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Abstract: In this paper, we address the problem of covariance matrix estimation for radar adaptive
detection under non-Gaussian clutter. Traditional model-based estimators may suffer from perfor-
mance loss due to the mismatch between real data and assumed models. Therefore, we resort to a
data-driven deep-learning method and propose a covariance matrix estimation method based on a
complex-valued convolutional neural network (CV-CNN). Moreover, a real-valued (RV) network
with the same framework as the proposed CV network is also constructed to serve as a natural
competitor. The obtained clutter covariance matrix estimation based on the network is applied to
the adaptive normalized matched filter (ANMF) detector for performance assessment. The detection
results via both simulated and real sea clutter illustrate that the estimator based on CV-CNN outper-
forms other traditional model-based estimators as well as its RV competitor in terms of probability of
detection (PD).

Keywords: adaptive detection; complex-valued network; convolutional neural network; covariance
matrix estimation

1. Introduction

Adaptive detection is a branch of vital importance in radar signal processing, which
has been widely used in ground-based radar systems [1,2] and airborne radar systems [3,4].
One of the important tasks for adaptive detection is to detect targets under complex envi-
ronments, including noise, clutter, jamming, and so on. The clutter tends to be intractable,
especially for sea exploration, as the moving sea waves may cause the spread of clutter in
the Doppler frequency domain. Therefore, it is essential for adaptive detection to research
the clutter covariance matrix.

A classical estimator is called the sample covariance matrix (SCM), which is the maxi-
mum likelihood estimation (MLE) for Gaussian distributed clutter [5,6]. The well-known
Kelly’s generalized likelihood ratio test (KGLRT) and adaptive matched filtering (AMF)
detectors are all based on SCM to realize the target detection under Gaussian clutter [7,8].
However, there are often cases in the real world with clutter of non-Gaussianity. The
compound Gaussian (CG) distribution was then proposed to depict non-Gaussian clut-
ter [9–11], with both the normalized SCM (NSCM) [12] and the approximate maximum
likelihood estimator (AML) [11,13] being able to provide the suitable clutter covariance
matrix estimation. Substituting the NSCM or AML to the adaptive normalized matched
filter (ANMF) detector yields good detection results under compound Gaussian clutter [14].
However, the detection performance may drop sharply when secondary data are not ade-
quately sufficient. Then, the shrinkage fix point estimator (SFPE) was proposed in [15–17]
to handle this problem, using the unit matrix as the regularization. The color-loaded esti-
mation method is another scheme for clutter covariance matrix estimation with insufficient
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secondary data, using prior covariance matrix as the regularization to raise the detection
performance [18–21].

Please note that the above clutter covariance matrix estimators are under the assump-
tion of specific mathematical models. Once the measured data mismatch with the assumed
model, performance loss must be born. Recently, deep learning has been introduced to the
field of radar signal processing. It is a kind of method driven by large amounts of training
data, which can provide robust performance under model mismatch.

The convolutional neural network (CNN) is a deep-learning network structure that
has been widely applied to image processing and computer vision [22,23]. Due to its
powerful ability to fit and extract features, CNN is also qualified for signal processing.
In [24], the authors exploited a two-dimensional CNN to estimate the clutter’s angle-
Doppler spectrum for space and time processing (STAP). In [25], the radar target detection
in sea clutter was carried out depending on CNN with dual-perspective attention. In [26],
multitarget detection with correlated heavy-tailed clutter is processed in the Range-Doppler
map. More detection schemes based on CNN or deep learning can be referred to in [27–31].
However, only real-valued (RV) networks were used in the mentioned studies.

It should be emphasized that complex-valued (CV) data involving the phase infor-
mation are of great value for radar signal processing. For example, the motion features of
targets are contained in the phase information, which is essential for moving target detec-
tion (MTD) processing. Moreover, complex multiplication is the key function for phase
rotation [32]. It enforced the signal transformations in terms of the physical characteristics
of data, which can help to reduce the computational complexity as well as the degree of
freedom in learning or self-organization [33]. All the abovementioned inspire us to explore
the CV networks for detection performance improvement.

In this paper, we deal with the clutter covariance matrix estimation based on CV-
CNN for radar adaptive detection under non-Gaussian clutter. The main novelty and
contributions are listed below:

• A CV covariance matrix estimation network (CVCENet) is proposed to estimate the
clutter covariance matrix. Moreover, an RV natural competitor named RVCENet is
constructed with the same framework as the CVCENet.

• Multiple data resources are exploited from three input channels in the network, includ-
ing the primary data, secondary data, and regularization data, to raise the estimation
accuracy of the clutter covariance matrix. The obtained estimation of the clutter
covariance matrix is applied to the ANMF detector for target detection.

• Performance assessment is gained via both simulated and real sea clutter, illustrating
the effectiveness and advancement of the estimator via CVCENet, compared with
RVCENet and traditional model-based covariance matrix estimators.

The remainder of the paper is arranged as follows. A description of adaptive detection
and the detection model are given in Section 2. Section 3 provides a detailed design process
of the proposed network. Section 4 is devoted to the performance assessment via both
simulated and real data. Section 5 concludes the paper.

2. Problem Formulation

In this section, we introduce the detection model and explain the importance of
covariance matrix estimation.

A train of echo data is received from a radar system containing potential targets and
environmental clutter. We take sea exploration, for example, shown in Figure 1. After
pulse compression, the received echo data can be shown in Figure 2, with N pulses being
in a coherent processing interval. y0 is an N-dimensional vector containing the potential
target in the cell under test (CUT), named the primary data. Separated from y0 by guard
cells, yk, k = 1, · · · , K is the N-dimensional signal-free vector called the secondary data.
There is only clutter or noise in yk, k = 1, · · · , K, which is used for clutter covariance matrix
estimation, with K being the number of range cells (K ≥ N). The detection problem can be
formulated according to the following binary hypothesis test [34]
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{
H0 : y0 = c0, yk = ck, k = 1, · · · , K
H1 : y0 = as + c0, yk = ck, k = 1, · · · , K

, (1)

where s = 1√
N
[1, exp(j2π fd), · · · exp(j2π(N − 1) fd)]

T is the signal steering vector. fd is the
normalized Doppler frequency, space frequency, or space–time frequency, depending on
the type of radar system. a denotes the amplitude, which is accounted for both the target
and the channel effects. ck ∈ CN×1, k = 0, 1, · · ·K denotes the N-dimensional clutter data.

A detector aims to detect a target under an unknown environment, which is designed
to maximize the probability of detection (PD) under constant false alarm probability (CFAR).
There are many detectors fit for various scenarios and conditions [35], which can be
generally formulated as

f (y0, Y, s)
H1
≷
H0

η, (2)

where f (·) denotes the mapping function, Y = [y1, y2, . . . yK] is the secondary data matrix
and η is the detection threshold determined by the false alarm probability (PFA). The
compound Gaussian clutter is a common type in the real world, whose optimum radar
detector is named the NMF [14], i.e.,∣∣sHR−1y0

∣∣2
(sHR−1s)(y0HR−1y0)

H1
≷
H0

ηNMF, (3)

where R is the true clutter covariance matrix and ηNMF is the threshold of NMF. In practice,
R is usually unknown so that an estimation of the clutter covariance matrix R̂ is necessary
to take place R in (3), gaining the ANMF detector as [14],∣∣sHR̂−1y0

∣∣2(
sHR̂−1s

)(
y0HR̂−1y0

)H1
≷
H0

ηANMF, (4)

where R̂ denotes the estimated clutter covariance matrix, and ηANMF is the threshold
of ANMF. Therefore, the estimation quality of the clutter covariance matrix is crucial to
adaptive detection.

Figure 1. Detection scenario for sea exploration.

Figure 2. Echo data after pulse compression.
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3. Covariance Matrix Estimation Network

This section gives the designing process of covariance matrix estimation based on
CV-CNN. First, we introduce a classical covariance matrix estimation mathematical model,
i.e., the general linear model. Next, we construct our proposed CVCENet. Then, we give
the training process of the CVCENet.

3.1. Linear Covariance Matrix Estimator

The general linear covariance matrix estimation model is formulated as [18]

R̂ = αR̂A + (1− α)R̂S, (5)

where α is the linear weighting factor. R̂A is called the estimation of the regularization
covariance matrix, which can be obtained via prior information of a covariance matrix
in the CUT, sometimes R̂A can be set to be a unit matrix. R̂S is called the estimation of a
secondary covariance matrix, which can be obtained via secondary data and shown in the
form of SCM, NSCM, AML, and so on. Precisely, R̂S is a linear combination of secondary
covariance matrix in different range bins, i.e.,

R̂S = Σk=K
k=1 wkR̂k, (6)

where R̂k, k = 1, · · · , K denotes the estimated covariance matrix in different range bins, wk
is the weighting factor, being constant for most covariance matrix estimators. The structure
diagram of R̂S is given in Figure 3, and three typical estimators of R̂S are shown in Table 1,
where R̂−1

(i) is the inverse of covariance matrix estimation of the ith iteration, especially for

R̂−1
(0) = I.

Figure 3. The structure diagram of R̂S.

Table 1. Form of typical estimators of R̂S.

Estimator wk R̂k

SCM [5] 1
K

ykyH
k

NSCM [12] N
K

ykyH
k

yH
k yk

AML [13] N
K

ykyH
k

yH
k R̂−1

(i) yk

3.2. CVCENet

Considering it is hard to model the covariance matrix in the real world as a specific
mathematical model, we depend on a data-driven method to estimate the covariance matrix.
As shown in Figure 3, the structure of R̂S is similar to a single layer fully connected network
without an activation function, driving us to design a general covariance matrix estimation
network, given as

R̂Net = f (R̂A, R̂P, R̂k|Θ), (7)
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where R̂P denotes the primary covariance matrix, i.e., the covariance matrix of clutter data
in the CUT. Θ is the weighting factor vector of the net, which can be obtained via gradient
descent optimization algorithm [36,37].

The CVCENet is generally composed of a multi-matrix feature extraction module and a
covariance matrix recovering module, whose framework is shown in Figure 4, where [·] de-
notes the concat function. The input of CVCENet comes from R̂A, R̂P, and R̂k, k = 1, · · · , K,
and the output is R̂Net. We use simulated compound Gaussian clutter data and NSCM to
generate R̂P and R̂k, k = 1, · · · , K, while R̂A is obtained via historical data [38] or a unit
matrix, which will be specifically stated in the training process. Substituting the gained
R̂Net into a suitable detector, with ANMF being applied in the paper, we obtain the final
detection results.

The multi-matrix feature extraction module is composed of three CV residual dense
networks (CVRDNs). Each CVRDN contains three CV residual dense blocks (CVRDBs),
labeled at the top of the CVRDN as its main block. As for the covariance matrix recovering
module, it is constructed by a CVRDN and two complex-valued convolutional layers of
two-dimension, i.e., CVCov2d, with different parameter settings labeled at the top. For
example, “K3− P1−O2” denotes the parameter setting of the first CVCov2d, i.e., kernel
size 3 × 3, padding 1, output channel number 2. All the parameter settings aim to make
the dimensions of output identical to the input, which can be referred to in [39]. In the
subsequent, we will give elaborate descriptions of the CVCENet module by module.

Figure 4. Framework of CVCENet.

Multi-matrix feature extraction module: It is the starting module of the CVCENet,
constructed by three CVRDNs, i.e., CVRDN1, CVRDN2, and CVRDN3, corresponding
to the inputs of R̂A, R̂P, and R̂k, k = 1, · · · , K, respectively. Making a concat to the three
CVRDNs yields the output of the module, i.e., feature data of the covariance matrix to be
estimated. For each CVRDN, three CVRDBs are contained as the main block. Actually, RDN
and RDB are usually adopted to obtain a super-resolution image. CVRDN and CVRDB
are the extending complex-valued operations of RDN and RDB, respectively, aiming to
deal with the estimation of the covariance matrix, which seems to be a complex-valued
image. This is why we chose CVRDN and CVRDB as the basic blocks of the module,
whose structures are given in Figures 5 and 6, respectively. The double line arrows in
Figures 5 and 6 stand for the residual connect [40], which is an effective architecture to
prevent the disappearance of gradients during the training process and has been widely
used for neural network construction, marked in different colors merely for clarification.
Moreover, the CVCov2d provides a similar calculation rule as a real-valued convolution
layer, except for its complex-valued operations. The split complex rectified linear units, i.e.,
CRelu, is a calculation unit that is ruled as [30],

CRelu(Z) = max(0,<(Z)) + jmax(0,=(Z)), (8)

where <(Z) and =(Z) denote the real and imaginary parts of Z, respectively.
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Figure 5. Structure of CVRDN.

Figure 6. Structure of CVRDB.

Covariance Matrix Recovering Module: With the feature data of covariance matrix to
be estimated, the data are fed to the covariance matrix recovering module to obtain R̂Net.
The module consists of a CVRDN, i.e., CVRDN4, and two CVCov2ds with different param-
eter settings, aiming to obtain the R̂Net under desirable dimensions. The details of CVRDN
and CVCov2d have just been discussed in the multi-matrix feature extraction module.

To verify the advancement of the CV network, we also construct an RV network as
a natural competitor for comparison, i.e., RVCENet, with the same framework as that
of CVCENet. In RVCENet, all the input data are separated as real and imaginary parts,
stream into the network simultaneously with real-valued calculations, obtaining the real
and imaginary parts of R̂Net. We make a concat to the real and imaginary parts and recover
the R̂Net in the end.

3.3. Training Process

Because the true covariance matrix of measured data is hard to obtain, we use the
simulated data to produce the training data set (TDS) as the ground truth covariance matrix
and train our CVCENet.

3.3.1. Simulated Data Configuration

In this paper, the compound Gaussian clutter is adopted as the simulated clutter,
whose probability density function (PDF) can be formulated as [41]

p(ck) =

exp
(

cH
k R−1ck

τk

)
πNτN

k |R|
, k = 0, 1, 2, · · · , K, (9)

where p(·) denotes the PDF function, τk, k = 0, · · · , K is a set of positive random numbers,
which is called the texture component and determined by the local scattering power. More-
over, τk, k = 0, · · · , K can be modeled to follow the Gamma [42], inverse Gamma [34,43],
inverse Gaussian [44] distribution, and so on. In [1,34,43], it is suggested that sea clutter
can be depicted as compound Gaussian clutter with texture component τk following the
inverse Gamma distribution, i.e.,

p(τk) =
1

µλΓ(λ)
τ−(λ+1) exp

(
− 1

µτk

)
, (10)

where λ denotes the shape parameter, µ denotes the scale parameter, with both λ and µ
being positive.

The clutter covariance matrix can be modeled as

R = σ2
c M + σ2

nI, (11)
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where σ2
c is the power of the clutter and σ2

n is the power of the thermal noise. M is the
structure of the clutter covariance matrix, with the form [45]

M(i, j) = ρ|i−j| exp( fc(i− j)), i, j = 1, · · · , N, (12)

where ρ ∈ (0, 1) is the one-lag correlation coefficient, fc is the normalized Doppler frequency
of clutter. fc is usually caused in two ways: one is the motion of the detection platform,
such as clutter of aircraft detection for ground targets, and the other is the internal motion
of clutter, such as the moving sea wave. According to (1), (11) and (12), we can define the
clutter-to-noise ratio (CNR) and the signal-to-clutter-noise ratio (SCNR) as [21]

CNR =
σ2

c
σ2

n
, (13)

SCNR = |a|2sHR−1s. (14)

3.3.2. Training Process Description

During the training process, we use simulated clutter to generate R, called the ground
truth covariance matrix, with ρ ∼ U(0.8, 0.95), fc ∼ U(−0.2, 0.2), CNR ∼ U(20, 50) dB,
where U(·, ·) denotes the uniform distribution. τk follows the inverse Gamma distribution
with λ ∼ U(1.5, 5), µ ∼ U(0.5, 1.5). To obtain R̂Net, we train 200 epochs. For each epoch,
we produce 104 sets of data, including R, R̂A, R̂P, R̂k, k = 1, · · · , K. The batch size is fixed
at 16. For all convolutional layers, the learning rate is initialized at 10−4 and halves for
every 50 epochs. Please note that R̂A has 50% chance to be set as R̂A = I, and another 50%
chance to be set as a dot product between a prior covariance matrix based on the ground
truth matrix R and a perturbed matrix [18], i.e.,

R̂A = R� ttT , (15)

where (·)T denotes the transpose operator, � denotes the Hadamard matrix product, and t
is a vector of independent identically distributed (IID) Gaussian random variables with
mean 1, variance σ2

t ∼ U(0.01, 0.9).
For performance assessment of the CVCENet, the mean squared error loss (MSELoss)

function is adopted to evaluate the discrepancy between the predicted covariance ma-
trix and the ground truth covariance matrix, which is also applied in traditional linear
covariance matrix estimation model [18,21], given as,

L =
∥∥R̂Net − R

∥∥2
2, (16)

where ‖ · ‖2
2 denotes the square of 2-norm. During each epoch, the training data are

randomly generated with the parameter vector Θ updated by gradient descent optimization
algorithms [46]. To interpret the training process more clearly, we sum up the details of the
hyperparameters and training strategy, shown in Tables 2 and 3, respectively.

Table 2. List of hyperparameters.

Hyperparameter Value

batch size 16
number of samples of each epoch 10,000

number of epoch 200
learning rate 0.001

learning rate decay 0.5 for every 50 epochs
optimizer Adam
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Table 3. Training strategy.

CVCENet

for epoch = 1:200 do
(1) Set ρ ∼ U(0.8, 0.95)
(2) Set fc ∼ U(−0.2, 0.2)
(3) Set CNR ∼ U(20, 50)dB
(4) Set λ ∼ U(1.5, 5)
(5) Set µ ∼ U(0.5, 1.5)
(6) Generate R according to Equations (11)–(13)

for t = 1:10,000 do
(1) Given λ, µ, generate τk, k = 0, 1, · · · , K, according to Equation (10)
(2) Given R, τk, k = 0, 1, · · · , K, generate ck, k = 0, 1, · · · , K

according to Equation (9)
(3) Generate R̂P and R̂k, k = 1, · · · , K via ck, k = 0, · · · , K

and NSCM
(4) Set a temporary random variable tmp ∼ U(0, 1)

if tmp < 0.5
Set R̂A = I

else
(1) Set σ2

t ∼ U(0.01, 0.9) in Equation (15)
(2) Generate t and obtain R̂A according to Equation (15)

end if
(5) Put the generated R̂A, R̂P, R̂k, k = 1, · · · , K into the three

input channels and obtain the output R̂Net
(6) Calculate L according to Equation (16)
(7) Update Θ via gradient descent optimization algorithms

end for
end for

4. Experimental Results and Analysis

In this section, we use the simulated clutter and the real sea clutter from IPIX radar
to test the efficiency of our proposed CVCENet. We begin with a discussion about the
measured data. The training and detection performances of CVCENet are then analyzed.

4.1. Measured Data Configuration

In the testing phase, both simulated and measured data are used for the performance
assessment of our proposed network. The generation method of simulated data for testing
is the same as that in the training process. The adopted measured data are collected by the
IPIX radar system [47,48]. We use the data from the 19980223_170435_ANTSTEP.CDF data
file, which consists of 60,000 coherent pulse trains and 34 range cells, with the parameter
setting shown in Table 4. The Range-Pulse image and Range-Doppler image of this dataset
are shown in Figure 7a,b, respectively.

Table 4. The system parameters of the IPIX radar system.

19980223_170435_ANTSTEP.CDF

Date and time (UTC) 23 February 1998 17:04:35
RF frequency 9.39 GHz
Pulse length 100 ns

Pulse repetition frequency 1000 Hz
Radar azimuth angle 346.75◦

Range 3500–4000 m
Range resolution 15 m
Radar beamwidth 0.9◦



Remote Sens. 2023, 15, 5367 9 of 15

5 10 15 20 25 30

Range Cell

1

2

3

4

5

6

P
u

ls
e 

N
u

m
b

er

10
4

-70

-60

-50

-40

-30

-20

-10

0

 N
o

rm
a

liz
e

d
 A

m
p

lit
u

d
e

 (
d

B
)

(a) Range-Pulse image
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(b) Range-Doppler image

Figure 7. IPIX interference data.

As is shown in Figure 7, there is clutter with relatively strong power in the 25th range
cell, which has a wide band of normalized Doppler frequency (between about −0.1 and
0.1). Please note that the detection performance will decline when the normalized Doppler
frequency of target approaches is close to that of clutter.

4.2. Experimental Results
4.2.1. Training Results

The mean squared error loss (MSELoss) curves of training and validation at each
epoch are shown in Figure 8. It is observed that the training loss decreases as the number
of epochs increases, and a similar trend can be found in the curve of validation loss despite
a small performance difference between training and validation sets. Moreover, they all
converge at about 100 epochs. The results in Figure 8 illustrate that both the CVCENet
and the RVCENet have been trained and are ready for the testing phase. The source code
for both networks is given at: https://github.com/JShangS/CVCENet.git (accessed on 12
November 2023).

0 25 50 75 100 125 150 175 200
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

M
SE

Lo
ss

CVCENet Training curve
CVCENet Validation curve
RVCENet Training curve
RVCENet Validation curve

Figure 8. Training loss curve.

To analyze the performance of our proposed covariance matrix estimation network,
we apply CVCENet to the ANMF to compare the detection results with other estimators,
i.e., R̂ is replaced by the CVCENet, RVCENet, NSCM, and SFPE. To obtain the decision
thresholds for a given PFA = 10−3, we use the standard Monte Carlo technique based on
100/PFA independent trials. We also use 104 Monte Carlo trials to calculate the PD of the
ANMF detectors via the four covariance matrix estimators.

Figure 9 further shows the network performance of the training phase. With the
increase of training epochs, the PD of CVCENet increases faster than RVCENet and all the
PDs tend to converge to stable values at about 100 epochs, which coincides with the results

https://github.com/JShangS/CVCENet.git
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in Figure 8. The results in Figures 8 and 9 show that the CVCENet has lower estimation
loss and faster convergence rate in the training phase than that of the RVCENet, suggesting
that the CVCENet may have better detection performance than the RVCENet. Next, we
use the trained CVCENet and RVCENet to do further analyses of detection performance.

0 25 50 75 100 125 150 175 200
Epochs

0.4

0.5

0.6

0.7

0.8

0.9
PD

CVCENet with RA= I
CVCENet with RA= R̂A(σ2=0.1)
CVCENet with R̂A(σ2=0.5)
RVCENet with RA= I
RVCENet with R̂A(σ2=0.1)
RVCENet with R̂A(σ2=0.5)

Figure 9. PD against epoch λ = 3, µ = 1, fc = 0.1, fd = 0.3, SCNR = 15 dB.

4.2.2. Detection Results with Simulated Data

We compare the detection performance of ANMF via different covariance matrix
estimators under different shape parameters. The results are shown in Figure 10. The
applied parameters in this experiment are set to λ = 1.5, 3, 5, µ = 1 and RA = I. The
detection results in Figure 10 show that the detection performance of all the detectors
improves as λ increases because the non-Gaussian property of clutter decreases [34]. The
ANMF with CVCENet has the best detection performance under cases of different λ. The
ANMF with RVCENet has better performance than SFPE and NSCM, while there is a gap
with the CVCENet. Thanks to the regularization item, the CVCENet, RVCENet, and SFPE
can handle a small number of secondary data issues, i.e., K = 1N, while NSCM shows to
be ineffective.
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Figure 10. PD against SCNR with different shape parameters when RA = I, µ = 1, fc = 0.1, fd = 0.3.

To study the effect of regularization, we further test the performance of the estimators
under different regular terms RA, with the results shown in Figure 11, where the smaller
σ2 means a more precise prior covariance matrix. One can find that the CVCENet with
RA = R̂A(σ

2 = 0.1) has the best detection property. The RVCENet can also make good use
of the prior covariance matrix, but the PD is lower than the CVCENet with the same regular
terms. The SFPE can only use I as the regularization, so it cannot be further improved via
the prior covariance matrix. In addition, the NSCM can only exploit the secondary data to
estimate the clutter covariance matrix, which makes it hard to further improve estimation
performance, especially in the case of a small number of secondary data.
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(a) K = 1N (b) K = 2N

Figure 11. PD against SCNR with different regularizations, λ = 3, µ = 1, fc = 0.1, fd = 0.3.

The effect of target velocity or target normalized Doppler frequency on PD is shown
in Figure 12. The SCNR is set to 15 dB, and the sampling interval of the target normalized
Doppler frequency is 0.05. The trend of PD in Figure 12 shows that the performance of
all the detectors increases gradually as the target normalized Doppler frequency moves
away from the center of the clutter normalized Doppler frequency. The CVCENet has
a relatively tighter notch than the other estimators. When fd < 0.1, it is close to the
theoretically optimal detection results, i.e., the result of NMF (solid yellow line in Figure 12).
Furthermore, the proposed estimator can make efficient use of the prior information R̂A,
when prior information becomes bad, i.e., σ2 = 0.5, the performance of the proposed
estimator has only slightly decreased.
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Figure 12. PD against fd, SCNR = 15 dB, λ = 3, µ = 1, fc = 0.1.

4.2.3. Detection Results with IPIX Radar Data

With the visual representation of the data shown in Figure 7, we choose the 25th range
cell as the CUT and adopt K = 1N, 2N surrounding cells as secondary data, i.e., the range
cells from 16 to 23 as well as 26 to 33. We apply all the available temporal samples under
N = 8 (the red rectangular box in Figure 13) for statistical tests. For each test, we add
targets with different SCNR and fd in CUT. According to [38,49], we adopt the previous
100 pulses in the 25th range cell data as the historical data, aiming to estimate the prior
covariance matrix as the regularization covariance matrix R̂A. The estimation process is
shown in Figure 13. We slide the yellow rectangular box to calculate the ith covariance
matrix R̂i

A, namely

R̂i
A = yi

CUTyi
CUT

H
(17)
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where yi
CUT is the ith sliding vector in the CUT. Then, we average the sum of R̂i

A, i = 1 · · ·Nt,
to obtain the regularization covariance matrix R̂A

R̂A =
1
Nt

Nt−1

∑
i=1

R̂i
A (18)

where Nt = 100. After the above pretreatment, we test the performance of the proposed
network as follows.

Figure 13. The process of testing with IPIX data.

Figure 14 shows the detection performance under different SCNR. It can be found that
ANMF with the CVCENet has a clear advantage over other estimators, particularly under
low SCNR. ANMF detector with RVCENet performs better than the SFPE and NSCM while
worse than the CVCENet. When using simulated data, however, the discrepancy between
CVCENet and RVCENet is not so clear.
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Figure 14. PD against SCNR for IPIX Radar data, fd = 0.3.

Figure 15 depicts the influence of clutter Doppler frequency on target detection when
using different covariance estimators. In this figure, it is observed that when the clutter has
a wide band near the clutter Doppler frequency, all the detectors have bad detection results.
The detection performance of the CVCENet rises fastest when the target Doppler frequency
moves away from the clutter region. Furthermore, all the network covariance estimators
have better performance than the traditional estimators involved in the comparison.
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Figure 15. PD against fd for IPIX Radar data, SCNR = 20 dB.

For intuitive comparison, we summarize the properties of our proposed network
estimators and traditional model-based estimators, shown in Table 5. Besides the secondary
data, our proposed CVCENet exploits the primary and regularization data for clutter
covariance matrix estimation with faster convergence than the RVCENet. The detector with
the CVCENet shows the highest PD and is also efficient under insufficient secondary data.

In addition, we will try to explain why the CVCENet can obtain the best results. Com-
pared with RVCENet, the main difference between the two networks is the multiplication
rule. As Hirose [32] suggested, complex multiplication could reduce the ineffective degree
of freedom and enforce signal transformations according to the physical characteristics of
the data. Therefore, the complex-valued calculation rule can accelerate convergence in the
training phase and obtain better adaptability to data. Compared with traditional methods,
the performance of estimators based on neural networks benefits from large amounts of
data generated under various conditions. In fact, high-quality training data are the key
to the performance of the network. We use the data generated under different models to
train our network, surely exceeding the performance of the estimator obtained via only one
model. In other words, our proposed network can be seen as an estimator that uses large
amounts of current data and historical data to estimate the true covariance matrix, which is
different from the traditional estimators that only use the current data.

Table 5. Summary of various clutter covariance matrix estimators.

Method Convergence Property
Data Resource Detection Performance

Primary
Data

Regularization
Data

Insufficient
Secondary Data

PD
Rank

CVCENet Faster convergence
than RVCENet

applied applied effective 1

RVCENet Slower convergence
than CVCENet

applied applied effective 2

NSCM [12] Closed solution
without convergence

not applied not applied noneffective 4

SFPE [15] Closed solution
without convergence

not applied only unit matrix
is applied effective 3

5. Conclusions

In this paper, we have proposed a CV covariance matrix estimation network, named
the CVCENet, to deal with radar adaptive detection under non-Gaussian clutter. An RV
network with the same framework as the CVCENet is also constructed as the natural
competitor, named the RVCENet. Both simulated and real sea clutter have been used to
evaluate the performance of the proposed estimator based on the network. In the training
process, it is illustrated that the CVCENet has a faster convergence rate than the RVCENet
and reaches the stable PD earlier than the RVCENet. As for detection performance, the
detector with the proposed CVCENet has better PD than traditional estimators, as well as
the detector with RVCENet, under a sufficient or small number of secondary data. The
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follow-up work on this study may involve applying more sea clutter data to further train
the network for better performance.
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