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Abstract: The Leaf Area Index (LAI) is a crucial vegetation parameter for climate and ecological
models. Reflectance anisotropy contains valuable supplementary information for the retrieval of
properties of an observed target surface. Previous studies have utilized multi-angular reflectance data
and physically based Bidirectional Reflectance Distribution Function (BRDF) models with detailed
vegetation structure descriptions for LAI estimation. However, the optimal selection of viewing angles
for improved inversion results has received limited attention. By optimizing directional observations
and integrating the PROSAIL and Ross–Li models, this study aims to enhance LAI estimation
from MODIS BRDF data. A dataset of 20,000 vegetation parameter combinations was utilized to
identify the directions in which the PROSAIL model exhibits higher sensitivity to LAI changes
and better consistency with the Ross–Li BRDF models. The results reveal significant variations in
the sensitivity of the PROSAIL model to LAI changes and its consistency with the Ross–Li model
over the viewing hemisphere. In the red band, directions with high sensitivity to LAI changes
and strong model consistency are mainly found at smaller solar and viewing zenith angles. In the
near-infrared band, these directions are distributed at positions with larger solar and viewing zenith
angles. Validation using field measurements and LAI maps demonstrates that the proposed method
achieves comparable accuracy to an algorithm utilizing 397 viewing angles by utilizing reflectance
data from only 30 directions. Moreover, there is a significant improvement in computational efficiency.
The accuracy of LAI estimation obtained from simulated multi-angle data is relatively high for LAI
values below 3.5 when compared with the MODIS LAI product from two tiles. Additionally, there
is also a slight improvement in the results when the LAI exceeds 4.5. Overall, our results highlight
the potential of utilizing multi-angular reflectance in specific directions for vegetation parameter
inversion, showcasing the promise of this method for large-scale LAI estimation.

Keywords: leaf area index (LAI); kernel-driven Ross–Li model; PROSAIL model; MODIS BRDF

1. Introduction

The leaf area index (LAI), occupying a crucial role in the vegetation canopy [1], is
defined as the hemi-surface area of all leaves or needles in the vegetation canopy divided
by the horizontal ground surface area [2,3]. LAI serves as a key indicator of vegetation
health, productivity, and overall ecosystem functioning [4]. It provides essential informa-
tion about the size and distribution of the leaf canopy, relating to various processes such as
photosynthesis [5], evaporation and transpiration [6,7], and carbon assimilation [8]. Accu-
rately estimating the LAI is of utmost importance as it has been employed in estimating
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biophysical parameters of vegetation [9,10] and in monitoring vegetation growth [11], as
well as in the study of global climate change [12], ecosystem productivity, biogeochemistry,
hydrology, and ecology [13]. LAI also plays a crucial role in modeling the exchanges of
mass, energy, and momentum between the biosphere and the atmosphere [14,15]. There-
fore, ensuring the accuracy of LAI estimation is pivotal for effective ecological research,
environmental monitoring, and sustainable land management strategies.

The measurement of the LAI can be achieved through various approaches [16]. Direct
methods entail partially or completely defoliating the canopy to assess the total leaf area
of plants or trees, which involves destructiveness and a time-consuming process [17,18].
Indirect approaches employ mathematical algorithms to characterize the passage of light
through the canopy, utilizing Beer’s Law for estimating the total leaf area [16,19]. In recent
years, technological advancements have revolutionized the way we measure leaf area.
Surface reflectance data captured by moderate-resolution sensors have been employed
in the generation of several global LAI products [20–24], and these products have been
extensively validated using field measurements and upscaled high-resolution LAI reference
maps [25–29]. These technologies offer the potential to enhance our understanding of
vegetation dynamics over vast geographical areas, providing valuable information for
global climate change studies. However, accurate measurements face challenges posed
by factors like cloud cover, satellite orbit constraints, and the requirement for precise
multi-angle data [30].

Ground-based experiments have demonstrated that utilizing abundant multi-angle
information can significantly improve LAI estimation accuracy [31]. This improvement is
attributed to the fact that multi-angle data provide a wealth of additional information about
vegetation parameters. Satellite-observed reflectance at multiple viewing angles, along
with physical BRDF models that provide detailed descriptions of vegetation structure, are
often directly utilized for the retrieval of vegetation structure parameters [32]. Physical
BRDF models, based on physical laws, describe how radiation interacts with vegetation
canopies. These models enable the calculation of reflectance under different viewing and
illumination conditions, taking into account a wide range of leaf and canopy structure pa-
rameters. By employing different inversion techniques, physical BRDF models can estimate
these vegetation parameters using reflectance data as input [33]. For example, using the
PROSAIL model can simulate the interaction of light with vegetation at different scales,
from individual leaves to entire canopies, and provides outputs such as leaf reflectance,
transmittance, and absorptance, as well as canopy reflectance [34,35]. By employing the
PROSAIL model in inverse mode, it is possible to obtain biophysical parameters such as
LAI, chlorophyll content, and vegetation water content from canopy reflectance [36].

Although multi-angular measurements provide enhanced information regarding the
structural properties of vegetation [37–40], it is important to acknowledge that the capability
of satellites to acquire multi-angle data is constrained by the characteristics of their orbits
as well as by the presence of clouds and shadows [41], leading to a loss of anisotropic
information. The number of angle samples in remote sensing observations often fails to
meet the sample quantity requirements of the physical BRDF model inversion. Additionally,
reflectance measurements with similar geometric configurations tend to exhibit significant
autocorrelation, while random noise in these measurements is closely associated with
vegetation structure [42]. Moreover, during the inverse process, iterative optimization
techniques may encounter the challenge of converging to a local minimum instead of
the global minimum [31], which can result in potentially inaccurate outcomes. All the
above-mentioned factors may have an impact on the accuracy of LAI inversion.

By accumulating observations over time from satellite sensors with a wide field of view,
such as those onboard the Moderate Resolution Imaging Spectroradiometer (MODIS) [43]
and the Multi-angle Imaging SpectroRadiometer (MISR) [44], along with Ross–Li models,
BRDF products have been successfully generated at both global and regional scales. The
surface BRDF product provides a means to characterize the directional properties of the
underlying surface reflection across the entire observation hemisphere [45,46]. Coupling
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different models is a commonly employed strategy to utilize their individual strengths
and enhance the accuracy of modeling surface reflection and the estimation of vegetation
parameters. A model-to-model approach has been proposed to avoid most of the challenges
associated with inverting LAI, which by using multi-angular reflectance can be resolved [47].
In this kind of approach, the multi-angular measurements are used to fit a simplified BRDF
model that requires only a few parameters to describe the surface reflectance anisotropy. For
example, by fitting the Ross–Li BRDF model to the multi-angular reflectance data, the model
provides estimates of the BRDF parameters, which can quantitatively describe how surface
reflectance varies with different viewing and illumination angles [42,48]. Parameters of
the model are then estimated to facilitate the inversion process. The BRDF information
reconstructed from these satellite observations has been successfully applied in numerous
parameter estimations, such as albedo, clumping index and canopy height [43,49–53],
laying the foundation for improving LAI satellite inversion algorithms. Although the
model-to-model approach provides a solution for using multi-angle observation to inverse
LAI, it may introduce additional sources of error or uncertainty due to the additional
modeling step.

Zhang et al. [30] coupled the PROSAIL model with the hotspot-corrected RossThick–
LiSparseReciprocal (RTLSR_C) BRDF model [54,55] to inverse LAI. They used the PROSAIL
model to simulate reflectance for 397 viewing directions and established a lookup table
based on a dataset of 20,000 average distributed vegetation parameter combinations, and
then utilized MODIS BRDF products to simulate directional reflectance, and subsequently
inverted the data to obtain estimates of LAI. There is a disadvantage to this kind of method;
that is, they did not search for the optimal number and positions of viewing angles that
are needed to obtain a better inversion result. There are also studies suggesting that
incorporating more observation directions introduces redundant information, thereby
increasing the noise in the input data and leading to greater uncertainty in the retrieval
of parameters [56]. Due to the varying ability of physical models to accurately reproduce
anisotropy across different viewing directions, increasing the number of observations can
also lead to a decrease in inversion accuracy [40]. Hence, it is crucial to enhance LAI
estimation methods by incorporating reconstructed BRDF information and determining
the optimal number and positions of viewing angles. This will improve the accuracy and
efficiency of large-scale LAI estimation.

This study focuses on the collaborative use of the RTLSR_C and PROSAIL models,
specifically examining the PROSAIL model’s sensitivity to varying LAI at different obser-
vation positions. Our emphasis lies in ensuring consistency between the PROSAIL and
RTLSR_C models across diverse observation points, with a primary goal of identifying
optimal viewing angles for improved inversion results. The paper starts with an introduc-
tion highlighting the importance of LAI estimation. The methodology section details the
coupling of models and the PROSAIL sensitivity analysis. Data utilization involves high-
quality MODIS BRDF products and an improved look-up table for LAI inversion. Results
from optimal viewing angles are presented, followed by validation against ground-based
LAI measurements, high-resolution LAI maps, and MODIS LAI products.

2. Materials and Methods

The flowchart of this research is illustrated in Figure 1, which includes four main
components. The first component focuses on analyzing the PROSAIL model’s sensitivity
to variations. The second component investigates the coherence between PROSAIL and
RTLSR_C BRDF models under different observation geometries. The third component
involves using the results obtained from the previous two steps to determine the optimal
direction based on the analysis conducted with the 397 viewing directions. A new lookup
table that captures the relationship between vegetation parameters and reflectance in the
optimal observation direction using the PROSAIL model is created. The fourth component
involves simulating the reflectance in the optimal observation direction based on MODIS
BRDF products. By comparing the simulated reflectance and the corresponding reflectance
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in the new lookup table, the minimum cost function is calculated to determine the LAI
value. The results will be validated using ground-based LAI measurements and MODIS
LAI products.

Remote Sens. 2023, 15, 5609 4 of 22 
 

 

2. Materials and Methods 
The flowchart of this research is illustrated in Figure 1, which includes four main 

components. The first component focuses on analyzing the PROSAIL model’s sensitivity 
to variations. The second component investigates the coherence between PROSAIL and 
RTLSR_C BRDF models under different observation geometries. The third component 
involves using the results obtained from the previous two steps to determine the optimal 
direction based on the analysis conducted with the 397 viewing directions. A new lookup 
table that captures the relationship between vegetation parameters and reflectance in the 
optimal observation direction using the PROSAIL model is created. The fourth component 
involves simulating the reflectance in the optimal observation direction based on MODIS 
BRDF products. By comparing the simulated reflectance and the corresponding 
reflectance in the new lookup table, the minimum cost function is calculated to determine 
the LAI value. The results will be validated using ground-based LAI measurements and 
MODIS LAI products. 

 
Figure 1. Flowchart of LAI estimation by linking the PROSAIL and Ross–Li BRDF models using the 
MODIS BRDF product. Part A is the PROSAIL model’s sensitivity to LAI, part B is the coherence 
between PROSAIL and RTLSR_C BRDF models, part C is to determine the optimal direction, and 
part D is the inversion and validation of LAI based on MODIS BRDF. 

2.1. PROSAIL Model for Multi-Angular Reflectance Simulations 
The PROSAIL model, a reliable canopy radiative transfer model, was chosen for 

vegetation parameter inversion due to its simple input parameters and its ability to 
maintain a consistent BRDF with the Ross–Li model [57]. This study references the latest 
version of the 4SAIL canopy BRDF model, which incorporates the hotspot effect, along 
with the PROSPECT-5 model that provides a comprehensive description of leaf optical 
reflectance and transmittance (http://teledetection.ipgp.jussieu.fr/prosail/, accessed on 10 
August 2021) [58–60]. The PROSAIL model has the ability to simulate canopy reflectance 
with a resolution of 1 nm for any sun-viewing geometry within the spectra range of 400–
2500 nm. 

Figure 1. Flowchart of LAI estimation by linking the PROSAIL and Ross–Li BRDF models using the
MODIS BRDF product. Part A is the PROSAIL model’s sensitivity to LAI, part B is the coherence
between PROSAIL and RTLSR_C BRDF models, part C is to determine the optimal direction, and
part D is the inversion and validation of LAI based on MODIS BRDF.

2.1. PROSAIL Model for Multi-Angular Reflectance Simulations

The PROSAIL model, a reliable canopy radiative transfer model, was chosen for
vegetation parameter inversion due to its simple input parameters and its ability to maintain
a consistent BRDF with the Ross–Li model [57]. This study references the latest version
of the 4SAIL canopy BRDF model, which incorporates the hotspot effect, along with the
PROSPECT-5 model that provides a comprehensive description of leaf optical reflectance
and transmittance (http://teledetection.ipgp.jussieu.fr/prosail/, accessed on 10 August
2021) [58–60]. The PROSAIL model has the ability to simulate canopy reflectance with a
resolution of 1 nm for any sun-viewing geometry within the spectra range of 400–2500 nm.

Each parameter in the PROSAIL model is associated with a common value. This study
utilizes a comprehensive simulation dataset of 20,000 vegetation parameter combinations,
which was used in a previous study [30]. These combinations were generated using
the Satellite periodic function through the uniform sampling of seven leaf and canopy
parameters, i.e., leaf structure parameter (Ns), chlorophyll a and b content (Cab), equivalent
water thickness (Cw), leaf mass per unit leaf area (Cm), leaf area index (LAI), average leaf
angle (ALA), and soil coefficient (Psoil). Reasonable ranges have been set for all seven
parameters, and the rest of the parameters have been set to the constant values. The specific
information about these leaf and canopy parameters can be found in Zhang et al., 2021 [30].

By inputting the vegetation parameters into the PROSAIL model, the canopy re-
flectance spectra for the entire view hemisphere at different solar zenith angles can be
simulated. The red and near-infrared (NIR) bands are preferred for retrieving most LAI
products due to their heightened sensitivity [61]. Consequently, PROSAIL simulations

http://teledetection.ipgp.jussieu.fr/prosail/
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were executed at the central wavelengths within the two MODIS bands, specifically at
645 nm and 858 nm.

2.2. Kernel-Driven Ross–Li BRDF Model and MODIS BRDF

The kernel-driven Ross–Li model [42,48] has been widely adopted to reconstruct
BRDF data in the sun-viewing hemisphere from limited observation. The RossThick–
LiSparseReciprocal (RTLSR) model was selected as the operational algorithm for generating
the MODIS BRDF parameter product [43] The general expression of the RTLSR model is
provided in Equation (1). R is the surface bidirectional reflectance in the wavelength λ; fiso,
fvol, and fgeo are the spectrally dependent BRDF model parameters; Kvol and Kgeo are kernel
functions of the volumetric [62,63] and geometric optical [48,64] scattering, respectively; Ω
is a direction vector; and i and r represent the meanings of incident and reflected radiance.

R(Ωi, Ωr, λ) = fiso(λ) + fvol(λ)Kvol(Ωi, Ωr, λ) + fgeo(λ)Kgeo(Ωi, Ωr, λ) (1)

Through the utilization of multi-angular reflectance data in the model, the three BRDF
model parameters (fiso, fvol, and fgeo) can be derived by employing least-squares regression.
Finally, by utilizing the extrapolation capability of the model, it is possible to simulate
directional reflectance at arbitrary orientations [43,48].

The global 500 m BRDF parameter products provided by MODIS consist of spectrally
dependent BRDF model parameters as well as quality data. In subsequent studies, only
high-quality (full inversion, quality flag = 0/1) MODIS BRDF products [41,43] were used. In
this study, a modified version of the Ross–Li model called RTLSR_C was employed [54,55].
The RTLSR_C model incorporates the corrected exponential hotspot function developed by
Chen and Cihlar [65] into the volumetric and geometric-optical scattering kernels, resulting
in an enhanced capability for simulating hotspots compared to the original RTLSR model.
The optimal hotspot parameters (C1 for height and C2 for width) of the RTLSR_C model
in various typical bands were determined through an extensive search using abundant
hotspot data [54]. Due to the localized modification of reflectance near the hotspot, without
affecting other directions, the MODIS BRDF parameters were directly applied to the hotspot-
corrected kernels in order to simulate multi-angular reflectance. The hotspot parameters
for MODIS at 645 nm (C1 = 0.5, C2 = 3.4◦) and 858 nm (C1 = 0.5, C2 = 3.0◦) were employed
to simulate the directional reflectance using the MODIS BRDF parameters.

2.3. Determination of the Optimal Direction

When establishing a lookup table, it is important to choose an adequate number
of directions to capture the anisotropic reflection characteristics of the Earth’s surface.
However, selecting too many directions can impact computational efficiency. It is necessary
to evaluate the representativeness of reflectance in each selected direction. Based on the
397 sun-viewing geometry used in the previous study [30], this study focuses on identifying
the directions in which the PROSAIL model exhibits a higher sensitivity to LAI changes
and demonstrates better consistency with the RTLSR_C model. The range of solar zenith
angles for the 397 observations is 0◦–60◦ with a spacing of 15◦. The range of viewing zenith
angles is 0◦–80◦ with a spacing of 10◦. The range of relative azimuth angles is 0◦–330◦ with
a spacing of 30◦. The reason for filtering the reflectance based on these directions is that the
lookup table based on these directions yields a high accuracy of LAI, and this approach
could avoid reflectance correlation in neighboring directions.

2.3.1. Sensitivity Analysis of the PROSAIL Model to Changes in LAI

To determine the most sensitive directions of the PROSAIL model to changes in LAI,
the dataset of 20,000 sets of vegetation parameter combinations was expanded. For each
vegetation parameter combination, the LAI value was varied from 0.5 to 10 with a step
size of 0.5 while keeping the other parameters unchanged. Subsequently, the expanded
vegetation parameters for each sample were sequentially inputted into the PROSAIL model,
and the standard deviation (σ) (Equation (2)) of the simulated reflectance ρ(Ωi, Ωr) for each
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combination was calculated in any direction within the observed hemisphere. n represents
the sample size, and in this study its value is 20. ρ is the mean value of the 20 simulated
sets of reflectance ρ. A larger value of σ indicates a higher sensitivity. To ensure a more
representative outcome, the study finally employed the average value of σ obtained from
20,000 datasets.

σ(Ωi, Ωr) =

√√√√∑n
j=1

(
ρj(Ωi, Ωr)− ρ(Ωi, Ωr)

)2

n− 1
(2)

2.3.2. The Consistency between the Models

First, the 20,000 sets of vegetation parameters are sequentially input into the PROSAIL
model to simulate the ρ(Ωi, Ωr) in various directions. Then, the ρ(Ωi, Ωr) is inputted into
the RTLSR_C BRDF model to calculate the model parameters, and the reflectance ρ0(Ωi,
Ωr) in any direction simulated by the kernel-driven model can be obtained. The root mean
square error (RMSE) between the reflectance obtained by the two models (Equation (3))
is used to evaluate the consistency of the two models. The RMSE is computed for each
direction using ρ and ρ0, with a value of k set at 20,000. A lower RMSE value signifies
greater consistency between the two models.

RMSE(Ωi, Ωr) =

√
∑k

j=1
(
ρj(Ωi, Ωr)− ρ0,j(Ωi, Ωr)

)2

k− 1
(3)

2.4. LAI Estimation from MODIS BRDF Data

Once the optimal directions were determined, in Section 2.3, the PROSAIL model was em-
ployed to simulate the reflectance in the red and NIR bands at these directions using 20,000 dif-
ferent combinations of vegetation parameters. As a result, a new lookup table was created to
establish the relationship between vegetation parameters and multi-angle reflectance.

When calculating LAI using MODIS BRDF, the process begins by simulating the
reflectance in the red and NIR bands at the specified directions using the MODIS BRDF
product and the RTLSR_C model. Subsequently, the simulated reflectance values are
compared with the reflectance values produced by the PROSAIL model in the new lookup
table, and the RMSEc is computed over all available viewing angles and wavelengths.
The calculation formula for RMSEc is the same as Equation (3), with the difference that ρ
represents the simulated reflectance in the red or NIR band at the selected direction when a
specific set of vegetation parameter combinations is input into the PROSAIL model, while
ρ0 represents the corresponding simulated data from MODIS BRDF. Finally, the 50 records
with the lowest RMSEc values are selected, and the corresponding LAI values are averaged
to derive the retrieved LAI result [30].

To improve the computational efficiency, this study also introduced the linear rela-
tionships between the Area Leaf Angle Distribution (ALA) and the fraction of vegetation
volume (fvol) in the NIR band [30]. The formula is as follows:

ALA = 186.54× f vol
NIR + 13.88

(
ALA ∈ [10◦, 85◦], f vol

NIR ∈ [0, 0.3813]
)

(4)

During the actual computation process, the size of the lookup table is constrained by
incorporating a variation of ±3◦ around the empirically estimated Angular Leaf Alignment
(ALA). To ensure that all data can participate in the calculation, when the fvol in the NIR band
is not within the range of 0–0.3813, all 20,000 sets of data will be involved in the calculation.

2.5. Validation with LAI Measurements and MODIS LAI Product

We utilized the field-measured LAI values at the 500 m plot level and 30 m LAI maps
to validate the proposed method. The validation process was conducted at two sites,
Honghe (47◦39′N, 133◦31′E) and Hailun (47◦24′~47◦26′N, 126◦47′~126◦51′E), located in
Heilongjiang Province, northeastern China. The crop types include rice, corn, soybean, and
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sorghum. A total of 180 sets of field-measured LAI data were collected by Fang et al. in
2012, 2013, and 2016 (https://doi.pangaea.de/10.1594/PANGAEA.900090, accessed on
10 August 2021) [61,66,67]. The LAI data were collected using the LAI-2200 instrument
and underwent comprehensive validation during the majority of the growing seasons.
Furthermore, they were utilized to validate the precision of various crucial satellite LAI
products [61]. In addition to validating the accuracy of the results in this study, the field mea-
surements were also utilized in determining the optimal number of observation directions.

LAI maps with a spatial resolution of 30 m, obtained from a previous study [61], were
used alongside the corresponding LAI measurements. These high-resolution reference LAI
maps were generated using HJ-1, Landsat 7, and Sentinel-2A images and demonstrated
strong agreement with the field-measured LAI values. For the purpose of cross-validation,
our proposed method was valid using 284 sets of aggregated LAI values at a 1.5 km scale,
derived from the 30 m LAI maps in this study. The MODIS BRDF data with spatiotemporal
consistency with these measurements were collected by Zhang et al. in 2021 [30]. To ensure
data integrity, high-quality BRDF data from the nearest available time were incorporated
as alternative data when the BRDF had a fill value or exhibited poor quality.

The algorithm’s accuracy was also validated using high-quality MODIS LAI products
in two tiles. The MCD15A3H Version 6.1 MODIS Level 4 LAI product is a 4-day composite
dataset with 500 m pixel size. Tile h26v04 is located in northeastern China, while tile
h12v04 is situated in northeastern America. According to the statistics derived from the
Annual International Geosphere-Biosphere Programme (IGBP) classification at the MODIS
pixel scale, tile h26v04 is primarily characterized by grassland, comprising 53% of the
tile’s coverage, along with 20% cropland. On the other hand, tile h12v04 is predominantly
covered by forests, with 24% Mixed Forests, 18% Deciduous Broadleaf Forests, 8% Woody
Savannas, and 5% Cropland. The selected time for h26v04 is days 181–193 of the year 2020,
while the selected time for h12v04 is days 245–257. The vegetation during these selected
time periods corresponds to the growing season, where the vegetation exhibits thriving and
robust growth. To ensure high-quality standards, it is imperative to mandate that all MODIS
LAI product data within a 16-day period exhibit high quality, with the condition that the
standard deviation of the four LAI values remains below 0.4. Furthermore, the reflectance
values in the red and NIR bands for 397 directions were simulated using the high quality
BRDF product (MCD43A1) and the kernel-driven BRDF model at the corresponding 4 days.
It is required that the RMSE between the multi-angular reflectance values of different days
remains below 0.01.

3. Results
3.1. Sensitivity of the PROSAIL Model to LAI and Consistency with the Kernel-Driven
BRDF Model
3.1.1. Sensitive Directions to LAI Variations

The dataset of 20,000 sets of vegetation parameter combinations was expanded by
setting the LAI to range from 0.5 to 10 with a step size of 0.5. Figure 2 illustrates a three-
dimensional shape of simulated reflectance under different LAI parameter conditions based
on the common value and PROSAIL models with a solar zenith angle of 45◦. The results
demonstrate significant variations in the simulated bidirectional reflectance with changing
LAI values. Figure 3 presents examples of directional reflectance variations with changing
LAI values, simulated using the common value and PROSAIL model in three specific
directions. It shows that as LAI is low, there are significant changes in surface reflectance
with the increase in LAI. However, as LAI further increases (>3.5), the reflectance tends to
remain relatively constant. It also demonstrates that the intensity of LAI variations differs
across different directions and spectral bands, and the σ of reflectance in a specific direction
can be used to measure the magnitude of reflectance variation. In other words, directions
with higher σ values indicate that the PROSAIL model is more sensitive to LAI variations.

https://doi.pangaea.de/10.1594/PANGAEA.900090
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BRDF values. 

Figure 2. Three-dimensional BRDF shape in the red (a–c) and NIR (d–f) bands simulated based on
the common value and PROSAIL model under different LAI parameter conditions. Different colors
represent the magnitude of the reflectance. In the bottom coordinate plane, the radius represents the
zenith angle, while the polar angle represents the azimuth angle. The vertical axis is used to plot the
BRDF values.
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combinations, and by calculating the average of these 20,000 sets of σ, we can determine 
the directions that are more sensitive to variations in LAI. The distribution of mean σ at 
different solar zenith angles over the viewing hemisphere is shown in Figure 4. The results 
indicate that in the red band, when the solar zenith angle is small, high sensitivity is 
observed near the small view zenith angles area. However, in the NIR band, under large 
solar zenith angles area, high sensitivity is observed near hotspots. The sensitivity of the 
PROSAIL model to changes in LAI varies across different directions in different spectral 
bands, highlighting the importance of considering each band individually. 
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Figure 3. Here, (a,c) refer to the directional reflectance variations with changing LAI values, simulated
using the common value and PROSAIL model in the nadir (green line), 45◦ forward (45F, black line)
and 45◦ backward (45B, red line) in the red and NIR bands under a solar zenith angle of 45◦. The σ of
directional reflectance with changing LAI is also demonstrated. Then, (b,d) refer to the distribution of
σ in the viewing hemisphere. The radius represents the zenith angle, while the polar angle represents
the azimuth angle. Different colors represent the magnitude of the σ.
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Figure 3 only shows an example of the distribution of σ for the common value over
the viewing hemisphere. We employed a total of 20,000 sets of vegetation parameter
combinations, and by calculating the average of these 20,000 sets of σ, we can determine
the directions that are more sensitive to variations in LAI. The distribution of mean σ

at different solar zenith angles over the viewing hemisphere is shown in Figure 4. The
results indicate that in the red band, when the solar zenith angle is small, high sensitivity is
observed near the small view zenith angles area. However, in the NIR band, under large
solar zenith angles area, high sensitivity is observed near hotspots. The sensitivity of the
PROSAIL model to changes in LAI varies across different directions in different spectral
bands, highlighting the importance of considering each band individually.
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Figure 4. The distribution of the average σ of 20,000 sets of data over the viewing hemisphere at solar
zenith angles (SZA) of 0◦ (a,f), 15◦ (b,g), 30◦ (c,h), 45◦ (d,i), and 60◦ (e,j) in the red (a–e) and NIR
(f–j) bands.

3.1.2. Consistent between Two Models

The 20,000 sets of vegetation parameter combinations were sequentially inputted into
the PROSAIL model to simulate the observation of hemispherical reflectance (ρ) at different
solar zenith angles. These reflectance values were then used as inputs in the RTLSR_C
BRDF model to calculate model parameters, allowing for the simulation of reflectance (ρ0)
in any given direction. Figure 5 shows an example of the three-dimensional BRDF shapes
of ρ0 based on ρ simulated using the common value and PROSAIL model. Compared to
Figure 2b,e, the results indicate a high level of consistency between the BRDF simulated
by the RTLSR_C BRDF model and the results obtained from the PROSAIL model for
the common value dataset. Comparative analysis of these two BRDF models enables a
quantitative evaluation of the consistency between them.

To assess the consistency between the two models in any direction, 20,000 sets of ρ
and corresponding ρ0 from both models are compared. Figure 6 shows the comparison
between the reflectance of the two models in two directions in the NIR band when the
solar zenith angle is 30◦. The consistency of the two models varies significantly across
the two directions, which can be quantified using RMSE. Typically, the consistency in the
nadir direction, which is commonly studied, is not significant, with an RMSE of 0.042.
In comparison, another direction with a view zenith angle of 40◦ in the principal plane
exhibits a lower RMSE of 0.012, indicating a stronger consistency between the two models
in that particular direction.
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Figure 7. The distribution of the RMSE between the reflectance from the PROSAIL and RTLSR_C 
models over the whole viewing hemisphere at solar zenith angles of 0° (a,f), 15° (b,g), 30° (c,h), 15° 
(d,i), and 60° (e,j) in the red (a–e) and NIR (f–j) bands. 

3.2. Optimal Observation Geometry for LAI Retrieval 
To jointly utilize these two models for LAI inversion, it is necessary to select 

directions that are sensitive to LAI variations and exhibit high consistency between the 

Figure 6. Comparison of reflectance in the NIR band between the PROSAIL and RTLSR_C models
in the nadir direction (black points) and at a backscattering angle of 40◦ (red points) when the solar
zenith angle is 30◦.

By calculating the RMSE between the reflectance from the two models across various
viewing directions, we can quantitatively evaluate the level of agreement between them.
Figure 7 shows the distribution of the RMSE between the reflectance of the two models
over the whole viewing hemisphere under different solar zenith angles. A lower RMSE
indicates a higher level of consistency, suggesting that the two models yield similar results
in terms of reflectance predictions. The consistent direction varies with solar zenith angle
changes. Although efforts have been made to correct for the hot-spot effects, the consistency
between the two models remains relatively low around the hot-spot direction. Additionally,
in the red band, when the solar zenith angle is between 15◦ and 45◦, the consistency is
poor in some directions within the forward hemisphere. On the other hand, in the NIR
band, when the solar zenith angle is greater than 30◦, there is a weaker correlation near the
nadir direction.
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3.2. Optimal Observation Geometry for LAI Retrieval

To jointly utilize these two models for LAI inversion, it is necessary to select directions
that are sensitive to LAI variations and exhibit high consistency between the two models.
Based on the previous analysis using 397 directions, and considering the sensitivity of
the PROSAIL model to LAI changes and model consistency, the optimized observation
directions can be selected by adjusting the threshold. To determine the optimal number of
observations for LAI retrieval, different numbers of observations were selected and studied,
and ultimately the optimal number of observations was determined. The σ and RMSE
thresholds set for different bands and observation numbers are shown in Table 1.

Table 1. The σ and RMSE thresholds set for the red and NIR bands with respect to different observa-
tion numbers.

No.
Red NIR

σ RMSE σ RMSE

15 0.0235 0.0038 0.0860 0.0148
30 0.0220 0.0040 0.0800 0.0150
60 0.0201 0.0040 0.0750 0.0150
90 0.0181 0.0041 0.0676 0.0152

150 0.0145 0.0045 0.0500 0.0325

Figure 8 illustrates the distribution of observations in the red and NIR bands for 30,
60, and 90 selected observations. Considering both models have a symmetrical distribution
about the principal plane, only half of the observation hemisphere’s viewing directions
were taken into account. Similar to the previous findings, the data in the red band are
concentrated in observation directions with smaller solar zenith angles. However, in the
NIR band, there is a larger proportion of observations with larger solar zenith angles.

Once the observation directions were determined, the reflectance for various bands
in those directions was simulated using the PROSAIL model. By incorporating the input
vegetation parameters, a new lookup table was generated to establish the connection
between the reflectance at different observation directions and the vegetation parameters.
This lookup table will be utilized in the subsequent LAI inversion, which is based on a
MODIS BRDF product.
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Figure 8. The distribution of observations in the red (a–c) and NIR (d–f) bands for 30 (a,d), 60 (b,e),
and 90 (c,f) selected directions. Solid circles represent the position of the sun, while hollow rectangles
represent the observation locations. The colors red, green, blue, gold, and purple correspond to
observations taken at solar zenith angles of 0◦, 15◦, 30◦, 45◦, and 60◦, respectively. Different-sized
rectangles are used to indicate the positions of the observation data in order to avoid overlap.

3.3. Validation of the LAI Estimations Using Field Measurements and LAI Maps

A total of 180 field LAI measurements at the 500 m plot and the high-resolution (30 m)
LAI maps were utilized for algorithm validation. High-quality MODIS BRDF products
corresponding to the spatiotemporal coverage of these surface observations were employed
for LAI inversion. In cases where the MODIS BRDF product quality was low, it was
replaced with the nearest neighboring high-quality BRDF product to ensure data integrity.

During the LAI inversion process, the reflectance for selected observation directions
was first simulated based on the MODIS BRDF product. Then, the simulated MODIS
reflectance was compared with the reflectance in the new lookup table. To limit the size of
the lookup table and improve the efficiency of the inversion process, the empirical ALA
was calculated using the fvol-ALA relationship when the fvol in the NIR band was less than
0.3813 [30]. Finally, the RMSEc was calculated between the simulated MODIS reflectance
and the reflectance values in the lookup table. The average LAI value corresponding to the
50 sets of data with the lowest RMSEc was considered to be the inversion LAI.

Figure 9 shows the comparison of 180 LAI measurements in the 500 m plot with LAI
estimated from MODIS BRDF. Among them, Figure 9a is the result of previous research
provided by Zhang et al., 2021 [30], using 397 observations. After the sensitivity analysis
and consistency analysis, the inversion results based on 30 directions had a similar accuracy
(RMSE = 1.37, Bias = −0.16, R2 = 0.43) to the result of Figure 9a. In comparison, the
coefficient of determination (R2) slightly decreased, the RMSE slightly increased, but the
absolute magnitude of bias decreased. Despite the significant reduction in the number of
observations, the inverted LAI still exhibited a high level of consistency with the surface
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observation data, and also exhibited higher accuracy compared to the MODIS LAI product
generated with the main algorithm, as evidenced by the evaluation metrics: RMSE of
1.50, bias of −0.23, and an R2 value of 0.24 [68]. Figure 9c shows the R2 between the
results obtained based on different numbers of observations and surface observation
data. The results indicate that when reducing the number of observations, the highest
consistency with ground observations is achieved through inversion using 30 directions.
In the following research, the retrieval of LAI will focus on utilizing the new lookup table
specifically designed for the case with 30 observations.
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Figure 10. The comparison of 30 m high-quality LAI maps with LAIs retrieval from MODIS BRDF 
at a scale of 1.5 km: (a) is the result based on 397 observations provided by Zhang et al., 2021, [10] 
and (b) is the result based on 30 selected observations. The blue line represents the fitted relationship 
between these two sets of data. 

3.4. Validation of LAI Estimation Based on MODIS LAI Product 
To filter the selected MODIS BRDF data, it is necessary to ensure that both datasets 

are of high quality. Additionally, the LAI product within the 16-day period should exhibit 
stability, and the variations in the 397 directional reflectance data simulated by the MODIS 
BRDF model should be minimal. The choice of 397 directions instead of 30 directions is 
primarily aimed at facilitating a comparison between the proposed method and the 
previous approach. 

Figure 9. The comparison of 180 LAI measurements at the 500 m plot with LAI estimated from
MODIS BRDF based on different numbers of observations. Among them, (a) is the result based
on 397 observations; (b) is the result based on 30 directions; and (c) is the R2 between the results
obtained based on different numbers of observations and surface observation data. The blue line in
(a,b) represents the fitted relationship between these two sets of data.

The 30 m high-quality LAI maps were initially aggregated to a 500 m scale, and
the inverted LAI values were also obtained at the 500 m resolution. The comparison of
30 m high-quality LAI maps was conducted at a scale of 1.5 km (3 × 3 MODIS pixels),
resulting in a total of 284 data sets. Figure 10a is the result of previous research provided
by Zhang et al., 2021 [30], using 397 observations per band; Figure 10b is the result based
on 30 observations. Similar to the previous findings, despite the reduction in the number of
observations used for inversion, the accuracy of the inversion results was not affected and
there was a better agreement between the retrieved LAIs and the LAI maps.
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3.4. Validation of LAI Estimation Based on MODIS LAI Product

To filter the selected MODIS BRDF data, it is necessary to ensure that both datasets
are of high quality. Additionally, the LAI product within the 16-day period should exhibit
stability, and the variations in the 397 directional reflectance data simulated by the MODIS
BRDF model should be minimal. The choice of 397 directions instead of 30 directions
is primarily aimed at facilitating a comparison between the proposed method and the
previous approach.

The comparison between LAIs retrieval using MODIS BRDF and the MODIS LAI
product is shown in Figure 11. For tile h26v04, the LAI values are relatively small, with the
majority of pixels having an LAI less than 3.5. In the case of tile h12v04, the MODIS LAI
values are divided into two parts: one part is below 3.5, while the other part is concentrated
around 5. Compared to the inversion results based on 397 angles, the results based on
30 observation angles exhibit higher consistency. The RMSE of the two scenes decreases
from 0.354 to 0.340 and from 2.424 to 2.038, respectively. The results also demonstrate that
the LAI accuracy obtained from simulated multi-angle data inversion is relatively high
when the LAI is less than 3.5. However, when the LAI exceeds 4.5, the LAI estimated from
multi-angle data inversion tends to be significantly underestimated. This can be attributed
to the use of the look-up table method, the uniform distribution of vegetation parameters
employed in the PROSAIL model, and the reflectance simulated by the PROSAIL model,
which shows relatively small variations when LAI is greater than 3.5. The mean value of
LAI corresponding to the 50 sets of minimum RMSEc data can cause the inversion results
to underestimate LAI in higher LAI areas.
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Figure 11. The comparison between LAI retrieval using MODIS BRDF and the MODIS LAI product.
Specifically, (a,b) show the results for tile h26v04 during days 181–193 of the year 2020, while
(c,d) display the results for tile h12v04 during days 245–257 of the year 2020. Here, (a,c) refer
to LAI retrieval from 397 directional reflectance per band, while (b,d) refer to LAI retrieval from
30 directional reflectance per band. Different colors represent the number of pixels in each category,
with gray indicating a pixel number of less than 5.
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4. Discussion

The accurate inversion of LAI not only plays a crucial role in advancing ecological
research but also holds practical applications in improving agricultural productivity and
maintaining the health of vegetation. In this paper, we examined the improvement in
LAI estimation by utilizing multi-angle reflectance data and the PROSAIL model, with
the application of MODIS BRDF products and an enhanced lookup table method. The
results indicate that by selecting highly sensitive and consistent directions, even though the
number of observation directions is reduced, the improved lookup table based on surface
observations can still achieve high accuracy in LAI retrieval. Additionally, reducing the
number of observation directions significantly improves the efficiency of inversion. This
study also provides new insights for the coupled inversion of surface parameters using
both physical and semi-empirical kernel-driven models.

The anisotropic reflectance characteristics of the Earth’s surface play a crucial role
in the inversion of surface parameters, as they provide valuable information about its
structural features [46]. The physical BRDF model accurately describes the surface reflection
behavior. By incorporating detailed vegetation structure descriptions, this model enables
the simulation of directional reflectance for various parameter combinations [60]. Through
an inversion strategy, the vegetation structure can be estimated using reflectance data.
Numerous studies have successfully inverted vegetation with high accuracy by leveraging
observed multi-angle reflectance [31,53]. Coupling the kernel-driven and PROSAIL models
by analyzing the consistency between the models as well as their sensitivity to land surface
structural parameters enables the creation of a lookup table that establishes the correlation
between specific direction reflectance and land surface parameters. In order to fully utilize
the surface’s anisotropic reflection characteristics and provide a simplified LAI retrieval
method, this study couples the PROSAIL BRDF model with the RTLSR_C model to invert
LAI. Although there are discrepancies between the models, a previous study demonstrated
a strong agreement in BRDF when integrating the two models, even when the PROSAIL
input parameters underwent substantial variations [57]. This serves as a fundamental basis
for the current study.

The most significant improvement compared to previous studies is that this study
searched for the optimal number and positions of viewing angles that are needed to obtain
the best inversion results. By examining the changes in directional reflectance simulated by
the PROSAIL model as a function of LAI, the directions that are sensitive to changes were
identified. By inputting the output of the PROSAIL model into the kernel-driven model,
the consistency between the two models was explored. This process helped to determine
the optimal directions and provided a basis for selecting the observation directions. In
general, the optimal directions tend to exhibit a clustered distribution, meaning that under
different solar zenith angles, the more sensitive and highly correlated directions are often
concentrated within a smaller range. Considering the strong correlation of the model-
simulated reflectance in adjacent directions, the study evaluated the existing discrete
distribution of 397 observation directions [30], fully considering the surface’s anisotropic
information. It is worth noting that although the improved RTLSR_C model captured
the bidirectional reflectance characteristics of the hotspot, the 30 selected directions did
not include the reflectance near the hotspot. This is because there were still significant
differences between the two models in the surroundings of the hotspot area [54], and
further research is needed to improve the characterization of the hotspot.

This study is based on high-quality MODIS 500 m BRDF products for LAI inversion.
The improved algorithm significantly enhances computational efficiency. In comparison
to LAI derived from surface measurements, it achieves similar levels of accuracy with
an algorithm based on 397 observations [30]. Compared to the MODIS LAI product, the
retrieved LAI results demonstrate better consistency with both the LAI measurement
and the LAI maps. This also indicates that multi-angle observation data can provide
advantageous assistance in improving the accuracy of LAI retrieval [40,69]. For high-
resolution remote sensing data that have multi-angle observations, these simulated BRDF
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data from the RTLSR_C model hold promise as compensatory means. Certainly, further
validation of this method is needed with additional surface measurements.

Based on the validation of MODIS LAI products, the improved lookup table method
shows relatively better performance when LAI is less than 3.5. There are certain im-
provements in terms of correlation coefficient and RMSE. However, for larger LAI values,
although there is some improvement, both methods yield relatively poor results. There are
several reasons that contribute to this phenomenon. Firstly, the radiative transfer models
like PROSAIL consist of a set of input variables that always appear in combination, making
the inversion of PROSAIL an ill-posed problem [70]. This could be a common issue with
lookup table methods. The results are based on the average of the 50 data sets with the
lowest RMSE, which can lead to a significant underestimation of LAI values, particularly
when the LAI is large. Another possible reason is that this issue is also influenced by
the configuration of model parameters. In the study, the parameter combinations used
were uniformly distributed [30], which did not accurately represent the actual surface
characteristics. Since each parameter has an impact on the final BRDF and can introduce
deviations in the results, it is crucial to optimize the parameter combinations based on the
specific vegetation features of the study area [31]. This optimization process would further
enhance the accuracy of the inversion results. In addition, it is important to consider that
the coarse resolution of MODIS limits its ability to fully capture the detailed surface param-
eter characteristics of a pixel with an average parameter combination [71]. The simulated
dataset based on MODIS BRDF does not fully capture the complexity and diversity of the
actual land surface. Further research can explore higher-resolution BRDF data and more
complex canopy structures to better understand the potential advantages of multi-angle
reflectance data in LAI estimation.

In summary, the use of the improved lookup table approach, compared to the original
algorithm, enables the maintenance of high LAI accuracy while improving the efficiency
of the inversion process. The estimation process described in this study can be widely
expanded to incorporate a range of semi-empirical kernel driven and physical BRDF
models for extracting various surface parameters in large, homogeneous regions. The
next step will involve optimizing the distribution of vegetation parameters based on
surface characteristics and further validating the method by incorporating high-resolution
BRDF data obtained from surface measurements. This will provide a more comprehensive
validation of the approach and enhance the accuracy of LAI estimation.

5. Conclusions

Coupling the kernel-driven BRDF model with the PROSAIL model, and utilizing
the reflectance in directions that are sensitive to LAI changes, while maintaining high
consistency between two models, can improve the accuracy of LAI retrieval. In this study,
we focused on determining the optimal number and positions of viewing angles required
to enhance the inversion results for LAI extraction using the high-quality MODIS BRDF
product and PROSAIL model. By utilizing 20,000 sets of surface vegetation parameter
combinations, we explored the sensitivity of the PROSAIL model to variations in LAI and its
consistency with an RTLSR_C model. Through the application of a threshold, we identified
the optimal viewing directions for LAI retrieval. According to the validation using field-
measured LAI data, it was found that the best results for LAI retrieval were obtained
when 30 viewing angles were selected in the inversion using the MODIS BRDF model.
The proposed method was further validated using field measurements and high-quality,
high-resolution LAI maps, which indicated that the inversion results were comparable
in accuracy to previous algorithms based on 397 viewing angles. Validation using two
tiles of high-quality MODIS LAI products revealed that the proposed method exhibited
a high level of consistency with the MODIS LAI product when the LAI values were less
than 3.5. However, in forest-dominated regions where LAI values were higher, although
there was some improvement compared to previous methods, the extent of improvement
was relatively weak. This may be attributed to the PROSAIL model’s ability to capture the
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anisotropic characteristics of the Earth’s surface, the algorithm’s utilization of uniformly
distributed input parameters, and the minimal variations in PROSAIL-simulated reflectance
at high LAI.

In the future, unmanned aerial vehicles will be employed to acquire high-resolution
surface BRDF datasets. The focus will be on redesigning the distribution of vegetation
parameter combinations based on the actual characteristics of surface vegetation. Further-
more, the algorithm will be enhanced by integrating the kernel-driven BRDF model with
additional physical models, aiming to improve the inversion accuracy in regions with high
LAI values.
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