domain using a 2D fast Fourier
transform (2D FFT) function. It is worth noting that this transformation generates multiple
frequency values, leading us to segment the transformed feature maps into two distinct
components: the real part and the imaginary part.

As previously discussed, SpeA generates an attention map by projecting into the fre-
quency domain and assessing spectrum-related similarity. In Figure 4, we begin with the
input feature Finput ∈ RC×H×W , which is initially transformed using a 2D FFT. The 2D FFT
takes a spatial signal within Finput ∈ RC×H×W and transforms it into a complex frequency
signal Ff req.
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Suppose Ff req is defined as Ff req(c, u, v), where u and v represent the spatial frequency
indices in the horizontal and vertical directions, respectively. The formula for the 2D FFT is
expressed as follows:

Ff req(c, u, v) = ∑H−1
h=0 ∑W−1

W=0 Finput(c, h, w)·e−j2π( u·h
H + v·w

W ), (1)

Here, j represents the imaginary unit. It is important to note that Ff req includes
both real and imaginary components. For clarity, we denote these as Freal

f req(c, u, v) and

Fimag
f req (c, u, v). Correspondingly, Ff req, Freal

f req, and Fimag
f req all possess dimensions of C× H×W.

Real and imaginary parts of complex numbers represent different aspects of the
underlying data. The real part typically encodes amplitude or magnitude information,
while the imaginary part encodes phase information. Separating these parts allows us
to analyze and compare these two distinct aspects individually. Therefore, we design a
parallel manner. In the generalized attention module, the similarity function is dynamically
adjustable. In the frequency domain, we here strive to involve spectral context. Therefore,
we utilize the complex spectral Euclidean distance followed by the Softmax function to
quantify spectral similarity.

In the top branch of SpeA, Freal
f req is transposed to obtain the query feature (Q in Figure 4)

Freal
f req(query) ∈ RHW×C, while the key feature (K in Figure 4) is with Freal

f req(key) ∈ RC×HW .
The attention map can be formed as

CSEDreal =

√
∑C

c=1

(
Freal

f req(query)i,j,c − Freal
f req(key)p,q,c

)2
, (2)

where Freal
f req(query)i,j,c denotes the vector of position (i, j), and Freal

f req(key)p,q,c represents the
vector of position (p, q). With Softmax, we have the attention map of the real part as

AttnMapreal = Softmax(CSEDreal), (3)

where the attention map of the real part is with AttnMapreal ∈ RHW×HW . Likewise, we
have the attention map of the imaginary part as

AttnMapimag = Softmax
(
CSEDimag

)
, (4)

where CSEDimag =

√
∑C

c=1

(
Fimag

f req (query)i,j,c − Fimag
f req (key)p,q,c

)2
. As can be observed,

AttnMapimag is the same size as AttnMapreal .
Finally, a weighted summation is applied to produce the SpeA attention map by

AttnMap f req = λAttnMapreal(i, j) + (1− λ)AttnMapimag(i, j), (5)

where λ is a coefficient set as 0.5.
Figure 5 illustrates the pipeline of SpaA, in which we apply position-wise self-attention

to Finput ∈ RC×H×W . We perform matrix multiplication between Finput ∈ RC×H×W and its
transposed query feature. We obtain the SpaA attention map using the Softmax function,
represented as

AttnMapspa = Softmax
(

Finput × FT
input

)
, (6)

where AttnMapspa ∈ RHW×HW .
After separately attending to spectral and spatial correlations, in Figure 6, AttnFu-

sion combines them through a straightforward weighted summation of AttnMap f req and
AttnMapspa,

AttnMapJSSA = α·AttnMap f req + (1− α)·AttnMapspa, (7)
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where α is a coefficient pre-defined as 0.5.
Afterward, Finput ∈ RC×H×W is multiplied by AttnMapJSSA, followed by an element-

wise summation,
Foutput = Finput +

(
Finput × AttnMapJSSA

)
, (8)

In the end, we have the JSSA-refined feature map denoted as Foutput. Hereafter, Foutput
is put forward to the decoder stage.
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3.3. Hybrid Loss Function

In this section, we introduce a hybrid loss function (HLF) for network tuning. As
previously discussed, the high-frequency and low-frequency components contribute to the
edges and internal consistency of learned representations. Additionally, SpaA is adapted to
the cross-entropy loss. Considering these factors, we have formulated a novel loss function.

Loss = β·Lce +
(1− β)

2
·Ldice +

(1− β)

2
·Ledge, (9)

where Lce, Ldice and Ledge represent cross-entropy, Dice, and edge losses, respectively, and β
is a coefficient pre-defined as 0.5.

More concretely, Dice loss measures the spatial overlap between the predicted seg-
mentation and the ground truth, quantifying the consistency of the two masks. It is defined
as follows:

Ldice = 1− 2·∑K
k=1(Predk ∩GTk)

∑K
k=1|Predk|+ ∑K

k=1|GTk|
, (10)

where Pred denotes the binary segmentation mask generated by the neural network, where
1 represents the object region, 0 represents the background, and GT is the ground truth
segmentation mask, which also consists of binary labels for the object (1) and background
(0). |·| represents the total number of pixels in the binary masks, and K is the number of
classes. In the context of Ledge,

Ledge =
1
K ∑K

k=1 Ledge(k), (11)



Remote Sens. 2023, 15, 5610 10 of 24

Ledge(k) =
1

Nk
∑Nk

i=1

√
(xi − xnearest)

2 + (yi − ynearest)
2, (12)

where (xi, yi) is the location of pixel i, and (xnearest, ynearest) is the nearest ground truth pixel
of the edge. Edge loss is commonly based on the average distance between boundary pixels
in the predicted segmentation and their nearest counterparts in the ground truth boundary.
In this study, we adopt Euclidean distance.

4. Experiments and Discussion
4.1. Datasets
4.1.1. ISPRS Potsdam Dataset

The ISPRS Potsdam dataset [23] exhibits a spatial resolution of 5 cm. It entails pixel-
level ground truth annotations for land cover classification, wherein the category “clutter”
designates the background class. Each image is characterized by a spatial dimension of
6000× 6000 pixels, employing the red (R), green (G), and near-infrared (NIR) spectral bands.
We have partitioned this dataset into three distinct subsets: a training set, a validation set,
and a test set, comprising 17, 2, and 19 images, respectively. For visual reference, specific
examples are depicted in Figure 7.
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4.1.2. LoveDA Dataset

The LoveDA dataset [56] introduced a novel challenge in the realm of semantic
segmentation for large-scale satellite images characterized by a spatial resolution of 0.3 m.
Sourced from the Google Earth platform, LoveDA encompasses a vast expanse exceeding
536 square kilometers (km2). This dataset encompasses both rural and urban regions
within three cities: Nanjing, Changzhou, and Wuhan. Each image within this dataset
boasts a spatial dimension of 1024 × 1024 pixels. Our study utilized a total of 2522 images
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for training, 834 images for validation, and 835 images for testing. The dataset exhibits
an imbalanced class distribution, and the objects belonging to the same category exhibit
variations in terms of scale, size, and surface type, rendering LoveDA an even more
formidable dataset for semantic segmentation. To provide a visual representation, specific
examples are presented in Figure 8.
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4.2. Implementation Details

The proposed SSCNet, alongside the compared semantic segmentation methods, was
implemented using PyTorch on a Linux OS running on an NVIDIA A40 GPU. Data aug-
mentations, such as random flipping and cropping operations, were uniformly applied to
all datasets and networks, as outlined in Table 1. The initial learning rate was set at 0.02,
and the maximum number of training epochs was fixed at 500. Additionally, we adopted
stochastic gradient descent (SGD) as the optimizer, with the learning strategy employing
poly decay and a momentum of 0.9. The model parameter file with the lowest validation
loss was retained. The parameters α and β, introduced in Equations (7) and (9), respectively,
are preset constants. We initialized both parameters to a value of 0.5 to ensure an equal
weighting between the components they control. This choice was substantiated by prelimi-
nary experiments, which indicated that an equal balance yields effective performance on
our validation dataset. We maintained these values throughout the training process, as
our empirical results validated this initial setting. No further optimization was performed
for these parameters. This decision aligns with our aim to minimize model complexity
and maintain interpretability of the parameter settings. Besides, the hyperparameters are
pre-defined in Table 2.



Remote Sens. 2023, 15, 5610 12 of 24

Table 1. Dataset properties.

Items ISPRS Potsdam LoveDA

Bands used R, G, NIR R, G, B
Spatial resolution 5 cm 0.3 m

Number of available images 38 4191
Spatial size 6000 × 6000 1024 × 1024

Imaging sensors Airborne Satellite
Sub-patch size 256 × 256 256 × 256

Training set (number of images) 17 1677
Validation set (number of images) 2 419

Test set (number of images) 19 2095

Test set (number of images) Rotate 90, 180, and 270 degrees; horizontally and
vertically flip

Table 2. Hyperparameters.

Items Settings

Learning strategy ResNet 50
Initial learning rate 0.02

Loss function for comparative methods Cross-entropy
Max epoch 500

GPU memory 48 GB
Batch size 32

We selected 10 methods for comparative analysis, encompassing representative base-
lines and designs specifically tailored for remote sensing imagery (RSI). The former cate-
gory includes U-Net [57], DeepLab V3+ [58], and CBAM [59], while the latter consists of
ResUNet-a [43], RAANet [46], SCAttNet [60], HCANet [34], A2FPN [48], and LANet [36].

4.3. Evaluation Metrics

In this study, we have employed standard evaluation metrics to assess the performance
of the predicted results on the test set. These metrics include the class-wise F1-score, the
average F1-score across all classes (AF), overall accuracy (OA), and mean intersection over
union (mIoU). The F1-score serves as a balanced measure of precision and recall, providing
insight into the trade-off between false positives and false negatives. OA quantifies the
number of correctly classified pixels in relation to all pixels. mIoU is a global metric used
to evaluate overall accuracy. Formally,

F1 = 2 · precision · recall
precision + recall

, (13)

OA =
(TP + TN)

(TP + TN + FP + FN)
, (14)

IoU =
TP

(TP + FP + FN)
, (15)

where precision and recall are calculated as follows:

precision =
TP

TP + FP
, (16)

recall =
TP

TP + FN
. (17)

In the equations, TP, TN, FP, and FN represent the counts of true positives, true
negatives, false positives, and false negatives, respectively. The mIoU is computed as the
mean of class-specific IoU values.
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4.4. Comparison with State-of-the-Art Methods
4.4.1. Results on ISPRS Potsdam Dataset

In the presented comparative analysis of semantic segmentation performance on the
ISPRS Potsdam dataset, various state-of-the-art methods were evaluated, including the
newly proposed SSCNet. As listed in Table 3, these methods were examined across multiple
land cover categories, namely impervious surfaces, buildings, low vegetation, trees, and
cars. The results indicate that SSCNet achieved remarkable performance, outperforming
most of the other methods in all classes. Particularly, SSCNet demonstrated superior
results in the building, tree, and car classes, reaching 97.16%, 91.41%, and 93.26% F1-scores,
respectively. This signifies SSCNet’s effectiveness in delineating fine details and complex
object boundaries, which is critical in remote sensing applications.

Table 3. Numerical comparisons on ISPRS Potsdam test set.

Methods Impervious Surfaces Building Low Vegetation Tree Car AF OA mIoU

U-Net [57] 86.92 88.71 73.48 86.43 47.86 76.68 75.31 69.54
DeepLabV3+ [58] 83.91 85.54 76.84 76.84 84.88 81.61 80.27 73.09

CBAM [59] 86.36 91.41 79.59 79.40 88.75 85.10 83.42 76.60
ResUNet-a [43] 91.35 96.35 84.75 86.55 92.25 90.25 88.55 80.37
RAANet [46] 89.89 95.16 86.70 81.33 77.16 86.05 84.73 77.51
SCAttNet [60] 88.66 92.23 86.30 82.55 78.80 85.71 85.41 77.55
HCANet [34] 92.35 96.35 86.75 87.65 93.35 91.29 90.15 81.45
A2FPN [48] 89.24 94.18 84.19 84.09 90.10 88.36 86.86 79.40
LANet [36] 91.88 95.83 86.33 87.27 92.91 90.84 89.75 80.73

SSCNet (ours) 93.19 97.16 89.50 91.41 93.26 92.90 91.03 82.55

Comparing SSCNet with the baseline methods, we observe a consistent trend where
SSCNet surpasses the others. DeepLabV3+, CBAM, ResUNet-a, and HCANet also show
competitive results, especially in the impervious surfaces and building classes. This high-
lights that the proposed SSCNet indeed addresses the challenge of capturing intricate edge
details and suppressing noise in remote sensing imagery. The OA and mIoU results show
a similar trend, emphasizing the effectiveness of SSCNet in providing both accurate and
spatially coherent predictions. The outcomes of this analysis underscore the significance
of the newly introduced SSCNet, particularly its potential in remote sensing applications
where accurate segmentation of land cover is essential. This substantial improvement in
performance is indicative of SSCNet’s potential to enhance object detection and land cover
classification in satellite and aerial imagery.

As shown in Figure 9, in a thorough visual inspection of the predicted labels on
randomly sampled images from the ISPRS Potsdam dataset, several key observations come
to light. SSCNet, our proposed semantic segmentation method, consistently showcases its
prowess in accurately delineating land cover types. Notably, it excels in capturing intricate
details, such as the edges of buildings and trees, where the SpeA module plays a pivotal
role. The inclusion of this module allows SSCNet to better understand the spectral context,
making it especially proficient in distinguishing fine-grained structures.

Moreover, the visual inspections also highlight SSCNet’s exceptional adaptability to
diverse land cover scenarios. It consistently produces accurate labels across various classes,
from impervious surfaces and buildings to low vegetation and water bodies. The model
exhibits its ability to capture both large-scale features, such as roads and barren lands,
as well as fine details, like trees and cars. This versatility reflects SSCNet’s proficiency
in handling the diverse and complex landscapes present in the ISPRS Potsdam dataset.
While challenges persist due to the dataset’s imbalanced class distribution and variation in
scale, SSCNet’s robust performance, driven by the SpeA module, underscores its utility in
real-world applications, particularly for urban and environmental monitoring.
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4.4.2. Results on LoveDA Dataset

Table 4 offers a comprehensive assessment of various methods, including SSCNet,
applied to semantic segmentation on the LoveDA dataset. SSCNet, the proposed model,
presents outstanding performance across multiple classes, demonstrating its competence
in accurate land cover classification. SSCNet achieves the highest F1-scores in most classes,
with notable distinctions in the water, barren, and agriculture categories, reaching im-
pressive F1-scores of 91.10%, 56.66%, and 85.35%, respectively. This signifies SSCNet’s
effectiveness in capturing intricate details and accurately discerning land cover types.
Comparing SSCNet with baseline models, it consistently outperforms them in terms of
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F1-scores, underlining its superiority in semantic segmentation. Other methods, such as
LANet and HCANet, exhibit competitive results, particularly in the building and road
classes, but SSCNet’s remarkable consistency across all classes showcases its robustness.
SSCNet further outperforms the competition in OA and mIoU, confirming its ability to
provide both precise and spatially coherent semantic segmentation. These results suggest
SSCNet’s significance in remote sensing applications, particularly in challenging classes
such as water and agriculture, with potential applications in accurate land cover analysis.

Table 4. Numerical comparisons on LoveDA test set.

Methods Background Building Road Water Barren Forest Agriculture AF OA mIoU

U-Net [57] 49.99 54.50 56.14 76.79 18.01 48.72 65.76 52.84 51.59 47.63
DeepLabV3+ [58] 52.06 54.75 56.91 77.62 16.04 47.97 67.50 53.27 52.07 47.41

CBAM [59] 54.23 60.76 63.10 78.83 26.51 52.05 69.72 57.89 54.41 49.96
ResUNet-a [43] 65.76 71.68 76.82 86.36 50.65 61.02 81.77 70.58 67.12 60.92
RAANet [46] 54.86 62.01 65.39 80.80 29.17 53.96 73.86 60.01 58.79 53.78
SCAttNet [60] 58.99 63.90 66.54 80.78 32.14 55.65 75.57 61.94 59.48 54.01
HCANet [34] 66.20 70.56 74.90 88.04 50.99 63.74 80.84 70.75 69.27 62.59
A2FPN [48] 65.66 71.57 76.71 86.24 50.57 60.93 81.65 70.47 67.02 60.83
LANet [36] 68.13 75.39 78.80 88.96 53.08 65.83 82.11 73.18 70.23 63.17

SSCNet (ours) 70.80 76.36 81.91 91.10 56.66 69.95 85.35 76.02 72.01 65.91

Examining SSCNet’s performance, it is clear that the model excels in capturing fine
details, evident in the high F1-scores across various classes. The water class is notably
challenging, but SSCNet demonstrates remarkable accuracy with an F1-score of 91.10%, in-
dicating its proficiency in distinguishing small water bodies. The building and road classes
also witness substantial performance improvements, with SSCNet achieving F1-scores of
76.36% and 81.91%, respectively. These results indicate SSCNet’s potential in applications
requiring precise segmentation, such as urban planning and environmental monitoring.
SSCNet surpasses existing models, including U-Net and DeepLab V3+, highlighting its
state-of-the-art performance. SSCNet’s competence in handling both fine-grained land
cover details and large-scale geographic areas is a testament to its versatility in remote
sensing tasks. Its substantial lead in the AF, OA, and mIoU further emphasizes its signifi-
cance, offering an advanced solution to semantic segmentation challenges in large-scale
satellite imagery.

As shown in Figure 10, visual inspections of the predicted labels on random samples
from the LoveDA dataset reveal valuable insights into the performance of SSCNet in the
context of large-scale satellite image segmentation. SSCNet demonstrates its competence in
effectively handling the diverse and intricate land cover types present in this dataset. No-
tably, the inclusion of the SpeA module contributes to the model’s remarkable performance.
It excels in accurately delineating various classes, including background, buildings, roads,
water bodies, barren lands, and forests. SSCNet’s superior performance in classifying these
diverse land cover types underscores its versatility and robustness. Overall, these visual
inspections demonstrate that SSCNet, with its SpeA module, stands out as a reliable choice
for large-scale satellite image segmentation, particularly for applications such as land cover
monitoring, urban planning, and environmental assessments in regions covered by the
LoveDA dataset.
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4.5. Ablation Study on SpeA

Table 5 provides a comparison between SSCNet, the proposed method, and a variant,
SSCNet w/o SpeA (without SpeA module), on both the ISPRS Potsdam and LoveDA
datasets for semantic segmentation. This evaluation aims to elucidate the importance of
the SpeA module in SSCNet’s performance. In the context of the ISPRS Potsdam dataset,
SSCNet exhibits impressive performance with an AF of 91.03, an OA of 92.90, and an mIoU
of 82.55. Notably, these metrics signify the model’s ability to achieve a high mean F1-score,
overall accuracy, and intersection over union, underlining its competence in semantic
segmentation. However, when the SpeA module is removed (SSCNet w/o SpeA), there’s
a considerable decline in all metrics, resulting in an AF of 87.62, an OA of 87.92, and an
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mIoU of 79.55. This reduction demonstrates the detrimental impact of eliminating the SpeA
module, highlighting its crucial role in enhancing SSCNet’s performance. The decrease
in mIoU and overall accuracy implies that SpeA is pivotal for capturing fine details and
providing accurate semantic segmentation.

Table 5. Ablation study of SpeA. Results are in the form of AF/OA/mIoU.

Models ISPRS Potsdam LoveDA

SSCNet 92.90/91.03/82.55 76.02/72.01/65.91
SSCNet w/o SpeA 87.92/87.62/79.55 62.65/60.16/54.62

Transitioning to the LoveDA dataset, SSCNet again delivers commendable results,
with an AF of 76.02, an OA of 72.01, and an mIoU of 65.91. These metrics indicate SSCNet’s
ability to perform well on this dataset, exhibiting its adaptability. However, when the SpeA
module is omitted (SSCNet w/o SpeA), there’s a more substantial drop in performance
across all metrics. The model’s AF decreases to 60.16, OA to 62.65, and mIoU to 54.62.
Moreover, as drawn in Figures 11 and 12, we observe that SpeA significantly improves
the convergence rate while keeping a lower loss than before. This significant reduction
reaffirms the importance of the SpeA module in SSCNet, as its removal leads to a noticeable
decrease in segmentation accuracy and overall performance.
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As shown in Figures 13 and 14, the results predicted by SSCNet and SSCNet w/o
SpeA are presented. With SpeA, SSCNet exhibits enhanced consistency in classifying
various land covers, closely mirroring the ground truth, particularly around complex
interfaces such as building edges and vegetative boundaries. The edge details are notably
sharper, as SpeA aids in delineating clear and precise segmentations, a contrast to the
SSCNet without SpeA, where the edges appear blurred and less defined. This comparative
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visualization underscores the efficacy of SpeA in augmenting the spatial resolution and
fidelity of semantic segmentation in remote sensing imagery.
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These findings demonstrate that the SpeA module in SSCNet significantly contributes
to its ability to handle both ISPRS Potsdam and LoveDA datasets, enhancing its semantic
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segmentation capabilities, especially in more challenging datasets like LoveDA. Therefore,
retaining the SpeA module in SSCNet is essential for robust performance across various
remote sensing applications.

4.6. Effects of the Value of α

In this section, we delve into the effects of the coefficient α on the model’s performance
across two distinct datasets: ISPRS Potsdam and LoveDA. The coefficient α is pre-defined
to modulate the importance of spectral attention within the model’s architecture. Table 6
reports the results with different settings of α. An analysis of the performance metrics
indicates a non-linear relationship between the value of α and the model’s effectiveness,
with the model achieving optimal performance at an intermediate value.

Table 6. Results with different values of α. Results are in the form of AF/OA/mIoU.

Values ISPRS Potsdam LoveDA

α = 0 87.92/87.62/79.55 62.65/60.16/54.62
α = 0.25 89.90/88.11/80.91 74.75/70.26/64.51
α = 0.5 92.90/91.03/82.55 76.02/72.01/65.91

α = 0.75 88.02/86.27/79.23 73.60/72.11/65.96
α = 1.0 84.02/83.73/76.02 59.14/56.79/51.57

Specifically, the optimal results for both datasets are observed at α = 0.5, where the
AF/OA/mIoU scores reach their peak. For the ISPRS Potsdam dataset, the performance
improves consistently as α increases from 0 to 0.5, suggesting that the incorporation of spec-
tral attention up to a certain threshold contributes positively to the model’s accuracy and
ability to generalize. However, beyond this point, there is a notable decline in performance,
with α = 0.75 showing a decrease and α = 1.0 regressing to levels similar to the absence
of spectral attention (α = 0). This trend is mirrored in the LoveDA dataset, albeit with
more pronounced fluctuations, suggesting a higher sensitivity to the changes in spectral
attention. The pronounced peak at α = 0.5, followed by a decline, indicates that while
spectral attention is crucial, its overemphasis is counterproductive.

The results elucidate the critical balance required in spectral attention to enhance
model performance. At low values of A (0 and 0.25), the model is likely underutilizing
spectral information, while at high values (0.75 and 1.0), there is an overemphasis that may
lead to overfitting or distraction from spatial features. The peak performance at α = 0.5
across all metrics for both datasets underscores the importance of a moderated spectral
attention mechanism. This balance ensures that the model is neither starved of spectral
information nor overwhelmed by it, facilitating robust feature extraction that is evidently
beneficial across different landscapes and urban settings, as represented by the ISPRS
Potsdam and LoveDA datasets, respectively.

4.7. Discussion

The proposed SSCNet introduces an innovative approach to the semantic segmenta-
tion of remote sensing images by incorporating both spectral and spatial information within
a unified framework. Theoretically, the architecture of SSCNet is designed to exploit the
rich spectral information present in hyperspectral images through its joint spectral–spatial
attention mechanism, potentially outperforming methods that do not utilize such integra-
tion. While our comparisons have been limited to methods utilizing 2D FFT conversion,
the conceptual strengths of SSCNet suggest that it could excel in comparisons against
recent state-of-the-art methods as well. Specifically, SSCNet’s feature representation in
both the spatial and frequency domains may provide enhanced discriminative capabilities,
particularly in complex segmentation scenarios.

Future work could extend these comparisons to include recent advancements in se-
mantic segmentation that do not employ 2D FFT conversion, providing a more exhaustive
benchmark for SSCNet’s performance. Moreover, investigations could be directed toward
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refining SSCNet’s spectral–spatial attention mechanisms to further leverage the comple-
mentarity of spectral and spatial features, thereby reinforcing its theoretical and practical
superiority in the semantic segmentation of remote sensing images.

5. Conclusions

In conclusion, this study introduces SSCNet, a pioneering spectrum-space collab-
orative network aimed at enhancing semantic segmentation in RSIs. SSCNet adeptly
capitalizes on the intrinsic spectral characteristics of RSIs by incorporating spectral and
spatial context for discriminative representation learning. The novel joint spectral–spatial
attention module, comprising SpeA and SpaA, dynamically captures the spectral and
spatial dependencies simultaneously. The proposed CSED in SpeA is pivotal for modeling
spectral contexts in the frequency domain, and the position-wise self-attention in SpaA
complements this by addressing spatial aspects. The synergy achieved by merging these
attention maps through AttnFusion results in SSCNet’s attention mechanism, which con-
siders both spectral and spatial contexts. Additionally, the introduced hybrid loss function,
which combines edge loss, Dice loss, and cross-entropy loss, ensures the comprehensive
training of SSCNet, thus enabling it to learn discriminative features within both the spectral
and spatial domains. Experimental results on the ISPRS Potsdam and LoveDA datasets
demonstrate SSCNet’s superiority over state-of-the-art methods, reaffirming its efficacy in
addressing the challenges of remote sensing image segmentation.

Looking forward, this work opens up several avenues for future research. First,
SSCNet could be extended to address the task of pansharpening, which is critical for
improving the spatial resolution of RSIs. Second, further investigations into adaptive
fusion techniques for spectral and spatial features can be explored to enhance the network’s
flexibility in handling diverse remote sensing scenarios. Additionally, the incorporation of
more advanced spectral analysis tools and domain adaptation methods may improve the
model’s performance under various conditions. Finally, research into the application of
SSCNet in real-time semantic segmentation and its integration with autonomous systems,
such as drones or satellites, could pave the way for transformative developments in the
field of remote sensing and environmental monitoring.
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