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Abstract: For a spaceborne pencil-beam rotating Doppler scatterometer, its precision in measuring the
ocean surface motion depends on the Doppler centroid of the received signals. The Doppler centroid
is determined by the relative motion between the scatterometer and the ocean surface. This relative
motion includes contributions from satellite velocity, the phase velocity of resonant Bragg waves, the
orbital motions of ocean waves, and the ocean surface current. Subtracting the contribution of the
satellite platform velocity from the complex Doppler information is important for the application of a
spaceborne Doppler scatterometer in ocean surface current retrieval. In this research, we propose a
method for the platform velocity correction influenced by the Doppler centroid offset and analyze
the accuracy of this correction method. The method is based on the echoed signal model of a Doppler
scatterometer. Our results show that the offset could lead to a measurement offset of up to 0.02 m/s
when the beam width was 0.3◦. For a 0.6◦ beam width, the maximum offset was 0.07 m/s. Thus,
with the high accuracy of the current spaceborne sensors’ measurement, the offset can be accurately
eliminated. In future applications and data processing algorithms, this effect should be considered.

Keywords: Doppler scatterometer; Doppler centroid; satellite velocity; ocean current

1. Introduction

Ocean surface currents play an important role in the air–sea exchanges of energy and
heat [1,2], pollution dispersion (e.g., oil spills) [3], global climate balance, and other factors
of scientific research and human activity security [4,5]. Given that the in-situ data are
unavailable or incomplete in spatial scale in many parts of the world [6], using satellite
data to directly measure the global ocean surface currents holds great importance and
application value.

Currently, the spaceborne altimeter is the main instrument for obtaining global geo-
strophically derived ocean surface current information [7–9]. However, the ability of an
altimeter to measure ocean surface currents is mainly limited to the quasi-geostrophic
currents in off-equatorial open ocean areas. Moreover, it has the disadvantage of a long
repeat observation period.

To overcome the disadvantages of spaceborne altimeters, researchers have proposed
using Doppler shifts to directly observe ocean currents, such as retrieving ocean current
information via spaceborne synthetic aperture radar (SAR) using the Doppler centroid
anomaly method [10,11] and the along-track interferometry method [12,13]. Examples
include ENVISAT’s Advanced SAR instrument [14] and the proof experiment for the
SEASTAR mission [15].

In recent years, Doppler scatterometers have drawn attention owing to their global
coverage and two-component surface velocity measurement ability [16]. The Doppler
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scatterometer is a new type of radar for ocean remote sensing that can measure the Doppler
frequency shift. The ocean surface current parameters (two-component surface velocity)
can be retrieved from the Doppler frequency shift of the received signal caused by the
motion of the ocean surface [17].

Thus far, experiments based on airborne platforms and oceanographic platforms
have been carried out globally on the mechanism of the Doppler scatterometer inversion
method and the verification of the measurement principle. The NASA Jet Propulsion
Laboratory developed a Ka-band pencil-beam Doppler scatterometer named DopplerScatt.
They carried out an airborne experiment over the Mississippi River plume and Barataria
Bay in 2017 and at the edge of a Gulf of Mexico Loop Current Eddy in 2018 [18,19]. Further,
the Marine Hydrophysical Institute RAS carried out an experiment to measure Doppler
frequency with a Ka-band Doppler scatterometer from an oceanographic platform in
the Black Sea [20]. They developed a semi-empirical Doppler GMF (KaDOP) from the
scatterometer data. The results confirm the ability of the Ka-band Doppler scatterometer to
measure the ocean surface currents.

Previous theoretical analysis and experiments have shown that the pencil-beam scat-
terometer with the Ka-band achieves good performance. However, it remains difficult
for us to obtain high-precision ocean surface current information from a spaceborne
Doppler scatterometer. For a spaceborne pencil-beam rotating Doppler scatterometer,
the pulse–pair method seems to be a reliable way to detect ocean surface motion [21].
However, its precision heavily depends on the correlation and the Doppler information of
the received signals.

The measurement accuracy of ocean surface currents required by scientific research
and other applications is 0.1 m/s [22]. To accurately obtain the ocean surface motion
information from the scatterometer signals, we need to subtract the contribution of scat-
terometer platform velocity; that is, we need to propose a method to correct the influence
of platform velocity.

Previous research has focused more on the surface current geophysical model function
(GMF) and the contribution of effects, including long-wave modulation, Stokes orbit
motion, and wind-driven ocean surface velocity, on the total Doppler frequency [18–20].
However, compared with a platform velocity of tens of meters per second under airborne
conditions [23], a spaceborne Doppler scatterometer operates at a high velocity (several
kilometers per second) [24]. This difference can lead to further complexity of signal
processing or poor accuracy in the measurement of ocean surface velocity. Therefore, the
correction of the platform velocity is important.

Currently, the precise orbit determinations (POD) mainly include Satellite Laser
Ranging (SLR) [25], Doppler Orbitography and Radio-positioning Integrated by Satel-
lite (DORIS) [26], Precise Range and Range Rate Equipment (PRARE) [27] and Global
Navigation Satellite System (GNSS) [28,29]. The SLR system can obtain the distance with
an accuracy of 0.5~5 cm. The DORIS system can obtain the distance with an accuracy
of 0.5 mm/s. The PRARE data include the distance and velocity, with an accuracy of
2.5 cm and 0.25 mm/s, respectively. The GNSS system can obtain the satellite height
with an orbit accuracy of 2 cm. Due to the high sampling rate, low cost, comprehensive
coverage, and continuous observation, GNSS technology has been widely used in satellite
orbit determination.

The Doppler frequency induced by satellite platform motion can be estimated using
the satellite platform attitude and velocity information; however, it requires an accurate
and precise measurement of the attitude and velocity information [11,17,18,30]. The effect
of the satellite’s attitude and velocity determinations on ocean current remote sensing has
been analyzed in recent research.

Hansen et al. emphasized the need to accurately correct bias caused by geometrical
Doppler shift prediction errors for ocean current retrieval using advanced synthetic aperture
radar (ASAR) data in 2011 [11]. After bias correction, the root meansquare error of the
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Doppler shift was 4.7 Hz for VV polarization, corresponding to a horizontal Doppler
velocity of 0.23 m/s.

Bao et al. considered the error induced by satellite attitude determination and velocity
errors as one of the sources of the ocean surface radial velocity error in their proposed
ocean current retrieval method [31]. The ocean current velocity error induced by satellite
attitude determination error could be as large as 0.25 m/s for a Ku-band scatterometer with
an accuracy of 0.002◦ of satellite attitude determination.

Ardhuin et al. evaluated the error budget that satellite attitude error induced on
the geometrical Doppler shift [24]. They pointed out that a specific algorithm is required
to stabilize and decrease the platform attitude error for their Ka-band radar altimeter
system. A strict satellite platform stability of 10−4 is necessary to ensure an acceptable
radial velocity error.

Miao et al.’s results show that ocean current speed retrieval accuracy is sensitive to the
accuracies of satellite attitude determination and velocity [32]. With an accuracy of 0.001◦

satellite attitude determination and 0.01 m/s for satellite speed accuracy, the total ocean
current velocity retrieval error induced by satellite attitude determinations (including roll,
pitch, and yaw) and velocity errors reached a maximum value of 0.16 m/s in the side-
looking direction and a minimum value of 0.11 m/s in forward- and backward-looking
directions. All these studies highlight the great importance of the accuracy of platform
velocity elimination for ocean current retrieval.

In this research, we propose a method for platform velocity correction influenced by
the Doppler centroid offset and analyze the accuracy of this correction method. The method
is based on the echoed signal model of the Doppler scatterometer.

The rest of this paper is organized as follows. The ocean surface velocity measurement
simulation process is introduced in Section 2. The velocity correction method of the
influence of the Doppler centroid offset is presented in Section 3. The effects of satellite
attitude and height determinations on the velocity correction are discussed in Section 4.
Finally, the conclusions are provided in Section 5.

2. Materials and Methods
2.1. The Echoed Signal Simulation Model

The echoed signal simulation model was proposed in our previous work [33]. We
assume that the spaceborne rotating pencil-beam Doppler scatterometer rotates clockwise.
Let the scatterometer height be H; the scatterometer platform velocity is vp; the radius
of the Earth is RE; the beam width of the antenna is β; and the incidence angle and
azimuth angle are θ and ϕ, respectively. It is assumed that in the azimuth angle, 0◦ is
the along-track direction, and 90◦/270◦ is the cross-track direction. Figure 1 shows the
observation geometry.

We can obtain the angle between the pencil-beam center and the near end of the beam by

θN = sin−1
[

RE+H
RE

sin
(

θ − β
2

)]
. (1)

The distance from the near end of the beam to the scatterometer is given by

RN =
{

RE
2 + (RE + H)2 − 2RE(RE + H) cos

[
θN −

(
θ − β

2

)]}
0.5. (2)

Similarly, the angle between the pencil-beam center and the far end of the beam is

θF = sin−1
[

RE+H
RE

sin
(

θ + β
2

)]
. (3)

The distance from the far end of the beam to the scatterometer is given by

RF =
{

RE
2 + (RE + H)2 − 2RE(RE + H) cos

[
θF −

(
θ + β

2

)]}0.5
. (4)
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Doppler centroid.

The pencil-beam footprint is divided into a 2D grid, where each grid node is at a
different radial distance to the scatterometer and a different Doppler frequency. The
distance from the ith grid node (xi, yi) to the scatterometer can be expressed as

RL(i) = |Rc + Ri| , (5)

Here, Rc is the radial vector from the scatterometer to the center of the footprint, and Ri
represents the observation vector from the center of the footprint to the ith grid node.
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The incidence angle of the ith grid node can be expressed as

θi = cos−1
[
(RE+H)2+R2

E−RL(i)
2

2RE(RE+H)

]
. (6)

The azimuth angle of the ith grid node can be expressed as

ϕi = cos−1

{
Htan ϕcos θ−xi

[(−Htan ϕcos θ+xi)
2+(Htan ϕsin θ+yi)

2]
0.5

}
. (7)

The Doppler frequency is given by [34]

fD(i) =
2v cos ϕi sin θi

λ
, (8)

Here, v is the radial velocity between the grid node and the scatterometer.
The amplitude of the echoed signal is determined by the radar equation [35]:

A(i) =
[

Ptλ
2

(4π)3R4
Look(i)

G(i)2 RL(i)
sinθi

σ0(i)
]0.5

, (9)

Here, Pt is the transmitted power, and G(i) is the antenna gain. We chose a Sinc antenna
pattern for the simulation. σ0(i) is the backscattering coefficient related to the ocean surface
roughness and slope.

Note that the influence of the modulation of backscatter coefficient in Equation (9) on
the radial velocity measurement was analyzed in our previous work [33]. Therefore, we
do not consider the influence of backscattering coefficient modulation in the analysis of
the platform velocity correction in this research. The backscattering coefficient of each grid
node is uniform. Under this assumption, the echoed signal amplitude becomes

A(i) =
[

Ptλ
2

(4π)3R4
L(i)

G(i)2 RL(i)
sin θi

]0.5
. (10)

The echoed signal is the superposition of each grid node weighted by the echoed
signal power A(i). We use a sinusoidal signal model to measure the Doppler frequency
more accurately. Finally, the echoed signal is given by [36]

S = ∑ Si = ∑ Aiexp{j2π[ fc + fD(i) + f ]ti}, (11)

where fc is the carrier frequency.

2.2. The Pulse–Pair Method

In Section 2.1, we simulated the received signal, so measuring the Doppler frequency
( fD) from the signal is the next step. For the rotating pencil-beam Doppler scatterometer, the
pulse–pair method is used to obtain the radial velocity effectively via theoretical analysis
and airborne validation experiments [21].

The principle of the pulse–pair method is to calculate the phase difference of two re-
ceived signals to estimate the radial velocity. The pulse–pair method only involves signal
processing in the time domain. Because of this simplicity, it is widely used for estimating
Doppler frequency from backscattered signals in Doppler weather radar [37,38].

We assume that the two received signals are S1 and S2, the radial velocity between
the scatterometer and the ocean surface is v, and the interval of the two signals is ∆τ. As
shown in Figure 3, during time interval ∆τ, the relative position of the scatterometer and
the ocean surface changes owing to the radial velocity (v). The change in the position leads
to a phase difference of the two adjacent signals. By measuring the phase difference, we
can obtain the radial velocity information.
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The change of distance can be expressed as

∆r = v∆τ. (12)

The Doppler frequency of radial velocity is

f =
2v
λ

. (13)

The phase difference is given by

∆ϕ = 2π f ∆τ =
4πv∆τ

λ
. (14)

The two adjacent signals can be written as

S1 = A1exp[j(2π f t + ϕ0)], (15)

S2 = A2exp[j(2π f t + ∆ϕ + ϕ0)], (16)

where A1 and A2 are the echoed signal amplitudes determined by Equation (10), and ϕ0 is
the initial phase.

The complex correlation coefficient of two signals (Γ) is given by

Γ = S∗1 · S2
= A1exp[−j(2π f t + ϕ0)] · A2exp[j(2π f t + ∆ϕ + ϕ0)]
= A1 A2exp(j∆ϕ).

(17)
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The interference phase (ϕpp) is the argument of the complex correlation coefficient,
and it is given by

ϕpp = tan−1
[

Im(Γ)
Re(Γ)

]
, (18)

Here, ϕpp reflects the phase difference between pulses within the pencil beam of the Doppler
scatterometer. If the relative motion is stable, a linear relationship exists between the phase
difference and Doppler frequency. Therefore, the Doppler frequency ( fpp) obtained from
the pulse–pair method can be expressed as

fpp =
1

2πτ
tan−1

[
Im(Γ)
Re(Γ)

]
, (19)

where τ is the interference interval. Then, the radial velocity can be obtained as follows:

vpp =
fppλ

2
, (20)

where λ is the wavelength.

2.3. Process of Measuring Ocean Surface Motion

The process of measuring ocean surface motion using the pulse–pair method was
simulated with the model introduced in Sections 2.1 and 2.2 to evaluate the measurement
error. The simulation process is shown in Figure 4.
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We evaluated the pulse–pair method measurement errors under the spaceborne condi-
tion using the simulation model described above to analyze the effect of modulation and
platform velocity. The parameters for this spaceborne condition were chosen to simulate
the spaceborne Doppler scatterometer (DOPS) in the ocean surface current multi-scale
observation mission (OSCOM) [22]. The key parameters are shown in Table 1.

Table 1. Key parameters of the simulation condition.

Parameters Value

Platform Height (km) 520
Platform Velocity (m·s−1) 7000
Signal Frequency (GHz) 35.6

Beam Width (◦) 0.3 (Ka)/0.6 (Ku)
Antenna Size (m) 1.5 (Ka)/0.8 (Ku)
Pulse Width (µs) 50

Pulse Repetition Time (µs) 100
Incidence Angle (◦) 46
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Using the echoed signal model and the pulse–pair method introduced in Sections 2.1 and 2.2,
we could obtain the interference phase related to the platform motion and the ocean sur-
face motion. First, we can calculate the theoretical ocean surface velocity vrS0 from the
simulation parameters

vrS0 =
(

v f + vw + vc

)
sinθcosϕ. (21)

where v f is the wind-driven drift velocity [39]

v f = 0.03 U19.5, (22)

Here, U19.5 is the wind speed at 19.5 m above the ocean surface.
vw is the Stokes orbital velocity of the large-scale waves caused by the ocean surface

gravitational waves [40].

vw = ωpKp

(
Hp
2

)2
(23)

Here, Kp and Hp are the wavenumber and wave height of a fundamental wave. The
fundamental wave corresponds to the wave at the spectral peak, related to the wind speed
above the ocean surface. ωp = 2π/Tp is related to the gravitational acceleration and wind
speed, and vc is the current velocity.

Then, we simulated the echoed signals by the model introduced in Section 2.1. The
radial velocity v between the ocean surface and the scatterometer in Equation (8) is

v = vrS0 + vpsinθcosϕ, (24)

where vp is the platform velocity.
From two echoed signals, we can obtain the radial velocity using Equations (18)–(20)

introduced in Section 2.2. To separate the ocean surface motion information from the
measurement results, we subtracted the platform velocity contribution as follows [18]:

vrS =
1

sinθ

(
ϕppλ

4πτ
− vpsinθcosϕ

)
, (25)

Here, θ is the incidence angle; ϕ is the azimuth angle; ϕpp is the interference phase; τ is the
interference interval.

Parameter vrS eliminates the contribution of platform velocity. It includes several
effects, such as long-wave modulation, Stokes orbit motion, and wind-driven ocean surface
velocity. In our evaluation of the radial velocity error, we primarily focused on the Doppler
frequency related to the total ocean surface velocity (vrS), which encompasses the combined
effects of wind and waves. By comparing the measured radial velocity vrS compared with
the theoretical velocity vrS0, we can evaluate the measurement offset.

We attempted to eliminate the effect of platform velocity using Equation (25) and
found that this could result in a significant measurement error in the spaceborne scenario
owing to the offset of Doppler centroid. Under the conditions of a spaceborne platform, an
offset was observed between the radial velocity measured by the pulse–pair method and
the real ocean surface velocity.

Figure 5a shows the measured radial velocity with beam widths of 0.3◦ and 0.6◦ and
the theoretical velocity. Figure 5b shows the radial velocity offset with beam widths of 0.3◦

and 0.6◦. The maximum offset was 0.02 m/s when the beam width was 0.3◦. For the 0.6◦

beam width, the maximum offset was 0.07 m/s.
In the next section, we analyze the sources of the offset and propose a method for

platform velocity correction.
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3. The Velocity Correction Method
3.1. Analysis of the Doppler Spectrum

To analyze the velocity offset, we analyzed the Doppler spectrum within the beam
width in the along-track direction. From the received signal, we could obtain the Doppler
spectrum from the Fourier transform of the received signal (S) with Equation (11). First,
the carrier frequency was removed as follows:

SD = S·e−j2π fct = ∑ Ai exp{j2π[ fD(i) + f ]ti}. (26)

The Doppler spectrum (F′D) is the Fourier transform of the signal SD

F′D( f ) =
∫ +∞

−∞
SDe−j2π f tdt. (27)

Before the analysis of the Doppler spectrum, the platform velocity contribution is
subtracted as follows:

FD( f ) = F′D( f )− vpsinθcosϕ. (28)

For simplicity, we first considered that the echoed power of the signal is not modulated
by the antenna pattern.

Figure 6 shows the Doppler spectrum of the received signal in the footprint. The
theoretical Doppler centroid frS0 in Figure 6 is calculated from the theoretical velocity vrS0
in Equation (21):

frS0 =
2vrS0

λ
. (29)

For a middle wind speed (10 m/s), when the current velocity is set to 0.1m/s, the the-
oretical Doppler centroid frS0 is about 194 Hz. The Doppler spectrum was not symmetrical
about the theoretical Doppler centroid but had a certain skewness. The asymmetry made
the Doppler spectrum centroid of the footprint (solid line) and the theoretical Doppler
centroid (dashed line) unequal. Therefore, when we used the theoretical Doppler centroid
of the beam for platform motion correction in the process of measuring ocean surface
motion (Section 2.3), the measured ocean surface velocity would be offset.

Figure 7 shows the equidistant line of the footprint. Because the footprint had a certain
width, the equidistant line of the panel in the azimuth direction was not perpendicular to
the observation direction, which led to the Doppler centroid in the footprint being closer to
the scatterometer than the geometric center of the beam.

The geometric center of the beam could not be equivalent to the Doppler center
of the beam. Therefore, we used the actual Doppler centroid instead of the geometric
center to correct the platform velocity. This Doppler centroid offset was not handled
in the process of measuring ocean surface motion introduced in Section 2.3. For the



Remote Sens. 2023, 15, 5541 10 of 23

combined Doppler frequency obtained by the pulse–pair method, the platform Doppler
frequency corresponding to the geometric center of the beam was simply subtracted, so the
measurement result had an offset value that could not be ignored.
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The above analysis of Doppler centroid offset did not factor in the antenna pattern
modulation. When we considered the antenna pattern modulation effect, the energy of
the Doppler frequency at the beam geometric center was the highest, and the energy
gradually decreased with the increase in the distance between the grid node and the beam
geometric center.

Figure 8 shows the offset considering and not considering the antenna pattern modu-
lation. If the antenna pattern was the Sinc pattern, the antenna pattern modulation would
reduce the energy of the actual Doppler centroid, resulting in the further offset of the
measurement results. The offset reached a maximum of ±0.018 m/s in the along-track
direction without antenna pattern modulation; when we factored in the antenna pattern
modulation, the offset increased further, and the maximum was about ±0.025 m/s in the
along-track direction.



Remote Sens. 2023, 15, 5541 11 of 23
Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 8. The offset considering and not considering the antenna pattern modulation. 

For the ocean surface current measurement, the requirement of overall measure-
ment accuracy was 0.1 m/s. The offset accounted for 25% of the accuracy requirement. 
Therefore, we had to conduct further analyses of this offset and propose a method for 
correcting the platform velocity accurately. 

3.2. Offset between Doppler Centroid and Geometric Center within Footprint 
As shown in Figure 2, the actual Doppler centroid of the beam (point C) was the 

centroid of the Doppler frequency on the equidistant line where the geometric center 
point O of the beam center was located. The distance between the actual center of the 
beam and the platform 𝑅  is given by 𝑅 = cos . (30) 

Then, the incidence angle (𝜃 ) and azimuth angle (𝜑 ) of the actual centroid C are 
given by 

𝜃 = cos cos𝜃cos 𝛽2 , (31) 

𝜑 = 𝜑. (32) 

The offset of radial velocity can be expressed as 𝑣 𝜃, 𝜑, 𝑣 = 𝑣 𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃 − 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜃  = 𝑣 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜃 − . (33) 

Figure 9 shows that the offset in the cross-track direction was 0, while the offset in 
the along-track direction was the largest. With the increase in incidence angle, the offset 
decreased from 0.036/s at a 30° incidence angle to 0.007 m/s at a 60° incidence angle. 

Figure 8. The offset considering and not considering the antenna pattern modulation.

For the ocean surface current measurement, the requirement of overall measurement
accuracy was 0.1 m/s. The offset accounted for 25% of the accuracy requirement. Therefore,
we had to conduct further analyses of this offset and propose a method for correcting the
platform velocity accurately.

3.2. Offset between Doppler Centroid and Geometric Center within Footprint

As shown in Figure 2, the actual Doppler centroid of the beam (point C) was the
centroid of the Doppler frequency on the equidistant line where the geometric center
point O of the beam center was located. The distance between the actual center of the beam
and the platform RrC is given by

RrC =
H

cosθ
cos
(

β

2

)
. (30)

Then, the incidence angle (θC) and azimuth angle (ϕC) of the actual centroid C are
given by

θC = cos−1

 cosθ

cos
(

β
2

)
, (31)

ϕC = ϕ. (32)

The offset of radial velocity can be expressed as

vo(θ, ϕ, vP) = vP(cosϕsinθ − cosϕCsinθC)

= vPcosϕ

sinθ −

√
cos2

(
β
2

)
−cos2θ

cos
(

β
2

)
.

(33)

Figure 9 shows that the offset in the cross-track direction was 0, while the offset in
the along-track direction was the largest. With the increase in incidence angle, the offset
decreased from 0.036/s at a 30◦ incidence angle to 0.007 m/s at a 60◦ incidence angle.

Using the satellite platform velocity and the observed geometric parameters, we
subtracted the platform velocity under the influence of the Doppler centroid offset. The
velocity correction vc(θ, ϕ, vP) was the reverse of the offset vo(θ, ϕ, vP):

vc(θ, ϕ, vP) = −vo(θ, ϕ, vP). (34)



Remote Sens. 2023, 15, 5541 12 of 23
Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 9. Radial velocity offset (𝑣 ) with azimuth angle and incidence angle. 

Using the satellite platform velocity and the observed geometric parameters, we 
subtracted the platform velocity under the influence of the Doppler centroid offset. The 
velocity correction 𝑣 𝜃, 𝜑, 𝑣  was the reverse of the offset 𝑣 𝜃, 𝜑, 𝑣 : 𝑣 𝜃, 𝜑, 𝑣 = −𝑣 𝜃, 𝜑, 𝑣 . (34) 

In this case, the subtraction of platform velocity (Equation (25)) becomes 𝑣 = − 𝒍 ∙ 𝒗𝒑 − 𝑣 𝜃, 𝜑, 𝑣 . (35) 

3.3. Offset Considering Antenna Pattern 
Assume that the antenna adopts a Sinc pattern [41], the following holds: 𝐺 𝜃, 𝜑 = 𝐺  . /. /  . /. / , (36) 

where 𝐺  is the antenna gain; 𝜃 is the incidence angle; 𝜑 is the azimuth angle; and 𝛽  
and 𝛽  are the beam width in the incidence and azimuth directions, respectively. 

Figure 10 shows the antenna pattern. At the edge of the beam, the amplitude was 
half of the maximum. 

 
Figure 10. Antenna pattern with an antenna gain of 20 dB and a beam width of 0.3° in both the el-
evation and azimuth directions. 

The incidence angle (𝜃 ) and azimuth angle (𝜑 ) of the actual Doppler centroid are 
given by Equations (31) and (32). So, the antenna gain of the Doppler centroid is given by 

Figure 9. Radial velocity offset (vo) with azimuth angle and incidence angle.

In this case, the subtraction of platform velocity (Equation (25)) becomes

vrS =
1

sinθ

(
ϕppλ

4πτ
− l·vp − vc(θ, ϕ, vP)

)
. (35)

3.3. Offset Considering Antenna Pattern

Assume that the antenna adopts a Sinc pattern [41], the following holds:

G(θ, ϕ) = G0

[
sin(2.773θ/βθ)

2.773θ/βθ

]2
[

sin
(
2.773ϕ/βϕ

)
2.773ϕ/βϕ

]2

, (36)

where G0 is the antenna gain; θ is the incidence angle; ϕ is the azimuth angle; and βθ and
βϕ are the beam width in the incidence and azimuth directions, respectively.

Figure 10 shows the antenna pattern. At the edge of the beam, the amplitude was half
of the maximum.
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The incidence angle (θC) and azimuth angle (ϕC) of the actual Doppler centroid are
given by Equations (31) and (32). So, the antenna gain of the Doppler centroid is given by

GC = G(θC, ϕC). (37)

and the correction of the platform velocity is given by

vcG(θ, ϕ, vP) = −voG(θ, ϕ, vP) = −
GC
G0

vo(θ, ϕ, vP). (38)



Remote Sens. 2023, 15, 5541 13 of 23

Using Equation (38), we can calculate the offset of the Doppler centroid, considering
the influence of antenna pattern modulation. Figure 11 shows the offset of the radial
velocity with a beam width of 0.3◦ at different incidence angles and azimuth angles. The
offset reached the maximum in the along-track direction. With the increase in incidence
angle, the offset decreased gradually, from the maximum, 0.01 m/s at a 30◦ incidence
angle, to the minimum, 0.004 m/s at a 60◦ incidence angle. Compared with the offset
without antenna pattern modulation, the offset with antenna pattern modulation increased
by about 65%.
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4. Discussion

In Section 3, we established the correction method of platform velocity. From
Equations (33) and (34), it can be seen that the incidence angle, azimuth angle, and satellite plat-
form velocity affect the correction accuracy. Next, we further analyze the correction accuracy.

According to the total differential equation, the correction error can be deconstructed
into the errors of the above-mentioned factors, as follows:

∆vc(θ, ϕ, vP) =
∂vc(θ, ϕ, vP)

∂θ
·∆θ +

∂vc(θ, ϕ, vP)

∂ϕ
·∆ϕ +

∂vc(θ, ϕ, vP)

∂vP
·∆vP, (39)

where ∆θ is the measurement error of incidence angle, ∆ϕ is the measurement error of
azimuth angle, and ∆vP is the measurement error of satellite platform velocity. Next, we
analyze the error caused by each determination.

4.1. The Derivative of Determinations
4.1.1. The Derivative of the Correction Velocity to the Incidence Angle

From Equations (34) and (39), we can obtain the following derivatives:

∂vc(θ,ϕ,vP)
∂θ = ∂

∂θ

−vPcosϕ

sinθ −

√
cos2

(
β
2

)
−cos2θ

cos
(

β
2

)


= −vPcosϕ

cosθ −

 cosθsinθ

cos
(

β
2

)√
cos2

(
β
2

)
−cos2θ

 (40)

As shown in Figure 12, the effect of incidence angle determination on the platform
velocity correction reached the maximum in the along-track direction (0◦). With the increase
in the incidence angle, the effect decreased.
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4.1.2. The Derivative of the Correction Velocity to the Azimuth Angle

The derivative of the correction velocity to the azimuth angle is calculated using
Equation (41). Figure 13 shows that, contrary to the incidence angle determination, the
azimuth angle determination had the greatest impact on the platform velocity correction
in the cross-track direction (90◦ and 270◦). With the increase in the incidence angle, the
effect decreased.

∂vc(θ,ϕ,vP)
∂ϕ = ∂

∂ϕ

−vPcosϕ

sinθ −

√
cos2

(
β
2

)
−cos2θ

cos
(

β
2

)


= vPsinϕ

sinθ −

√
cos2

(
β
2

)
−cos2θ

cos
(

β
2

)


(41)
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4.1.3. The Derivative of the Correction Velocity to the Platform Velocity

The derivative of the correction velocity to the platform velocity is calculated with
Equation (42). Figure 14 shows that the effect of platform velocity determination on the
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platform velocity correction reached its maximum in the along-track direction (0◦ and 180◦).
With the increase in incidence angle, the effect decreased gradually.

∂vc(θ,ϕ,vP)
∂vP

= ∂
∂vP

−vPcosϕ

sinθ −

√
cos2

(
β
2

)
−cos2θ

cos
(

β
2

)


= −cosϕ

sinθ −

√
cos2

(
β
2

)
−cos2θ

cos
(

β
2

)
.

(42)
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Moreover, comparing the size of each component, we found that the maximum values
of ∂vc(θ,ϕ,vP)

∂θ and ∂vc(θ,ϕ,vP)
∂ϕ were similar and that the maximum value of ∂vc(θ,ϕ,vP)

∂vP
was four

orders of magnitude smaller than the former two.

4.2. Contribution of the Satellite Attitude

The measurement errors of the incidence angle and azimuth angle are caused by
satellite attitude determinations. The satellite attitude contains the pitch, yaw, and roll.
Thus, we had to convert the satellite attitude (i.e., yaw, pitch, and roll) into the incidence
angle and azimuth angle. The transformation matrix can be written as follows [42]:

Tp = Ty
p·T

p
p·Tr

p

=

 cosψy −sinψy 0
sinψy cosψy 0

0 0 1

 cosψp 0 sinψp
0 1 0

−sinψp 0 cosψp

 1 0 0
0 cosψr −sinψr
0 sinψr cosψr


=

 cosψycosψp − sinψysinψpsinψr −sinψycosψr cosψysinψp + sinψycosψpsinψr
sinψycosψp + cosψysinψpsinψr cosψycosψr sinψysinψp − cosψycosψpsinψr

−cosψysinψp sinψr cosψycosψp


(43)

According to the transformation matrix, we could transfer the yaw/pitch/roll param-
eters to the incidence/azimuth parameters; thus, we could analyze the error of the radial
velocity correction.

4.2.1. Yaw

With a yaw angle of ψy, the radial direction vector
→
Ry

l can be written as follows:

→
Ry

l = Ty
p·
→
Rl

=

 cosψy −sinψy 0
sinψy cosψy 0

0 0 1

 sinθcosϕ
sinθsinϕ
−cosθ

 =

 sinθcos
(

ϕ + ψy
)

sinθsin
(

ϕ + ψy
)

−cosθ

 (44)
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Then, the incidence angle θy is the angle between the radial vector
→
Ry

l and the radial

vector from the scatterometer to the nadir point
→
Rn = (0, 0,−1), and is given by

θy = cos−1
(→

Ry
l ·
→
Rn

)
= θ. (45)

The azimuth angle ϕy can be expressed as follows:

ϕy = tan−1

(
sinθsin

(
ϕ + ψy

)
sinθcos

(
ϕ + ψy

)) = ϕ + ψy. (46)

The error caused by ψy is given by

∆θy = θy − θ, ∆ϕy = ϕy − ϕ. (47)

4.2.2. Pitch

Like the yaw, with a pitch angle of ψp, the radial direction vector is given by

→
Rp

l = Tp
p·
→
Rl

=

 cosψp 0 sinψp
0 1 0

−sinψp 0 cosψp

 sinθcosϕ
sinθsinϕ
−cosθ

 =

 sinθcosϕcosψp − cosθsinψp
sinθsinϕ

−sinθcosϕsinψp − cosθcosψp

.

(48)
The incidence angle θp is given by

θp = cos−1
(→

Ry
l ·
→
Rn

)
= cos−1(sinθcosϕsinψp + cosθcosψp

)
. (49)

The azimuth angle ϕp can be expressed as follows:

ϕp = tan−1
(

sinθsinϕ

sinθcosϕcosψp − cosθsinψp

)
. (50)

The error caused by ψp is given by

∆θp = θp − θ, ∆ϕp = ϕp − ϕ. (51)

4.2.3. Roll

Similarly, with a roll angle of ψr, the radial direction vector can be expressed as follows:

→
Rr

l = Tr
p·
→
Rl

=

1 0 0
0 cosψr −sinψr
0 sinψr cosψr

sinθcosϕ
sinθsinϕ
−cosθ

 =

 sinθcosϕ
sinθsinϕcosψr + cosθsinψr
sinθsinϕsinψr − cosθcosψr

.
(52)

The incidence angle θr is given by

θr = cos−1
(→

Rr
l ·
→
Rn

)
= cos−1(−sinθsinϕsinψr + cosθcosψr). (53)

The azimuth angle ϕr can be expressed as follows:

ϕr = tan−1
(

sinθcosϕcosψr + cosθsinψr

sinθcosϕ

)
. (54)
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The error caused by ψr is given by

∆θr = θr − θ, ∆ϕr = ϕr − ϕ. (55)

The variations in incidence angle and azimuth angle errors caused by the yaw, the
pitch, and the roll with the azimuth angle are shown in Figure 15. For the scatterome-
ter attitude determinations, a determination of 0.0005◦ is reasonable for high-accuracy
star sensors [43]. Therefore, we set the yaw, pitch, and roll determinations to 0.0005◦ in
the simulation.
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Figure 15. Effects of the scatterometer attitude determinations on (a) incidence angle error and
(b) azimuth angle error.

As shown in Figure 15a, for the incidence angle error, the yaw determination had no
effect, while the effect of roll determination on the incidence angle reached the peak in the
cross-track direction (90◦ and 270◦), and the pitch determination’s effect on the incidence
angle reached the peak in the along-track direction (0◦ and 180◦). For the azimuth angle
error in Figure 15b, the yaw determination effect was constant; it did not change with the
azimuth angle. The roll determination effect on the azimuth angle was the largest in the
along-track direction, and the pitch determination effect on the azimuth angle was the
largest in the cross-track direction.

With the transformation of the determinations, we can calculate the effects of satellite
attitude determinations on the correction error from Equation (39).

Figure 16 shows the effects of each satellite attitude determination on the error of
correction. The effect of yaw determination on the error of correction reached the peak in
the cross-track direction, and the effect of pitch determination reached the maximum in the
along-track direction. The effect of roll determination reached the maximum in the 45◦ and
135◦ directions, and its effect became 0 in the along-track and cross-track directions. The
effects of satellite attitude determinations were at a consistent order of magnitude.

4.3. Contribution of the Platform Velocity

The measurement errors in the satellite platform velocity were caused by the satellite
orbit altitude determination. To analyze the contribution of platform velocity to the mea-
surement error, assuming that the satellite orbit is circular, we can describe the relationship
between platform height (H) and platform velocity (vp) as follows:

vp =

√
GM

H + RE
. (56)
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The error of platform velocity can be expressed as follows:

∆vp =
d
√

GM
H+RE

dH
∆H =

−
√

GM

2(H + RE)
1.5 ∆H. (57)

As shown in Figure 17, similar to the satellite attitude determinations, the effect of
platform velocity determination was on ∂vc(θ,ϕ,vP)

∂vP
·∆vP only. Thus, the correction error

Equation (39) could be written as follows:

∆vcH = −cosϕ

sinθ −

√
cos2

(
β
2

)
− cos2θ

cos
(

β
2

)
·∆vP. (58)

As shown in Figure 18, the correction error increased with the satellite platform height
error. In the cross-track direction, the effect of platform height determination on correction
error reached the maximum. High-precision satellite height measurement sensors could
reduce the error to 10 m [44], so the maximum was less than 2× 10−8m·s−1. This is much
smaller than the correction.
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4.4. Total Effects of Satellite Attitude and Height Determinations on the Correction

The yaw, pitch, roll, and platform height determinations are random and mutually
independent variables, so the correction errors caused by scatterometer attitude and height
determinations could be expressed as follows:

∆vc(θ, ϕ, vP) =
√

∆vcy
2 + ∆vcp

2 + ∆vcr
2 + ∆vcH

2, (59)

where ∆vcy, ∆vcp, ∆vcr, and ∆vcH denote yaw, pitch, roll, and satellite platform height
determination, respectively.

The total effects of determinations above with beam widths of 0.3◦ and 0.6◦ are
shown in Figure 19. Figure 19a shows that with a beam width of 0.3◦, using current
high-precision satellite attitude and altitude measurement technology, the overall error of
velocity correction could be reduced to 5× 10−5 m/s. Figure 19b shows that for a beam
width of 0.6◦, the overall error of velocity correction could be reduced to 2× 10−4 m/s.

The sensitivity of velocity determination to each determination and the error contribu-
tion of each determination under a 46◦ incidence angle are shown in Table 2.
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Table 2. Sensitivity of velocity determination to each determination and error contribution of each
determination under a 46◦ incidence angle.

Determinations Sensitivity Error Contribution

Yaw 1.61× 10−2 8.05× 10−6 m·s−1

Pitch 1.55× 10−2 7.77× 10−6 m·s−1

Roll 3.31× 10−2 1.61× 10−5 m·s−1

Platform Height 2.30× 10−6 6× 10−8 m·s−1

Compared with the required accuracy (0.1 m/s) of ocean surface currents, these
values are relatively small and can be ignored. Therefore, we can conclude that under the
measurement accuracy, the influence of the Doppler centroid offset on the ocean surface
velocity measurement can be accurately corrected by the correction method proposed in
Section 3.

5. Conclusions

For a Ka-band pencil-beam rotating Doppler scatterometer operating at a middle
incidence angle, the Doppler frequency of the received signal is mainly the relative motion
between ocean surface and the scatterometer. In this relative motion, the ocean surface
motion is the information we need. However, the platform velocity of the spaceborne
Doppler scatterometer is much higher than the ocean surface motion, so the high platform
velocity accounts for the main part of the Doppler frequency. The accurate correction of the
platform velocity contribution is the first and most important step for us to measure the
ocean surface velocity from the received signals of a spaceborne Doppler scatterometer.

To accurately correct the high platform velocity contribution, we established a simula-
tion model to analyze the platform velocity influence on the measurement. The model is
based on the spaceborne Doppler scatterometer’s observing geometry and the pulse–pair
method. We simulated the measurements under spaceborne conditions and found an offset
between the radial velocity measured by the pulse–pair method and the real ocean surface
velocity. We found that the offset source was the offset of the actual Doppler centroid
and the geometric center of the footprint. We established the correction method for this
offset and factored in the antenna pattern contribution. Also, we analyzed the effects of the
satellite attitude and height determinations on the correction accuracy.

Our study results confirm the importance of a high platform velocity on the ocean
surface velocity measurement, which affects the accuracy of the estimation of the ocean
surface motion. The offset could lead to a measurement offset of up to 0.02 m/s when the
beam width was 0.3◦. For the 0.6◦ beam width, the maximum offset was 0.07 m/s. With
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the high accuracy of the current spaceborne sensors’ measurement, it can be considered
that this offset can be accurately eliminated. In future applications and data processing
algorithms, this effect should be considered.

Past studies have proven that ocean current speed retrieval accuracy is sensitive to the
accuracy of satellite attitude determination and velocity, and indicated the great importance
of platform velocity elimination to ocean current retrieval. Our study complements these
results, indicating that the offset of the actual Doppler centroid and the geometric center of
the footprint can affect the accuracy of the ocean surface velocity measurement. To estimate
the scatterometer motion’s contribution to the Doppler frequency of interest, we must
also measure the accurate scatterometer attitude and height parameters. Further, accurate
Doppler frequency estimation requires the development of a Doppler frequency model.
In parallel, the development of the related theory will also promote the development of
spaceborne sensors.
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