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Abstract: A significant amount of satellite imaging data is now easily available due to the continued
development of remote sensing (RS) technology. Enabling the successful application of RS in real-
world settings requires efficient and scalable solutions to extend their use in multidisciplinary
areas. The goal of quick analysis and precise classification in Remote Sensing Imaging (RSI) is
often accomplished by utilizing approaches based on deep Convolution Neural Networks (CNNs).
This research offers a unique snapshot-based residual network (SnapResNet) that consists of fully
connected layers (FC-1024), batch normalization (BN), L2 regularization, dropout layers, dense layer,
and data augmentation. Architectural changes overcome the inter-class similarity problem while
data augmentation resolves the problem of imbalanced classes. Moreover, the snapshot ensemble
technique is utilized to prevent over-fitting, thereby further improving the network’s performance.
The proposed SnapResNet152 model employs the most challenging Large-Scale Cloud Images Dataset
for Meteorology Research (LSCIDMR), having 10 classes with thousands of high-resolution images
and classifying them into respective classes. The developed model outperforms the existing deep
learning-based algorithms (e.g., AlexNet, VGG-19, ResNet101, and EfficientNet) and achieves an
overall accuracy of 97.25%.

Keywords: deep learning; SnapResNet model; weather forecasting; satellite image; predictions

1. Introduction

Better weather predictions are essential for people’s daily lives [1]. For everyone
concerned with assuring aircraft and human safety, accurate weather forecasting has been
a top priority [2]. The aviation industry strives for effective systems for precise forecasting
since the issue has not yet been fully resolved [3]. In addition to other reasons, the weather
is the biggest hazard to both aircraft and people on board since it may harm both the
aircraft and the passengers [4]. Since, weather is a nonlinear, complex and time-varying
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phenomenon, accurate prediction is still challenging despite the development of theories,
observation systems, and prediction tools which have advanced significantly over the last
decade [5]. Air traffic, severe weather alerts, maritime, agricultural, and utility businesses,
the commercial sector, the military, and architectural design are scant sectors that rely on
quick analysis and precise classification of satellite images. There are already hundreds of
forecast models available, each designed for a particular objective. At the same time, several
research communities have become increasingly interested in deep learning (DL)-based
weather forecasting [6,7]. There are positive applications of DL in computer vision such as
the tasks of image recovery [8], face detection [9], semantic segmentation [10], and saliency
detection [11]. In addition, it has applications in remote sensing (RS) image processing
such as image classification [12-14], scene classification [15], and image prediction [16].

The research community in the field of satellite image analysis has thus turned its
attention primarily to satellite image classification algorithms. A large-scale cloud image
database for meteorological research (LSCIDMR) is proposed in [1] and these data are
captured by the Himawari-8 satellite. As per the author’s knowledge, it is the first publicly
accessible benchmark database for meteorological research on cloud images [1]. The
information in satellite cloud images regarding clouds, the atmosphere, and the seas is
gathered by weather satellites. Weather satellites are crucial for weather analysis and
meteorological catastrophe alerts since they are mainly used to observe Earth’s weather
conditions [17]. Research on weather forecasting has been conducted by meteorologists
utilizing numerical weather prediction (NWP) [18]. The goal of this study is to apply a
new method to forecast the weather with the maximum accuracy possible while resolving
interclass similarities and class imbalance problems. For weather forecasting, numerous
DL algorithms are used [19] such as MobileNet, VGGNet, ResNet, and EfficientNet.

The LSCIDMR dataset [1] is considered the most challenging satellite imagery dataset
to date in terms of inter-class similarity and class imbalance. Unfortunately, the application
of deep CNN architectures in remote sensing image classification is still somewhat restricted
since deeper networks frequently encounter class imbalance and inter-class similarity
in datasets. As a result, the trained model starts to favor certain classes over others
and makes incorrect predictions. The inter-class similarity means have similar features
but belongs to different classes of dataset as shown in Figure 1. Class imbalance is the
unequal distribution of images in classes as shown in Table 1. The inter-class similarity is a
challenge that can be resolved by a model with deep architecture. The researchers have
been unable to fully realize deep networks’ promise for remote sensing image classification
because of this conundrum. Thus, in order to gather a complete perspective of deeper
networks for the LSCIDMR dataset, effective techniques/learning procedures to counter
inter-class phenomena are deemed necessary. To classify the LSCIDMR dataset using deep
CNN architectures such as ResNets, a thorough optimization/training mechanism is to be
investigated.

The following is a list of our key contributions in this work:

e  The major objective of this research is to create a DL architecture that can obtain
the highest satellite image classification accuracy. In order to achieve this goal, vari-
ous training/optimization strategies are investigated to counter the inter-class phe-
nomenon while dealing with imbalanced training data. The research community
currently views the accurate classification of satellite images with significant inter-
class similarity as a difficult task. By revealing the peak potential of individual deep
CNN models in conjunction with ensembling methodologies, the network’s discrimi-
native capacity is improved.

e  For satellite imagery-based weather forecasting, a modified version of the SnapRes-
Net152 method is suggested. Models in the earlier studies were trained on different
datasets; nevertheless, they still need to be fine-tuned to be utilized in satellite image
classification problems. This research offers a unique snapshot-based residual network
(SnapResNet) that consists of fully connected layers (FC-1024), batch normalization
(BN), L2 Regularization, dropout layers, dense layer, and data augmentation in the
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training regime. However, the data augmentation has been employed using limited
data augmentation techniques such as flipping, rotating, and so on.

o We classify satellite images that were captured by the Himawari satellite. A detailed
study has been performed on this dataset. The architectural changes have been
presented to overcome the inter-class similarity problem while data augmentation
resolved the problem of imbalanced classes. Furthermore, the snapshot ensembling
technique is applied to avoid over-fitting that further improved network performance.
The input to a system is a high-resolution satellite image, and the class of the input
images were the output. The developed algorithm outperforms the existing deep
learning-based algorithms.

Figure 1. Inter-class similarity: (a) tropical cyclone (b) extra-tropical cyclone (c) high ice cloud. images
from (a—c) all have blue hues and the (d) frontal surface (e) westerly jet has a bluish cyclonic curve
with elongated cloud belts.

We believe that the proposed algorithm will improve the classification of satellite
images having high resolution, class imbalance and high inter-class similarity. It is a
challenging task to classify images that have very high inter-class similarity. Therefore,
we are optimistic that the developed method provides an excellent insight into classifying
satellite images. This paper is organized as follows: Related work is described in Section 2,
with ResNet architecture, and SnapResNet details in Section 3. Experiments and results
using different ResNet variants followed by comparison with state-of-the-art methods are
presented in Section 4. Finally, Section 5 summarizes the work of this study and provides
future research directions.
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Table 1. Class imbalance: In LSCIDMR-S and LSCIDMR-M all ten classes have an unequal number
of images. The label-less class is only included in LSCIDMR-S and has a large share of images. This
imbalance leads to model biasing.

Type Images in LSCIDMR-S Images in LSCIDMR-M

Tropical Cyclone 3305 3.17
Extra-tropical Cyclone 4984 4.77
Frontal Surface 634 0.61
Westerly Jet 628 0.60
Snow 7631 8.33
Low Water Cloud 1774 95.14
High Ice Cloud 5278 91.99
Vegetation 7831 42.43
Dessert 4518 56.95
Ocean 4042 89.81
Label-less 63,765 -

2. Related Work

Authors in [20] proposed a novel lightweight data-driven weather forecasting model
by investigating temporal modelling techniques of Long Short-Term Memory (LSTM) and
temporal convolutional networks. The deep model involves two regressions, i.e., multi-
input multi-output and multi-input single-output. This model demonstrates more accurate
forecasting results up to 12 h as compared to the weather research forecasting (WRF) model.
Booz et al. [21] proposed a deep learning-based weather forecast system where the real-
world dataset is utilized for data volume and recency analysis. It is concluded that having
more data is helpful in increasing the accuracy of the model as the recency of the data does
not have a huge effect on the accuracy of the model.

Self-Organizing Map (SOM)-based Latent Dirichlet Allocation (LDA) was coined by
Pushpa Mohan et al. [22] in which they reduced dimensionality using SOM and then
reduced the amount of data utilized to forecast the climate. This method shows 7-23%
improved accuracy for weather and crop prediction as compared to existing methods.
Moreover, R. Meenal et al. [23] observed better weather forecasting could be obtained by
using artificial intelligence-based methods such as machine learning and deep learning.

A DL-based LSTM was developed by Anil Utku et al. [24], and compared with tradi-
tional machine learning algorithms such as RF (Random Forest) and SVR (Support Vector
Regression). It was concluded that the developed LSTM significantly outperforms the con-
sidered benchmarks. Pengwei Du et al. [25] presents an ensemble machine learning-based
method (artificial neural network, support vector regression, Gaussian process) to forecast
wind power production, which uses wind generation forecast made by numerical weather
prediction (NWP) and, from the weather station, they collected data of meteorological
observation. Singh et al. [26] used the deep learning-based UNET with residual learning
as evidence of the idea for studying global data-driven precipitation models. This paper
shows that the residual learning-based UNET can unravel the physical relationships to
precipitation, thus allowing the physical constraints to be used in the dynamical operational
models for improved forecasts of precipitation. Their results are crucial as they opened the
way forward to the development of online, hybrid models for prediction.

Kim et al. [27] proposed an LSTM to predict precipitation. They used the tropospheric
delay of the GNSS (Global Navigation Satellite System) signals to compute the PWV
(Precipitable Water Vapor) for the numerical test, and then they used the deep learning
approach to forecast precipitation. Scientific software used the Saastamoinen troposphere
model and the Niell mapping function to process the GNSS data. The study shows that
precipitation prediction based on LSTM performs better than that of ANN (Artificial Neural
Network) using RMSE (Root Mean Squared Error). The addition of GNSS-based PWV as a
feature prevented the over-fitting problem considerably as discussed in this study. Abdalla
et al. [28] suggested that for the accommodation of non-linearity of time series datasets in
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weather forecasting applications, deep learning architectures could be efficiently devised.
In terms of the design of neural network topologies, geographical and temporal dimensions,
datasets, and benchmarks, this study summarizes the most recent deep learning-based
weather forecasting research. The learned findings are then highlighted, with an emphasis
on the claimed accuracy and the prediction scale for model generalization. This is an
essential requirement to judge if the model is appropriate for a local or regional weather
prediction and also to establish trust in the short-term and long-term forecasts. Moreover,
the paper formulates the independent and dependent variables for weather forecasting
and evaluates the algorithms used for training the dataset with a focus on time efficiency
in each study. Finally, the authors describe the dependent and independent variables for
weather forecasting and conduct assessments for optimal time strategies in training the
dataset. In another study, Kang et al. present a weather image recognition framework
based on deep learning while considering haze, rain, and snow, in outdoor scenes [29].
Their system automatically classifies an input image into respective categories. To evaluate
the proposed method, GoogLeNet and AlexNet are operated on an open weather image
dataset and the feasibility has been verified.

The main objective of this study is to employ an improved loss function that better
explains the interclass interaction. In contrast to the typically used cross entropy or soft-
max loss, which is limited to the classification probability and score of individual scene
classes [30]. In other words, classifying images that have inter-class similarity is not as accu-
rate as classifying images which do not have inter-class similarity. To improve the accuracy
of classifying images having inter-class similarity, authors in [13] suggest a Discriminative
CNN architecture (D-CNN), in which, in addition to minimizing the cross-entropy loss, a
metric learning regularization term (L2 regularization) is applied to improve the proposed
architecture’s discriminative capabilities. This enables images from the same image class to
be clustered together, whilst images from other classes end up being separated.

A large-scale cloud image database for meteorological research (LSCIDMR) is pro-
posed by Cong Bai et al. [1]. The authors claim that it is the first publicly accessible satellite
cloud image database for meteorological research. LSCIDMR contains two annotations
(Single and Multiple) with a total of 104,390 images covering 11 classes. Each class of
image define a different types of features. In total, 414,221 multiple labels (LSCIDMR-M)
and 40,625 single labels (LSCIDMR-S) are obtained. In single labels (LSCIDMR-S), each
image only belongs to one class and has specific features of that class but, in multiple labels
(LSCIDMR-M), images may belong to one or more classes and have features of one or
more classes. LSCIDMR-M and LSCIDMR-S together provide a full version of LSCIDMR,
and LSCIDMR-M is in some ways an extension of LSCIDMR-S. Numerous deep learning
methods such as VGGNet-19, ResNet-101, AlexNet and EfficientNet are applied to these
images and the obtained results are used as a baseline for future work.

The aforementioned references make a compelling argument for satellite image clas-
sification as a significant stage in developing systematic processes such as an intelligent
classification system. The approaches shown above are just a few of the effective and
well-done efforts aimed at addressing the image classification problem in diverse contexts.
We believe that this research work will be a valuable addition to the field of satellite image
classification.

3. Methodology

Remote sensing satellite-based cloud image classification is a challenging problem
due to inter-class similarities and class imbalance issues. In order to address this issue, an
extremely deep CNN network like ResNets is used. In addition, effective optimization
strategies along with logical architecture alterations are adopted.

In ResNet, the added residual block draws the output from one of the preceding layers
to the extracted feature map (Rectified Linear Unit (ReLU) activation) of the following layer.
While allowing for significantly deeper network penetration, these identity mappings
do not adversely affect the performance of the network. The deeper layers can now
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learn more complicated features, which leads to increased classification performance in
images. This significantly improves the network’s capacity for learning features. On the
massive ImageNet dataset, ResNets displayed astounding image classification ability. The
innovative approach that made it possible to go deeper into the network beat the shallow
rival networks. This encourages the usage of ResNets for satellite RS image classification.

3.1. Baseline Model Architecture

In this research, ResNet50, ResNet101, and ResNet152 are deployed to classify remote-
sensing images. Firstly, the ResNet50 has been selected to be the baseline model for
developing the methodological framework. Figure 1 displays the block diagram of the
ResNet50 layered structure. The image was adopted from [31]. Here, it is crucial to
highlight a limited key aspect of ResNet architecture. To reduce the number of trainable
parameters and therefore training time, FCL is used as little as possible (single SoftMax-
based FCL). Since the VGGNet framework served as inspiration, the largest kernel size
is limited to 3 x 3. Unlike in classic CNN designs like AlexNet [32] and VGGNet [33],
none of the convolution blocks (except the one after the first convolution layer) include
a pooling operation. Immediately following the final convolution block, a GAP (Global
Average Pooling) layer is added. Each convolution block in the network is trained with
batch normalization in addition to the global normalizing of the data.

The changing aspects of the target dataset have a significant role in the decision to
deploy fully connected layers in CNNs. The entire spatial receptive field of the image is
covered by FCL in contrast to feature maps which are extracted using convolution layers.
The convolution layers have a specific receptive field which is determined by the kernel size.
As a result, FCL improves the performance of the network by training complex non-linear
functions within the feature space. The disadvantage of employing FCL is the increase in
computing costs that comes along with an increase in the number of training parameters.
For instance, AlexNet has 60 million total parameters, 58 million of which are linked to
FCL. The 138 million parameters in VGGNet are contributed by FCL, who furthermore
supplies 123 million parameters [32]. As a result, the computational cost of including FCL
has compelled the researchers to create other strategies. Considering the foregone, the
ResNet structure only includes the network’s FCL, which is an essential last layer necessary
for obtaining classification scores as probabilities using SoftMax activation.

In CNNs, the convolution kernel size is entirely determined by empirical findings or
by accepted research community conventions. Most often, researchers choose a kernel size
that has been successful in the literature for a dataset that is semantically comparable to
the target data. In this regard, the inventors of ResNet were motivated by the success of
VGGNet in the image classification challenge and used the same 3 x 3 convolution kernel
in various stacked convolution blocks.

Pooling layers in CNNs are primarily used to reduce dimensionality and keep calcula-
tions within reasonable bounds. This goal has been accomplished by ResNets using 1 x 1
convolution kernels. It can be noticed that each convolution block uses a 1 x 1 bottleneck
layer to limit the dimensions of the supplied activation input prior to successfully applying
a 3 x 3 convolution kernel to increase the dimensions once more as an ultimate step. The
1 x 1 bottleneck layers provide the additional benefit of learning noteworthy features as
they are a convolution layer, in addition to flexibility in handling output dimensions.

After the last convolution block in ResNets, a GAP layer was added that not only
decreases spatial dimensions but also takes the role of the flattening operation that is
typically used to determine the input dimensions for FCL. Our study is particularly in-
terested in a different viewpoint on the utilization of the GAP layer. The output from the
last convolution block of the ResNet50 architecture, which is shown in Figure 2, includes
2048 activation maps, which is equal to the number of 1 x 1 kernels that are a fixed entity
in this architecture. Regardless of the size of the original input to the network, applying
the GAP layer on these 2048 activation maps produces a 2048-dimensional column vector.
The obligation of adjusting the input image to match FCL dimensions is not obligatory, as
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found in the case of VGGNet and AlexNet since the addition of the GAP layer has reduced
the ResNet architecture without putting any constraint on the size of the input image. Thus,
any input image size (such as 256 x 256) can be used for LSCIDMR to retrain the same
architecture. This aids in preventing the loss of crucial feature data that are essential to the
process of image classification.

Conv1 Conv 2 Conv 3 Conv4 Conv 5
(x1) (x3) (x4) (x6) (x3)

- 1x1,64 1x1,128 1x1,256 1x1,512
npu
i P 7x7,64 3x3,64 3x3,128 3x3,256 3x3,512
mage

8 1x1,256 1x1,512 1x1,1024 1x1,2048

Y2

Global

Owtput FC 1000 Average
(Softmax) Pooling

OUTPUT

1X1X2048

Figure 2. ResNet50 architecture, used as a baseline model for the proposed scheme [31].

CNN training is accelerated by the idea of normalizing the input data to the network.
A comparable concept applied to the input of the network’s hidden layers is called batch
normalization. When working with very deep networks, the input data distribution per
mini-batch may alter as the weights are updated farther into the network. Due to this, the
learning algorithm is forced to follow a continually shifting target, which causes convergence
problems. Internal covariate shift is the name given to this phenomenon [34,35]. This issue
is resolved by BN layers by standardizing the input to the network’s deep layers, which
stabilizes the training process and significantly decreases training time [36]. This is due
to the fact that the batch norm makes training independent of the learning method and
the network’s starting setup. Similar to dropout, batch norm has a regularization impact
that aids in preventing the overfitting phenomena [37]. When standardizing, the mean
and variance are calculated for each mini-batch of the input data. This introduces some
noise into the training data and has the effect of regularizing it, keeping the optimization
function from becoming too complicated. This BN layer’s regularization impact will vary
depending on the mini-batch size. The regularization impact decreases as the mini-batch
size increases.

Although the stabilization of the training process and subsequent reduction in training
time are the main advantages of BN layers, the regularization effect that they provide is
still of great interest to the proposed research. It will be utilized with the LSCIDMR dataset,
which has an imbalance in volume and causes overfitting problems when training deep
networks like ResNets.

Initially, ResNet50 was utilized [38] by changing the number of neurons in the FC
layer to account for the 10 classes in the LSCIDMR dataset as compared to the 1000 item
categories in ImageNet. Figure 3 displays the modified ResNet50 architecture exploited
to train the LSCIDMR dataset. Moreover, we initially tested the training-from-scratch
method using the basic ResNet architecture. With this strategy in mind, it was observed a
clear overfitting occurrence where the network overfitted the training data. The train-test
performance bias, which is calculated as the difference between train and test accuracy,
illustrates the network’s lack of generalizability because of the overfitting phenomenon.
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Conv1 Conv 2 Conv 3 Conv 4 Conv 5
(x1) (x3) (x4) (x6) (x3)

1x1,64 1x1,128 1x1,256

nput 1x1,512
. 7x7,64 3x3,64 3x3,128 33,256 3x3,512
g 1x1,256 1x1,512 1x1,1024 1x1,2048
Global

Ompm FC 10 Average
(Softmax) Pooling

Figure 3. The original ResNet50 architecture for 10 classes of the LSCIDMR dataset.

Hence, using the same settings and a transfer learning (fine-tuning) strategy, we
trained the network on the LSCIDMR dataset. Several transfer learning strategies range
from training the whole network to training just a small number of network layers. In the
version considered here, the learned weights from the extensive ImageNet dataset served
as the initial point for proposed model building as we trained the whole network. This
step was taken due to the inclusion of BN layers, which normalize input to hidden layers
according to the considered batch size during the training process. As freezing any part of
the proposed network requires the target image dataset to be in perfect synchronization
with the previously established normalized data distributions for the ImageNet dataset,
this is a very hard procedure. As a result, we utilized the no-layer freezing strategy. When
fine-tuned using ImageNet weights, the classification accuracy, which had previously
peaked at 80% using the training-from-scratch technique, has now surpassed 90%. The
reasoning for this improvement is that the CNN weights were previously started at a
location that was a great distance from the local minimum of the loss function being sought
by Stochastic Gradient Descent (SGD). As a result, there has been a considerable increase
in classification accuracy in recent times. It is crucial to remember that overfitting, which
previously reduced model performance when trained from scratch, continues to be an issue
in the network and is waiting for efficient solutions.

3.2. Learning Rate

The learning rate is one of the crucial hyperparameters and can affect the model’s
accuracy to the greatest degree. Initially, a fixed value (0.001) of the learning rate is
considered to train ResNet50. From the literature on deep learning, it was observed that a
scheduled learning rate performs better than a fixed value. The basic idea is to start the
training process with higher learning rates so that the optimizer can move more quickly
toward the global minimum. As training progresses, the learning rate values gradually
decrease to allow the optimizer to move smoothly toward the target without exceeding the
minimum. The step decay plan and the outperforming cosine annealing schedule were
also tested as shown in Figure 4. Following a predetermined timetable, the learning rate is
reduced in the step decay after a number of epochs. The cosine annealing schedule, on the
other hand, follows a cosine curve for each epoch.

It is suggested to apply the cyclic cosine annealing function in [32], which is given in

Equation (1):
e § _ % mtmod(t — 1, [T/ M] 1 1
oc()—z(cos< T M| >+ ) ¢y

where T is the total number of training epochs, M is the number of cycles, (t) is the needed
learning rate at epoch t, and « is the initial learning rate. We only want to train the model
once, i.e., M = 1 in this scenario.
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Figure 4. Learning rate schedules. (a) Step decay. (b) Cosine decay.

3.3. Dropout Layer

As was previously mentioned, the training data are being overfitted by the ResNet50
architecture that is presently being used with the LSCIDMR dataset. Effective methods to
combat this problem are urgently needed since they prevent ResNets from reaching their
full potential in image classification. To generate a model that fits the test data well or to
reduce overfitting, there are certain things we may do on both the model and data sides.

Dropout is a frequently used common strategy in deep learning models that produces
a regularization effect and improves the network’s generalization capacity [39]. Probabilis-
tically, dropout reduces the input supply to the network layers by a certain percentage. This
is accomplished by multiplying some of the input neurons by 0 and some by 1. It makes
sense that by the addition of noise to the input data, which strengthens the network’s
resiliency to input, the danger of network overfitting is reduced.

The existence of BN layers in the ResNet design has previously been covered in great
depth. There is no need to include dropout layers in the convolutional portion of the
network since BN offers a regularization effect that is comparable to that of dropout in
addition to a number of additional benefits [40]. Dropouts are often employed in the FCL
section of networks; however, the ResNet50 design under consideration does not include
an FC layer that is suitable for dropout coupling. The only place for dropout (in red) is
immediately following the GAP layer, as shown in Figure 5. A detailed examination of the
outcomes showed that, while employing dropout to probabilistically drop the GAP layer
output, we permanently lost several inputs that were essential to the network’s capacity for
feature discrimination. Each node in the GAP layer contains distinct feature data that were
taken from the last convolution block’s activation maps. Therefore, the only feasible way
to deploy a dropout approach was to change the existing design by adding an additional
completely linked layer that would act as a foundation.

Determining the number of neurons in this new FC layer was the natural next step.
In the deep learning community, it is recommended to gradually reduce the number of
neurons as one advances through FC layers. Just enough neurons should exist to adequately
capture the target dataset’s variety. Considering this, we chose to add a second FCL,
consisting of 1024 neurons, following the GAP layer in the initial ResNet50 architecture.

3.4. Weight Decay Regularization

Weight decay [41] is another well-liked and straightforward method of keeping the
model from becoming unnecessarily complicated. The network fits such a complicated
curve on the training data while working with several parameters on a small amount of
data that it performs badly on the test set. When the loss function tries to become unduly
complicated, weight decay is supposed to punish it. One strategy is to punish the function
by including all the weight factors in it. To obtain only positive values, we can apply
L2 or L1 regularization approaches. However, such a substantial addition can cause a
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significant model loss, necessitating unrealistic (mainly 0) weight settings for the best fit.
The answer is to multiply the weight parameter squares (L2 norm) by a tiny integer, add
the product to the loss, and then solve the problem. Numerous CNN training approaches
for the job of image classification have used this modest amount, known as the weight
decay factor [32,33,41]. Weight decay regularization has been employed with the newly
added FC-1024 in the ResNet50 design, as shown in Figure 6, as weight decay is often used
with FCL as these layers contain most of the network parameters. This design is known as
FC-1024 ResNet50.

Conv1 Conv 2 Conv 3 Conv 4 Conv S
(x1) (x3) (x4) (x6) (x3)
nout 1x1,64 1x1,128 1x1,256 1x1,512
npu
Im:“ 7x7,64 33,64 33,128 33,256 33,512
1x1,256 14,512 1x1,1024 1x1,2048

Global
Output /1_ 8¢10 <: Dropout <: Average
(Softmax) N Layer Pooling

(2048-d)

Figure 5. Modified design after the addition of a dropout layer (in red) in the original ResNet design

to reduce the overfitting that has been observed in the model.

Conv1 Conv 2 Conv 3 Conv 4 ConvS
(x1) (x3) (x4) (x23) (x3)

Input 1x1,64 1x1,128 1x1,256
a 7x7,64 3x3,64 3x3,128 3x3,256

Image
1,256 1,512 1x1,1024

Global

Output Dropout FC1024 Average
(Softmax) e Layer (ReLu) Pooling
(2048-d)

AN

Weight Decay
Regularization

Figure 6. Proposed FC-1024 ResNet50 architecture; addition of FC-1024 to classifying images and
weight decay regularization (additional red block) to help the model to generalize better hence
improving the model performance on unseen or test datasets.

When training the FC-1024 ResNet50 architecture with 20% probabilistic neuronal
dropout and a weight decay factor of 0.0005, improved image classification accuracy is seen
compared to the original design without FCL, dropout, and weight decay. The utilization of
dropout with FCL has proved successful in contrast to GAP + dropout due to the fact that
every neuron in FCL has the essence of the GAP layer; therefore, losing specific neurons
in FCL during network training does not result in a permanent loss of critical feature
information.
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3.5. Data Augmentation

In order to address the overfitting phenomena, we have solely examined the strategies
that can be integrated into the network design side. The data augmentation strategies are
also essential in this respect and have shown themselves to be successful in addressing
network overfitting problems since they attack the fundamental cause of the issue, namely,
a dearth of training data. These methods’ task is to enhance the data in such a manner
that the model may discover new descriptive characteristics. Although the target dataset
contains variations in perspective, size, lighting, occlusion, color, etc., there are several
data augmentation strategies for computer vision applications that aim to improve model
performance [42]. The LSCIDMR dataset, which is the benchmark for satellite-based cloud
image classification performance, is regarded as the most challenging dataset as it contains
10 classes and possesses high interclass similarity along with class imbalance. As was
already mentioned, the dataset is highly imbalanced. Some classes of datasets have images
in thousands while some of the classes have a few hundred images. This, in addition, leads
to model biasing towards classes having a large number of images and inhibits the model
from showing its full potential. In order to solve class imbalance, separate augmentation is
applied to those classes so that these classes have almost the same number of images as the
other classes.

The newly suggested random erasing data augmentation technique was used initially
instead of immediately going on to the common data augmentation techniques that are
focused on geometric changes in images. Random erasing is intended to address image
occlusions. Any unclear objects in an image are referred to as “occlusions”. By arbitrarily
removing discrete parts of the image and replacing them with random pixel values, this
technique forces the network to concentrate on the overall/global structure of the image
rather than overfitting to a particular collection of local features. The network will be able to
learn extra descriptive properties unique to each class in the dataset by improving the data
in this way, which should increase the accuracy of image classification. More importantly,
it will prevent the network from depending solely on image details, which will partially
solve the issue of inter-class similarity in the case of satellite RSIC. The FC-1024 ResNet50
model is trained next using random erasing to inherit the advantages of this method and
to compare the results. In line with the aforementioned benefits, the random erasing data
augmentation strategy alone significantly increased the image classification accuracy.

The most popular data augmentation techniques, based on geometric and color space
transformations, are often effective for a wide range of jobs. The methods for data aug-
mentation are Image flip (vertical and horizontal), Image rotation, Height and width shift,
Brightness variation, Image zoom, Image shear, Scale variations, Contrast variations and
multi-augmentation. Applying 2 or more of the data augmentations outlined above at once
is known as the multiple-augmentation technique. The utilization of all data augmentation
approaches led to a change in the composition of the input data, which negatively influ-
enced the generalization of the model on the test set. We added one approach at a time to
the data, isolating this problem. Through this process, we were able to identify the data
augmentation techniques—such as picture zoom, shear, height, and breadth shift—that
were behind the data domain change. Finally, we trained the model once again using the
other strategies after excluding these three data augmentation methods. Now, the trained
model’s overall test accuracy has increased relative to all previously described training
regimes.

3.6. Proposed Training Regime

At this time, the training regimen for the FC-1024 ResNet50 architecture that had been
used was deemed complete. Figure 7 provides a synopsis of the training methodology’s
route map. We trained the network using SGD as the optimizer for 100 epochs during the
given training regime, utilizing a 90 percent training ratio.
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Data Augmentation

Proposed Training - (RE+Flip+Rotate+Sc FCL + Dropout
Regime ale+Contrast+Brigtn +Weight Decay
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L 4

Fine Tuning Pre- Learning rate
trained Network using . ) =
ImageNet Weights Cosine decay (0.01)

Figure 7. Proposed training regime, highlighting the steps to further improve the proposed model.

3.7. Proposed SnapResNet Architecture

Snapshot ensembles utilize the non-convex character of the basic cost function, which
is reduced throughout the network training process. When compared to the test set, the
network’s performance varies as a result of SGD convergence on various minima. It was
suggested to integrate the snapshot ensembling approach with the FC-1024 ResNet50
training regime. Figure 8 contains the block diagram of the suggested network setup.
Snapshot-based residual networks are what we refer to as SnapResNet. On the LSCIDMR
dataset, we achieved cutting-edge classification performance using SnapResNet.

y N y > @ N ya D
Pmposed Snapshot
Training Ensembles
Regime 1
| Cyclic cosine ‘ 0
ling utput
I S
(FC 1024 | ‘ S Snapshots predictions

ResNet152)

i
& E— 8 4 Q 4

Figure 8. Proposed SnapResNet architecture. In the FC-1024 ResNet152 model, we apply snapshot
ensembling with cyclic cosine annealing to then, in return, obtain snapshots where the model accuracy
was higher. Now, the proposed model is converted into SnapResNet152 that is used to classify images.

4. Experiments and Results

For better comprehension of the findings, the proposed SnapResNet employs an
ensembling approach similar to [31]. However, it differs in two ways. Firstly, the pro-
posed architecture does not apply majority voting. Secondly, it does not combine the
SnapEnsemShot and Dilated Conv models in snapshot ensembling. The first tier deals
with snapshots of the model, while the second layer emphasizes the impact of integrating
several snapshots derived from the model.

4.1. Dataset and Preparation

The model was trained and tested using an LSCIDMR obtained by the Himawari-8
satellite. This is the first weather satellite capable of taking color images and monitoring
authentic cloud images. The 11 classes are represented by the 104,390 high-resolution
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(256 x 256) images in LSCIDMR. The temporal resolution is 10 min, and the spatial
resolution is 2.0 km. The dataset contains descriptions of four systems as shown in Table 2.
(1) Weather system: A weather system includes a tropical cyclone, extratropical cyclone,
frontal surface, westerly jet, and snow. (2) Cloud system: The cloud system is made up of
high ice clouds and low water clouds. (3) Terrestrial system: This group includes the ocean,
the desert, and the vegetation. (4) Label-less. Both single and multiple-label annotations,
known as LSCIDMR-S as shown in Figure 9 and LSCIDMR-M, respectively, are available
for the dataset. The labels are carefully annotated, yielding a total of 40,625 single labels
and 414,221 multiple labels.

Table 2. Parameters for choosing categories in LSCIDMR, developed by meteorology experts.

Type Classification Criteria
Tropical Cyclone The eye of a Tropical Cyclone should be in the slice.
Extratropical Cyclone The eye of the Extratropical Cyclone should be in the slice
Snow Snow is in the slice
Westerly Jet Westerly jet is in the slice
Frontal Surface Frontal Surface on the slice
High Ice Cloud Area (High Ice Cloud) > 50% and Area (else) < 20%
Low Water Cloud Area (Low Water Cloud) > 50% and Area (else) < 20%
Vegetation Area (Vegetation) > 50% and Area (else) < 20%
Ocean Area (Ocean) > 80% and Area (else) < 20%
Desert Area (Desert) > 50% and Area (else) < 20%
Label-less Do not belong to the above 10 classes

(a)

(b)

(c)

(d)

(e)

Figure 9. Images from LSCIDMR-S: Example of some images from ten classes. There are 40,625 images
within ten classes. (a) Desert, (b) extratropical cyclone, (c) frontal surface, (d) high ice cloud, (e) low
water cloud, (f) ocean, (g) snow, (h) tropical cyclone, (i) vegetation, (j) westerly jet.

Using the selected images, the author of [1] conducted a statistical analysis of seasons.
The seasons in the northern hemisphere are divided into spring (March, April, and May),
summer (June, July, and August), autumn (September, October, and November), and winter
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(December, January, and February). The statistical analysis results are shown in Figure 10.
Tropical cyclones and extratropical cyclones can be seen in all seasons, but tropical cyclones
are most common in summer and autumn, while extratropical cyclones are seen in spring
and winter. Snow falls mostly in the spring and winter, with some in the summer because
high latitudes in the northern hemisphere remain snow-covered. Westerly jets and frontal
surfaces are less common throughout the year.

100% — =
os | ]

80%

70%
60%
50%
40%

30%
20%
10%

0%

Spring summer autumn winter

W ExtratropicalCyclone m FrontalSurface mSnow i TropicalCyclone m Westerlylet

Figure 10. A statistical analysis of the proportion of images of each weather system in different
seasons is shown. The seasons are divided according to the northern hemisphere.

4.2. Training Methodology

All of the experiments in this study were developed using the Keras framework on
Windows 10 and trained on an NVIDIA GeForce RTX 3060 (12 GB) GPU. The experiment’s
software environment is Jupyter Notebook.

In the test, the input images to the neural network were 256 x 256 pixels in size from
the LSCIDMR dataset. The maximum training epochs were set to 200 and the training batch
size to 32. SGD optimizer has been applied for optimization, with a scheduling learning
rate approach. In the experiment, ImageNet weights have been applied. Moreover, image
flip (horizontal and vertical) and rotation augmentation techniques were applied earlier in
each training epoch.

4.3. Evaluation Metrics

In this experiment, the proposed architecture is compared and evaluated by Precision,
Recall, Overall Accuracy, F1-Score and Confusion Matrix as shown in Equations (2)—(5),
respectively.

No. of correctly predicted positive instances

Precision — 5
FEAsIOn = o, of total positive predictions you made @
Recall — No. of Correctly‘p.red.icted posijcive instances 3)

No. of total positive instances in the dataset
. of t predicti
Overall Accuracy — No. of correct prediction @)

No. of all predictions

Precision x Recall
Fl-Score =2 x Precision + Recall ©®)

4.4. Experimental Results

System parameters and specifications utilized in training and testing are specified
in Table 3. The first logical step was selecting the appropriate number of images for the
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proposed model. The two snapshots were employed as a starting point for the network and
the output has been examined. Following the cyclic learning rate schedule, the learning
rate was raised purposely after every 100 epochs. The snapshots have been saved following
every 100 training epochs as portrayed in Figure 11.

Table 3. Parameters used for model training and system specification.

S No Parameter Value

1. Train/Test ratio 0.9/0.1

2. Training/ Test images 46,580/5182

3. Epochs 100 epochs/snapshot (200 in total)

4. Iterations per epoch 1456

5. Batch size 32

6. Learning rate ggilic cosine annealing initialized at

7. Weight decay regularization L2 regularization

8. Weight decay factor 0.0005

9. Dropout rate 0.2

10. Optimizer SGD(Stochastic Gradient Descent)
Development Tools/Platforms

11. Jupyter Notebook

12. NVIDIA GeForce RTX 3060 (12 GB)

Training/Val Accuracy Per Epoch Training/Val Losses Per Epoch

1.00 4

0.98 1

0.96

0.94 1

acc

0.92 1

0.90

0.88

0.86 1

—o— Train_Loss
1.0 1 —— Val_Loss

0.8

0.6

loss

0.4 1

0.2 1

—e— Train_Accuracy

25

- Val_Accuracy 0.0 1
75 100 125 150 175 200 0 25 50 75 lOOh 125 150 175 200
epoch epoc
(a) (b)

Figure 11. Snapshot ensembling: each snap is saved after 100 epochs. (a) Training and validation
(val) accuracy in 2 snapshots (b) Training and validation (val) losses in 2 snapshots.

The question is whether the cyclic learning rate schedule has allowed SGD to converge
to separate minima. Figure 12 shows how the accuracy of image classification dramatically
increased after individually integrating the relevant images of the model. The increase in
overall accuracy with each additional snapshot is adequate proof that SGD has reached
different minimums of the primary cost function in relation to the design of the network.
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Figure 12. A blue dot shows a single Snapshot after 100 epochs and an orange dot shows combined

snapshots after 200 epochs.

It is observed that, with FC-1024 ResNet152, the increase in overall accuracy that
results from combining the first two snapshots is considerably bigger than the increase
that results from using the single snapshot. The number of snapshots for the model
was restricted to two, considering the computational expense associated with each extra
snapshot. Subsequently to limiting the model’s snapshots to just two, it was observed that
the suggested models had an overall accuracy of 97.25. The confusion matrix is displayed

in Figure 13.

desert

extratropical cyclone
frontal surface

high ice cloud

low water cloud

ocean

tropical cyclone
vegetation

westerly jet

Figure 13. Confusion matrix for detailed analysis of the proposed scheme’s performance.
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As baseline models for the suggested network design, we also took ResNet50, ResNet101,
and ResNet152 into account. This was made feasible by the ResNet versions’ shared
fundamental structure; the only distinction was the number of convolution blocks, which
determines the network’s depth. Furthermore, 90% of the LSCIDMR was employed for
training. After converting the baseline design from ResNet50 to ResNet101, an overall
improvement in accuracy was observed. This was likely due to the deeper network’s
potential for learning more descriptive characteristics. Contrary to common perception,
however, the behavior altered when converted from ResNet101 to ResNet152. For a given
target dataset, the network’s depth is not necessarily inversely related to the accuracy
statistics that were acquired. There is a saturation threshold for learning the hidden
complex features; hence, enhancing the depth past this level may lead to lower accuracy as
the network itself becomes sophisticated enough to inevitably experience overfitting on
the training dataset rather than learning complex features. This is the major reason that
SnapResnet152 considerably improved performance.

We measured the suggested model’s accuracy outcomes of the SnapResNet architec-
ture with the cutting-edge deep learning-based approaches for RSIC jobs. The overall
accuracy of the proposed SnapResNet152 adopted from [31] and existing models on the
LSCIDMR dataset is given in Table 4. The suggested architecture has outperformed all
current optimal procedures, establishing a new benchmark with an OA of 97.25%. Precision,
F1-score and recall values for different classes of dataset are mentioned in Table 5.

Table 4. Accuracy comparison between proposed and existing methods.

Methods Accuracy
SnapResNet152 97.25
EfficientNet [5] 94.09

ResNet101 [5] 93.88
VGG19-Net [5] 93.19
AlexNet [5] 88.74

Table 5. Precision, recall and F1-score of 10 classes.

Classes Precision Recall F1-Score
Desert 0.95 0.97 0.96
Extratropical Cyclone 0.96 0.96 0.96
Frontal Surface 0.99 1 1
High Ice Cloud 0.96 0.94 0.95
Low Water Cloud 0.98 1 0.99
Ocean 0.99 0.99 0.99
Snow 0.97 0.96 0.96
Tropical Cyclone 0.95 0.96 0.95
Vegetation 0.98 0.98 0.98
Westerly Jet 0.99 1 1

Figure 14 shows the cases where the proposed model SnapResNet152 fails to classify
the images correctly with some examples of truly predicted images.

The following suggestions are put forth to outline the direction of future research
considering this study:

e  When working with deep networks, additional strategies, learning approaches, or
combinations may be employed to enhance accuracy.

e Inter-class similarity in RSIC is still a problem that has to be addressed. To learn more
about discriminative feature representations, necessary architectural and parametric
adjustments may be investigated.
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(a)

(b)

This study was conducted in a single-GPU setting. Using multiple GPU configurations,
the computational cost analysis may be carried out.

In this experiment, a single labelled dataset is employed while disregarding the label-
less class, and the suggested network may be expanded to field-level applications

where a customized labelled dataset composed of images relevant to a certain applica-

tion may be constructed.

True: High Ice Cloud True: Snow True: Frontal Surface

. fo vt
A
Predicted: Tropical Cyclone Predicted: Westerly Jet Predicted: Extra Tropical Cyclone

on

True: Desert True: Tropical Cyclone True: Vegetati

Predicted: Desert Predicted: Tropical Cyclone Predicted: Vegetation

Fal

Figure 14. True and false predictions from SnapResNet152: (a) shows where true and predicted

labels are different—false predictions; (b) shows where true and predicted labels are same—true

predictions.

4.5. Discussion

It is worth noting that although the preceding study acquainted readers with the

capability of the developed technique for classifying high-resolution satellite images under
high inter-class similarity and class imbalance, the ensuing discussion will further provide
readers with an insight into the algorithm with additional perspectives as follows:

The methods compared in this research are contemporary image classification algo-
rithms. It is observed that some methods only perform well on specific datasets;
however, they cannot be generalized as they fail to perform on other datasets. For
instance, in [1], the proposed large-scale cloud image database for meteorological
research (LSCIDMR) deployed several deep learning methods (e.g., AlexNet, VGG-
Net-19 ResNet-101 and EfficientNet) and the obtained results aided in establishing a
baseline for future work. Moreover, the study presented in this research successfully
classified images in the available dataset only.

Authors in [20] suggested a novel lightweight data-driven weather forecasting model
by researching temporal modelling approaches of LSTM and temporal convolutional
networks. The deep model consists of two regressions: multi-input multi-output and
multi-input single-output. When compared to the weather research forecasting (WRF)
model, this model produces more accurate predictions up to 12 h. However, we also
explore their classification ability on ten different classes of the LSCIDMR dataset.
Also, in [21], authors presented a deep learning-based weather forecast system. Real-
world datasets are employed in this approach for data volume and recency analysis.
It is determined that having more data is beneficial to increasing model accuracy;
however, data recency has no significant influence on model accuracy. Furthermore,
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the classification accuracy of the proposed approach offers a thorough understanding
of the satellite image classification in different classes. R. Meenal et al. [23] disclosed
that by applying artificial intelligence-based technologies such as machine learning
and deep learning, we might improve weather forecasting. Furthermore, comparing
classification results with the proposed approach and numerous other techniques gives
an immense amount of information on challenges in the satellite image classification
area. Singh et al. [26] studied global data-driven precipitation models using a deep
learning-based UNET with residual learning. This work demonstrates how a residual
learning-based UNET may uncover physical links to target precipitation, and how
such physical restrictions can be applied in dynamical operational models to enhance
precipitation forecasting. Their findings open the door for the future development
of online hybrid models. Finally, the extensive study and comparison presented in
the preceding section suggest that this method may be modified further. Pengwei
Du et al. [25] present an ensemble machine learning-based method (artificial neural
network, support vector regression, Gaussian process) to forecast wind power pro-
duction, which uses wind generation forecast made by numerical weather prediction
(NWP) and meteorological observation data collected from weather stations. Our
study, on the other hand, reports the application of this strategy to decrease overfitting
in the result. We believe that the extensive analysis and comparisons offered in this
publication will be useful to the research community in modifying any method for
their specific requirements.

e  Finally, the proposed study reports improved classification ability of the proposed
method on high-resolution, imbalanced, and challenging inter-class similarity-based
publicly available datasets. We expect that the analysis offered by the established
approach and the extensive comparison described in this publication will provide the
scientific community with further understanding. One of the objectives of the current
study is to solve inter-class similarity and class imbalance in ten classes of the first
publicly available satellite imagery-based dataset (LSCIDMR). Furthermore, to reduce
the overfitting faced during the development of the proposed algorithm, we applied
the ensembling method. The main reason to choose ResNet is its ability to utilize the
residue of the residual block and learn more complicated features which in return
improves classification ability.

e It has been observed that the proposed method still needs to perform well in different
situations. Our experiment is conducted on 10 labelled classes; however, the dataset is
composed of 11 classes. The 11th class has been excluded which is unlabeled as it was
creating bias in classes, and the results were not satisfactory. In future research, the
11th class can be labelled as well to improve the overall process. For all the foregone
discussion, the satellite images utilized in our experiments are of high resolution;
however, their resolution can be improved further as Cong Bai et al. [1] utilized image
compression before uploading the dataset. In addition, all the abovementioned work
can be carried out on real-time satellite images.

5. Conclusions

In this study, a new SnapResNet is suggested to classify remote sensing satellite
images. To fully utilize ResNets for RSIC, the suggested approach consists of a network
(FC-1024) using ensembling and augmentation techniques. The overfitting problem is
the most evident barrier to the deployment of deep nets when confronted with a lack of
training data. Considering this, the suggested network was meticulously created through a
series of tests to offer the greatest resistance to overfitting and consequently enhance the
network’s capacity for generalization. By modifying the architectural design as needed, the
model also addressed the problem of inter-class similarity to learn more details and global
attributes explicit to each class. The performance of the network was further improved
by the introduction of a snapshot-based ensembling method, which utilized the SGD’s
ability to converge to unique minima on demand. Upon boosting and training on the
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most difficult LSCIDMR satellite imaging dataset, the proposed SnapResNet yielded image
classification results that were found competitive with state-of-the-art methods.
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