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Abstract: Landslide susceptibility mapping (LSM) is significant for landslide risk assessment. How-
ever, there remains no consensus on which method is optimal for LSM. This study implements a
dynamic approach to landslide hazard mapping by integrating spatio-temporal probability analy-
sis with time-varying ground deformation velocity derived from the MT-InSAR (Multi-Temporal
InSAR) method. Reliable landslide susceptibility maps (LSMs) can inform landslide risk managers
and government officials. First, sixteen factors were selected to construct a causal factor system
for LSM. Next, Pearson correlation analysis, multicollinearity analysis, information gain ratio, and
GeoDetector methods were applied to remove the least important factors of STI, plan curvature, TRI,
and slope length. Subsequently, information quantity (IQ), logistic regression (LR), frequency ratio
(FR), artificial neural network (ANN), random forest (RF), support vector machine (SVM), and convo-
lutional neural network (CNN) methods were performed to construct the LSM. The results showed
that the distance to a river, slope angle, distance from structure, and engineering geological rock
group were the main factors controlling landslide development. A comprehensive set of statistical
indicators was employed to evaluate these methods’ effectiveness; sensitivity, F1-measure, and AUC
(area under the curve) were calculated and subsequently compared to assess the performance of the
methods. Machine learning methods’ training and prediction accuracy were higher than those of
statistical methods. The AUC values of the IQ, FR, LR, BP-ANN, RBF-ANN, RF, SVM, and CNN
methods were 0.810, 0.854, 0.828, 0.895, 0.916, 0.932, 0.948, and 0.957, respectively. Although the
performance order varied for other statistical indicators, overall, the CNN method was the best, while
the BP-ANN and RBF-ANN method was the worst among the five examined machine methods.
Hence, adopting the CNN approach in this study can enhance LSM accuracy, catering to the needs of
planners and government agencies responsible for managing landslide-prone areas and preventing
landslide-induced disasters.

Keywords: landslide; landslide susceptibility mapping; statistical analysis; deep learning; remote
sensing

1. Introduction

Landslides are major natural disasters commonly occurring in mountainous areas
worldwide, posing a significant threat to human life, property, and the natural environment.
According to the global landslide database compiled by Froude and Petley (2018), more than
4862 fatal landslides were recorded from 2004 to 2016, resulting in 55,997 deaths worldwide.
Landslide susceptibility has become a research hotspot in related fields, and many scholars
are committed to landslide monitoring, early warning, landslide susceptibility mapping
(LSM), etc. [1–5] to assess landslide hazards and risks [6–10].
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In recent decades, the utilization of Geographic Information Systems (GIS) and Remote
Sensing (RS) has resulted in the emergence of various models aimed at predicting landslide
susceptibility (LSP) [11,12]. These models can be classified as qualitative or quantitative,
with quantitative models further subdivided into data-driven or deterministic [6,13], which
estimate landslide susceptibility by calculating the quantitative stability coefficient of the
area under study [14,15]. The four primary types of landslide models include physical
model experiments [16], numerical simulations [17,18], statistical models, and data-driven
models [11,12]. Physical models require extensive and detailed data to yield reliable
results, yet are restricted by size, leading to high financial and computational costs [19,20].
Despite efforts to consider factors such as model similarity ratios, accurately replicating
the landslide soil remains challenging [21]. Consequently, physical-based models are
presently unsuitable for large-scale landslide risk zoning exercises. Numerical simulation
methods can broadly serve as discrete and finite element approaches [22]. In limited
element models, accurately computing wave motion caused by landslides using grid-based
Eulerian methods necessitates suitable interface tracking techniques, which have limitations
in capturing free surfaces exhibiting significant deformations and are computationally time-
consuming under practical circumstances. Discrete element methods, such as Particle Flow
Code (PFC) [23,24] and MatDEM [25], provide effective means for modeling the movement
of granular material (discontinuous models). Nonetheless, discrete element models are
computationally demanding. In contrast, data-driven models can accurately determine
landslide susceptibility indexes (LSIs) for extensive areas using input-output sampled
data [1,13,26]. Consequently, data-driven models are more suitable for large-scale LSP
in areas.

Generally, data-driven methodologies can be classified into two categories: methods
and machine learning methods [10,27,28]. Considerable efforts have been directed toward
the advancement of statistical methodologies to investigate and analyze the intricate re-
lationships between causative factors and the occurrence of landslides [28–31]. Different
statistical methods, such as the frequency ratio [32–34], weight of evidence [35,36], fuzzy
logic [37,38], logistic regression [39,40], analytic hierarchy process [34,41], and integrated
methods [40,42], have been widely implemented to map landslide susceptibility. However,
traditional statistical methods fail to effectively model the complex nonlinear relationships
between landslides and causative factors.

Machine learning methods, such as the radial basis function network [43,44], back-
propagation artificial neural network [5,45], support vector machine [6,46], and random
forest [47,48], are currently applied to increase the ability to handle multiple conditioning
factors and improve the LSM accuracy. Recently, machine learning (ML) methods have
proven more effective in identifying the relationships between hazards and causative fac-
tors than traditional methods or multi-criteria decision-making (MCDM) techniques [49].
However, conventional ML methods have certain limitations when directly classifying
natural hazard data and elucidating the hidden relationships within data. These limitations
hinder the improvement of the classification accuracy [50]. Indeed, these conventional
and machine learning methods have several disadvantages: (1) Limited in their ability
to comprehensively explore the linear and non-linear correlations among input variables,
preventing the extraction of their inherent and deep features; (2) limited model training
times and unstable convergence impede the local optimum, overfitting, and model pa-
rameter determination [49]; (3) a substantial amount of prior knowledge, such as labels,
is required for feature learning and the models cannot automatically learn features from
big data. Hence, developing a novel machine-learning method for landslide susceptibility
prediction is essential.

More recently, deep learning algorithms have led to a series of breakthroughs in
machine learning. That is, the emergence of deep learning has shown great promise in
addressing these issues. Knowledge has demonstrated its ability to effectively tackle
specific problems and surpass the performance of conventional ML approaches [51]. Com-
pared to traditional machine learning methods, the CNN framework—a deep learning
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representative—incorporates convolutional and subsampling layers. Notably, these layers
reduce parameter requirements, facilitating more efficient exploration of relationships
within the data. As a result, deep learning algorithms that integrate CNNs have demon-
strated superior performance compared to traditional machine learning techniques across
various applications. Significantly, through extensive training on substantial datasets, deep
learning models have exhibited superior capabilities in terms of power and accuracy. This
enhanced performance enables the gradual acquisition of high-level features from com-
plex data, employing an incremental learning approach. Geoscience classification tasks,
such as flood and landslide susceptibility assessment, have greatly benefited from this
approach, as evidenced by various studies [52,53]. Nevertheless, it is crucial to acknowl-
edge the complexities that arise from the nature of landslide conditioning factors and their
spatial variations within different study areas. Consequently, the ultimate robustness of
landslide susceptibility mapping (LSM) constructed by a single machine learning or deep
learning method has not been realized [29,47,54]. It is, therefore, essential to compare
different machine learning methods to achieve optimal LSM results for a given set of
environmental characteristics.

With the development of new remote sensing technologies, such as InSAR and pho-
togrammetry, unique technical support has been provided for research. Synthetic aperture
radar (SAR) is an active sensor with all-weather and all-day observation characteristics.
Hence, the D-InSAR technology derived from SAR can effectively detect ground defor-
mation information without being affected by weather. However, factors such as atmo-
spheric delay and spatiotemporal decorrelation limit its application. To overcome these
issues, [55] of Milan Polytechnic University in Italy proposed the permanent scatterer
InSAR (PS-InSAR) technology, serving as the prelude to time-series SAR technology re-
search. InSAR (interferometric synthetic aperture radar) techniques, including PS-InSAR
(persistent scatterer interferometry), SqueeSAR (small baseline subset), and SBAS (small
baseline subset) [55,56], have been widely employed in landslide identification and moni-
toring. These methods have proven effective by numerous research groups in measuring
spatiotemporal deformation [57–62].

This study implemented a hybrid approach combining CNN deep learning and tra-
ditional learning techniques to generate accurate landslide susceptibility maps. The per-
formance evaluation encompassed eight distinct models, with a meticulous comparison
conducted. Furthermore, the deformation monitoring of selected representative landslides
was successfully carried out by integrating InSAR data. Indeed, integrating data-driven
spatial prediction for landslides with deformation monitoring remains an area of research
that has yet to be fully achieved. As such, the findings obtained from this investigation pro-
vide valuable insights for researchers assessing the effective utility of these two models in
developing susceptibility maps for natural hazards, particularly in the domain of landslide
susceptibility mapping.

In this study, a comprehensive LSM assessment was conducted for Shiyan City, China,
using eight data-driven methods, including statistical and machine learning methods. First,
an overview of the study area is introduced in Section 2. Next, various statistical and ma-
chine learning methods, namely, information quantity, frequency ratio, logistic regression,
artificial neural network (ANN), random forest, support vector machine, and convolutional
neural network (CNN) methods, are introduced in Section 3. The method of assessing LSM
and the methodological flowchart is also presented in this section. Furthermore, causal
factor selection is performed in Section 4 using different sensitivity analysis methods, laying
the foundation for constructing LSMs. Section 5 illustrates the parameter determination
and modeling process of machine learning, followed by a comprehensive discussion of
LSM in Section 6. Finally, we conclude the article in Section 7.

2. Study Area

The study area, Shiyan city, China, is located northwest of Hubei Province, east of
Qinba mountain. The geographical location is shown in Figure 1, situated between longi-
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tudes ranging from 109◦29′ to 111◦16′E and latitudes from 31◦30′ to 33◦16′N, encompassing
a total area of approximately 23,680 km2. The region’s elevation varies from 78 m above sea
level at the river valley to a maximum of 2715 m at the highest peak. The terrain exhibits a
distinctive topographic pattern, featuring a low northwest-oriented trend and a contrasting
high southeast-oriented trend (Figure 1b).
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Figure 1. Location and landslide distribution of the study area: (a) location in China; (b) location in
Hubei Province; (c) location and landslide distribution in Shiyan city.

Geologically, the topography of Shiyan City is controlled by geological structure
and lithology. As a result of long-term denudation and river cutting, three landforms
have been formed in this area: tectonically denudated low mountain and hilly terrain,
tectonically denudated soft mid-mountain terrain, and erosive accumulation terrain. The
study area is located in the third uplift zone of the Neocaysian system, belonging to the
Wudang Shanzan anticline and part of the Yunyun-Wudang Shanzan and Wudang Shanzan
anticlines of the Qinling fold system. The strata series are exposed from the Proterozoic to
the Cenozoic, including the Sinian, Cambrian, Cambrian-Ordovician Zhushan Formation,
Silurian, and other meso-low metamorphic rocks, overlying the late Cretaceous-Cenozoic
Quaternary clastic accumulation. The rock mass of Shiyan City is divided into five groups
of engineering geological rocks: loose soil, stratified clastic rock, stratified karst carbonate
rock, stratified metamorphic rock, and massive magmatic rock.

Regarding meteorological hydrology, Shiyan City experiences a subtropical monsoon
climate characterized by an annual average temperature of 15.4 ◦C and average precipita-
tion of 769.6 mm. The rainfall is primarily concentrated from June to September, with up to
456 mm of precipitation, accounting for 59.2% of the annual rainfall. There are 2489 rivers
and valleys in Shiyan City, including the Du River, with a total length of 338.6 km and
rainfall area of 12,431 km2, second only to the Qingjiang River among the small and
medium-sized rivers in Hubei Province. The Han River is the transfer river of Shiyan City,
flowing through Yunxi, Yun County, and Danjiangkou City, and is 216 km long.

In summary, the lithological strength of the study area is weak, the geological engineer-
ing conditions are poor, and the landslide-prone regions are widely distributed. According
to the Hubei Geological Disaster Prevention Center survey, 5328 landslides occurred in
Shiyan City from 2001 to 2017. Due to the intense tectonic movement in the area, metamor-
phic rocks are widely distributed, accounting for more than 60% of the city area. Situated



Remote Sens. 2023, 15, 5256 5 of 31

amidst the Qingfeng fault zone, the study area exhibits a distinctive geomorphological
context characterized as an intermountain valley featuring a denudation low mountain
and hilly landform. The micro-geomorphology is predominantly characterized by hillside
and gully formations. The region’s topography presents a notable pattern, with higher
elevations in the east and north–south directions. Lower elevations are prevalent in the
area’s west and central portions. From new to old, the outcrop beds within the territory are
primarily Quaternary, Doushantuo Formation, Yaolinghe Group, and Proterozoic Wudang
Mountain Group, accompanied by magmatic intrusion. Reservoir level fluctuation, rainfall,
and human engineering activities are important trigger factors of landslides. For example,
the Fuxi landslide was caused by heavy rainfall decline and human engineering activities
(Figure 2), while the Lijiaping landslide was caused by continuous rainfall (Figure 3).
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3. Methodologies
3.1. Landslide Susceptibility Mapping

This study employed a diverse range of statistical analysis methods to delineate
landslides’ susceptibility accurately. These methods encompassed information quantity
(IQ), frequency ratio (FR), and logistic regression (LR). Complementing these techniques,
advanced machine learning, such as ANN, random forest (RF), support vector machine
(SVM), and CNN were also leveraged to achieve robust results.

3.1.1. Statistical Analysis Methods

(a) Information quantity (IQ)

The IQ method is a mathematical statistical analysis based on the information theory.
The landslide geological hazard phenomenon (I) is affected by various disaster-causing
factor combinations, which are determined as follows:

I = ∑n
i=1 I(xi, H) = ∑n

i=1 ln
Ni/N

(Si)IQ/SIQ
(1)

In this context, I(xi, H) denotes the information measure associated with a specific
disaster-causing factor in relation to landslide occurrence. S represents the overall count of
evaluation units within the study area, while Si signifies the number of units encompassing
the hazard factor under consideration. N represents the collective information content
pertaining to landslide occurrence, as contributed by combinations of factors. Furthermore,
Ni denotes the total count of units encompassing the distribution of landslide geological
hazards within the study area.

(b) Frequency ratio (FR)

The FR method is specifically formulated for analyzing the distribution and occurrence
of landslides across the entirety of the study area, and is the ratio of the landslide area
within a specific attribute interval to the whole study area. The contribution set of all
indicator factors is the landslide susceptibility index (LSI), and its calculated as follows:

LSI = ∑ FR =∑
(Si)IQ/Ai

SFR/A
(2)

where Si is the area of the landslide within the classification, and S is the area within the
category. In the research domain, Ai pertains to the extent of landslide occurrence within
the designated study area, while A refers to the encompassing geographic region under
comprehensive investigation. Ai is the total landslide area in the study area, and A is
the comprehensive study area. However, the LSI lacks the inherent capacity to quantita-
tively measure the individual contributions of each influencing factor to the probability of
landslides [63,64].

(c) Logistic regression (LR)

The LR method is a well-established multivariate statistical analysis test utilized when
the dependent variables are discrete or categorical. When applied to landslide susceptibility
modeling (LSM), the primary objective of LR is to accurately quantify and describe the
relationship between the probability of landslide occurrence and its various contributing
factors. However, the LR model exhibits certain limitations when analyzing the impact of
environmental factors at different hierarchy levels on landslide occurrence.

A logistic function for multivariate logistic regression can be written as

p =
exp(β0 + β1X1 + β2X2 + β3X3 + · · ·+ βkXk)

1 + exp(β0 + β1X1 + β2X2 + β3X3 + · · ·+ βkXk)
(3)
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where p denotes the occurrence probability (0 or 1 in this paper), x is each evaluation factor
in the landslide susceptibility evaluation index system, β0 is the intercept, and βi (i = 1, 2,
. . . , n) denotes the LR coefficients.

3.1.2. Machine Learning Methods

(a) Artificial neural network (ANN)

The supervised machine learning algorithm, ANN, was utilized in this study for
predictive modeling guided by human perception [6]. This technique offers distinct advan-
tages over traditional methods, such as IQ, FR, and LR, as it obviates the necessity for direct
rule-based estimations of desired outcomes. The architecture of the hybrid ANN model
employed in this research is exemplified in Figure 4. The neural network architecture
includes three distinct layers. The input layer represents the research scope’s conditioning
factors related to landslides. The hidden layer comprises individual neurons that generate
landslide susceptibility class labels in the output layer. Lastly, the output layer indicates the
class labels for landslides and non-landslides. Following the determination of the optimal
number of hidden layers and processing units within each layer, the ANN initiates the
learning process by analyzing the training samples [10].
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In our study, the neural network architecture employs radial basis function (RBF-ANN)
and backpropagation (BP-ANN) strategies. RBF-ANN is a feedforward ANN multidimen-
sional spatial interpolation technique. The input layer maps the vector directly to the
hidden space and transmits the signal. The hidden layer facilitates the non-linear map-
ping of the network input using the radial basis function. Its radial symmetry, bilateral
decay, and non-negativity characterize this function, making it an appropriate choice for
capturing complex relationships within the network. Meanwhile, the BP-ANN employs
an initial configuration of random connection weights within the network. This config-
uration is then trained using a set of stimulus couples referred to as learning examples.
Each learning example comprises an input to the network and the corresponding expected
output, enabling the network to adjust its weights and optimize its performance gradually.
The optimal weight is obtained by iteratively solving for the minimum error between the
training sample’s actual value and the method’s predicted value [5].
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(b) Random forest (RF)

The RF method is a relatively effective regression and unsupervised learning method [47,48]
containing several categories for prediction. The category tree is generated randomly using
“bagging” to create multiple independent training sets. Noticeably, these trees must be
random and diverse. On the one hand, random trees can improve classification numbers.
On the other hand, the diversity between the classification numbers can be increased by
resampling the data with substitutions and randomly changing the set of predicted vari-
ables during different tree combinations. Generally, the RF method has good prediction
performance and can be eliminated by summarizing many classification numbers. It has
advantages in processing a large amount of data calculation, strong robustness, and the
ability to identify outliers. This study used a selection of samples representing landslide
and nonlandslide events to construct the classification tree. As part of the methodology,
30% of the samples were withheld from the training process, while a predetermined value
of 500 nodes was established as the desired configuration.

(c) Support vector machine (SVM)

The SVM is a powerful statistical learning algorithm renowned for its resilience.
It is founded on structural risk minimization, facilitating the resolution of constrained
optimization problems and ultimately generating an optimal solution. To achieve training
and accurate classification outcomes in SVMs, an appropriate kernel function must be
carefully selected [27]. SVMs commonly employ four distinct kernel function groups: the
linear kernel (LN), polynomial kernel (PL), Gaussian radial basis function (Gaussian RBF)
kernel, and sigmoid kernel (SIG). Each kernel function serves a specific purpose within the
SVM modeling framework and contributes differently to the overall effectiveness of the
classification process. In this study, RBF and SIG were adopted. The “Kernlab” package
was used in R 3.0.2 for LSM. For Gaussian RBF, the parameters to be optimized included
the penalty (C) and RBF kernel function parameter (gamma), which were set in the interval
range of [0.1, 10] and searched with a step interval of 0.1. The default R2 was chosen as the
scoring strategy, and a higher cross-validation score indicated better results. However, in
practical application, R2 is greatly affected by the disunity of factor dimensions, and the
selection of hyperparameters directly affects the accuracy and generalization ability of the
model [3,6,39,49].

The regression function of SVM is:

f (x) = 〈W·Φ(x)〉+ b (4)

Rmin =
1
2
‖W‖2 + C

m

∑
i=1

(ξi + ξ∗i ) (5)

WTφ(xi) + bi − yi ≤ ε + ξi (6)

yi −WTφ(xi)− bi ≤ ε + ξ∗i (7)

where C is the penalty and relaxation factors and b is the offset. Finally, the Lagrange
multiplier is used, and Wolf duality theory is applied to transform it into the following
equivalent duality problem:

min
1
2
(α− α∗)TQ(α− α∗) + ε

l

∑
i=1

(αi + α∗i ) +
l

∑
i=1

yi(α− α∗) (8)

The SVM regression prediction model obtained through quadratic programming is:

f (x, a∗i , αi) =
l

∑
i=1

(α∗i − αi)K(xi, x) + b (9)
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(d) Convolutional neural network (CNN)

The CNN method is a specific instance of deep learning that can automatically ex-
tract valuable features through hierarchical neural networks [51]. Figure 5 presents an
overarching depiction of the architecture employed in CNN. The architectural framework
encompasses one or more convolutional layers, pooling layers, and a series of fully con-
nected layers, all seamlessly integrated within the network structure.
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The output of the convolutional manipulation is defined as follows:

Cj =
N

∑
i

f
(

w∗j vi + bj

)
, j = 1, 2, . . . , k (10)

f (x) = tanh(x) =
ex − e−x

ex + e−x (11)

where f represents a nonlinear activation function, * denotes the convolutional operator, k is
the number of convolutional kernels, and wj and bj denote the weight and bias, respectively.

The convolutional layer plays a crucial role in capturing distinctive representations
in the input data by proficiently utilizing a diverse ensemble of convolutional kernels.
Subsequently, the pooling (subsampling) operation is conventionally applied after the
convolutional layer to reduce the dimensionality of feature vectors and mitigate concerns
associated with overfitting. The subsequent step entails the reorganization of the extracted
feature vectors through fully connected layers to generate the final output. To acquire an
enhanced comprehension of the implementation of CNNs in relation to particular phenom-
ena, various academic publications [47,51] offer exhaustive elucidations. In the context of
the current investigation, the classification issue encompasses two distinct classes, resulting
in an output size of two. The configuration of the CNN architecture, including the quantity
of convolutional layers, pooling operations, and fully connected layers, can be tailored
according to user-defined specifications and requirements. Increasing the number of layers
can lead to a more complex network, facilitating the extraction of discernible features
from the input image. However, CNN requires considerable computational resources
and entails significant investment during the training and utilization stages. Moreover,
CNN may not attain optimal performance when applied to small-scale image datasets.
Consequently, researchers and practitioners should exercise caution when contemplating
the implementation of CNN.
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3.1.3. Time-Series InSAR Process

The SBAS-InSAR (small baseline subsets InSAR) methodology involves the usage
of multiple differential interferogram sets. These sets comprise interferogram pairs with
time and spatial baselines that meet the criterion of being below a specified threshold.
Through this approach, the differential phase sequence of coherent pixels is over a specific
timeframe, enabling the quantification of their temporal deformation. This methodology’s
fundamental principle relies on acquiring coherent images demonstrating minimal material
discrepancies and possessing short perpendicular baselines. The observed phase variation
within these readable images indicates the disparity in the round-trip distance between the
sensor and the target under surveillance.

ψ = {φD + φT + φA + φO + φN} (12)

Let φD, φT , φA, φO, and φN denote the specific phase components that are intrinsically
linked to ground deformation, topographic error, atmospheric disturbance, inaccurate
orbit information, and other sources of noise, respectively. Spatial and temporal filtering
techniques can be deployed to effectively disentangle the ground deformation phase to
mitigate the influence of other coexisting phase components. By implementing singular
value decomposition and employing the minimum norm criterion, the estimation of defor-
mation rates can be achieved, facilitating the derivation of time-series deformation products
characterized by secular rates and cumulative displacement time series [56,59].

The Sentinel-1 synthetic aperture radar, launched in 2014, comprises a pair of near-
polar orbit satellites outfitted with C-band SAR sensors and a revisit time of 12 days
for each satellite, ensuring a continuous coverage interval between satellite pairs [65].
A large-scale surface deformation map can be drawn by interpreting SAR images, and
surface deformation at different periods can be obtained. Accordingly, this study collected
16 ascending Sentinel-1 images from November 2020 to March 2023 (Figure 6).
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The processing methodology for radar imagery employing MT-InSAR comprises
two essential stages: interferogram generation and time-series analysis. This investigation
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established well-defined thresholds for the time and perpendicular baselines set at 90 days
and 1000 m, respectively. Subsequently, the MT-InSAR analysis was executed using the
SBAS-InSAR module integrated within the StaMPS v.1, facilitating the derivation of time-
series displacement and velocity parameters. We have chosen monitoring targets with
a coherence value surpassing the 0.6 threshold [60,61]. Upon observing the study area’s
predominant north–south orientation, it became apparent that the sensitivity of InSAR
technology toward this particular direction was relatively variable. Consequently, the line
of sight (LOS) measurement value was adopted rather than the downslope projection of
LOS velocity, aligning with the recommendations articulated in previous reports [66–68].

3.2. Modelling Prediction and Performance

The ROC graph combined with a contingency table with skill score is a helpful tool
for evaluating the reliability of rainfall-induced landslide thresholds [9]. The main concept
is based on demarcation value or decision threshold, with the true positive rate sensitivity
as the ordinate and the false-positive rate as the abscissa.

The contingency table defines the four following conditions. True rainfall conditions
are above the threshold, and landslides occurred. True negative (TN) rainfall conditions
are below the threshold, and no landslides occurred. False positive (FP) rainfall conditions
are above the threshold, but no landslide occurred. False negative (FN) rainfall conditions
are below the threshold, but landslides occurred [9]. From the contingency values, one
can calculate the probability of detection (POD), probability of false detection (POFD),
probability of false alarm (POFA), efficiency (Ef ) of prediction, Hanssen and Kuipers (1965)
(HK) skill score, and threat score (TS). The formulation is listed in Table 1.

Table 1. Skill scores based on the contingencies used for threshold validation.

Parameter Formulation Optimal Value

TPR or POD TPR(POD) = TP/(TP + FN) 1
FPR or POFD FPR(POFD) = FP/(FP + TN) 0

POFA FAR(POFA) = FP/(TP + FP) 0
Ef Ef = (TP + TN)/(FP + FN + TP + TN) 1
HK HK = TP/(TP + FN) − FP/(FP + TN) 1
TS TS = TP/(TP + FN + FP) 1

Sensitivity, also called recall, denotes the ability to maximize a model to identify all
relevant cases in a dataset,

Sensitivity =
TP

TP + FN
(13)

SPE is the number of no landslides correctly classified as nonlandslides and is calcu-
lated as follows:

SPE =
TP

FP + TN
(14)

ACC is employed to analyze the confusion matrix, providing a comprehensive assess-
ment of the correct predictions relative to the total number of predictions made. This value
varies between 0, indicating no accurate predictions, and 1, representing 100% accuracy
with no prediction errors. The formula for ACC is:

ACC =
TN + TP

TN + FN + TP + FP
(15)

The F1-measure is a metric that represents the weighted harmonic mean of precision
(P = TP/(TP + FP)) and sensitivity and is calculated as follows:

F1-measure =
2TP

2TP + FP + FN
(16)
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The Jaccard coefficient represents a quantitative measure that captures the count of
true positives among a group of samples classified as accurate or optimistic predictions.
This coefficient is alternatively known as the threat score or critical success index. This
formula for this coefficient is

Jaccard =
TP

TP + FP + FN
(17)

The MCC comprehensively captures the complete dataset within a confusion matrix,
where its numerical values range from −1 (indicating incorrect classification) to 1 (repre-
senting precise classification); it is calculated as follows:

MCC =
(TP× TN) + (FP× FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(18)

The RMSE, MSE, MAE, MAPE, and SSE are defined as

RMSE =

√√√√√ N

∑
i=1

(
Xact − Xpred

)2

N
(19)

MSE =
1
N

N

∑
i=1

(
Xact − Xpred

)2
(20)

MAE =
1
N

N

∑
i=1

∣∣∣Xact − Xpred

∣∣∣ (21)

MAPE =
1
N

N

∑
i=1

∣∣∣Xact − Xpred

∣∣∣
Xpred

(22)

SSE =
1
N

N

∑
i=1

∣∣∣Xact − Xpred

∣∣∣∣∣∣Xact + Xpred

∣∣∣/2
(23)

where Xact and Xpred are the predicted and observed values, respectively, and N is the
number of data points.

The area under the curve (AUC) is a quantitative measure that provides insights into
the predictive efficacy of various methods by encompassing the performance across all con-
ceivable decision boundaries and encompassing the entire range of possible classification
thresholds. The formula for AUC is

AUC =
Sp − np(nN + 1)

np + nN
(24)

where Sp is the sum of all ranked landslides and Np and Nn are the numbers of landslide
(positive) and nonlandslide (negative) samples, respectively.

3.3. Methodological Flowchart

The overall study procedure is shown in Figure 7, including five basic steps to build
the LSM. This study primarily included (i) Sentinel-1 datasets, (ii) co-registration, (iii) times-
series InSAR process, (iv) land subsidence inventory map, and (v) classification data. The
geological survey report was provided by the Hubei province geological environment geo-
logical survey of China geological survey station survey. The remote sensing images were
visually interpreted via Google Earth (https://www.google//, accessed on 1 September
2020) combined with digital elevation model (DEM) data from 2019. The survey reports
offer in-depth information pertaining to various landslide attributes, including their precise

https://www.google//
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location, area, and volume, among other relevant parameters. This facilitates the creation of
a specialized geographic information system (GIS)-based database for efficient storage and
processing of the collected data. Furthermore, the acquired data was seamlessly integrated
into the landslide distribution analysis within the ArcGIS platform.
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Subsequently, the process of compiling a comprehensive inventory map of landslides
entailed the identification of landslide and nonlandslide points. The dataset encompassing
this inventory was subsequently partitioned, reserving 70% for training while allocating
the remaining 30% for test samples. Next, the K-means clustering method was deployed
to selectively identify and include additional training samples from areas with relatively
lower risk to enrich the dataset. These newly identified samples were combined with
the original training dataset, serving as input for the machine learning model’s training
process. The conditioning factors for landslide occurrence were meticulously determined
based on the unique characteristics inherent to the study area. In the fourth step, the LSM
was constructed, adopting a wide array of data-driven methodologies. Finally, a rigorous
quantitative comparison was conducted to evaluate and juxtapose the LSM outcomes
garnered through diverse methods.

4. Selection of Causal Factors
4.1. Landslide Inventory Map

Landslide cataloging forms the fundamental basis of LSM. The attainment of pre-
cise and dependable landslide cataloging data is critical to ensuring the accuracy of
landslide assessments.

In terms of scale, 95% of landslides in Shiyan City are small or medium-sized. They
develop primarily in areas with metamorphic rock (e.g., schist, slate, phyllite) along river
gullies, fault zones, and traffic arteries. For example, a large fault zone has a controlling
role in forming landslides that often occur. In addition, landslide disasters along traffic
arteries exhibit a banded distribution due to the influence of various factors, including
topography, river systems, and human engineering activities. After conducting meticulous
field investigations and rigorous analysis of landslide disasters within the study area,
sixteen distinct landslide conditioning factors were identified, including elevation, slope,
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distance to the river, normalized difference vegetation index (NDVI), and road distance.
These factors were extracted from the terrain data to establish a comprehensive index
system that facilitates the evaluation of landslide susceptibility.

The topography factors included elevation, slope, aspect, relief, stream power index
(SPI), sediment transport index (STI), topographical wetness index (TWI), plan, profile,
slope length, and ground roughness. The distance to the river, lithology, and distance to the
structure were considered hydrological environment and basic geological factors. NDVI
was the land cover factor, and distance to the road was the human engineering activity
factor. Generally, these factors were divided into discrete and continuous types. Regarding
continuous factors, slope, for instance, was carried on a preliminary discretization to obtain
the overall distribution curve of slope. It was then discretized again based on the critical
value in the curve, combining the effect of landslide development under the same level
into the same class.

ArcGIS 10.6 was adopted to construct a landslide database to determine sixteen
influencing factors and landslide points. The ESRI file geographic database format extracted
these factors. Consequently, to acquire the fundamental environmental factors associated
with landslides in Shiyan City, all indicators were transformed into a raster format with a
spatial resolution of 30 m × 30 m (Figure 8). The digital elevation model (DEM) dataset,
characterized by a 30 m × 30 m grid resolution, was utilized to generate a thematic
map encompassing topographic conditioning factors (Figure 8a–e,h). The NDVI thematic
map, depicted in Figure 8i, was derived from Landsat-8 OLI images sourced from the
online platform (http://www.gscloud.cn/, accessed on Landsat-8). The regional soil map,
generated at a 1:200,000 scale, was procured from the Institute of Soil Science (Figure 8j).
Additionally, the thematic map of lithology (Figure 8l) was employed. The Local Natural
Resources Bureau provided the remaining conditioning factors (Figure 8f,g,k).

The topographical and geomorphological factors are typically considered the key
conditional factors in landslide susceptibility mapping. Moreover, including slope is a
significant aspect frequently considered when evaluating landslide susceptibility [62]. The
slope values observed in the study ranged from 0 to 79.52. Taking the factor of slope as an
example, over 80% of the landslide pixels were distributed in the area of 5◦ to 30◦ slope
terrain (Figure 8a) in Shiyan City.

The elevation of the investigation region was 78–2715 m (Figure 8d). Regarding basic
geology, the lithology map (Figure 8n) reveals that Shiyan City primarily comprises Silurian,
Devonian, Carboniferous, Permian, Triassic, Jurassic, and Quaternary strata metamorphic
rocks. Moreover, the map of distance to the fault (Figure 8o) shows that Shiyan City is in
the southern part of the Yangtze platform region, bounded by the Qingfeng fault, belonging
to the Qingfengtai fold bundle. Considering the land cover factor presented by the NDVI
map (Figure 8i), more than 80% of landslide pixels were in the high vegetation area. The
distance from the water system (Figure 8m) and road distance (Figure 8p) were mainly
distributed in the ranges of 0 to 400 m and 0 to 600 m, respectively.

4.2. Contribution Analysis of Influencing Factors

A paramount step in constructing an LSM involves evaluating the significance of
factors influencing landslide occurrence. Meanwhile, the collinearity between these indi-
cators affects the performance evaluation. Therefore, performing a contribution analysis
of influencing factors is necessary to identify correlations between them and avoid in-
putting landslide indicators with high correlations into the LSM. Various methodologies are
available to undertake a quantitative assessment of the predictive capacity of influencing
factors. Notably, the information gain ratio approach [5], least support vector machine
method [69], Pearson correlation coefficient [18], multicollinearity analysis [31], and GeoDe-
tector [48] are prominent examples. This study adopted Pearson correlation coefficients,
multicollinearity analysis, information gain ratio (IGR), and the GeoDetector method to
assess the relative importance.

http://www.gscloud.cn/
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Figure 8. Landslide factors used in this study. (a) slope, (b) aspect, (c) slope length, (d) elevation,
(e) plan curvature, (f) profile curvature, (g) SPI, (h) STI, (i) TWI, (j) ground roughness, (k) relief,
(l) NDVI, (m) distance to the river, (n) lithology, (o) distance to structure, (p) distance to road.
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IGR technology (AMIGR) is widely used for variable selection in machine learn-
ing [5,70]. To minimize the noise introduced during modeling, it is imperative to eliminate
landslide condition factors that exhibit limited or predictive power (Khosravi et al., 2019).
IGR can help determine the leading factors and those with little or no influence on the occur-
rence of landslides. Based on the average optimal value obtained by AMIGR, the ability of
each landslide condition factor is listed in Table 2. The “structure” factor had the strongest
predictive capacity (AMIGR = 0.673), followed by lithology (AMIGR = 0.575), distance
to water (AMIGR = 0.523), elevation (AMIGR = 0.518), and slope angle (AMIGR = 0.453).
Meanwhile, STI was excluded from the LSM as its AMIGR value was 0.082.

Table 2. IGR of environmental factors.

Factor Slope Aspect Slope Length Elevation Plan
Curvature

Profile
Curvature SPI STI

IGR 0.453 0.157 0.014 0.518 0.244 0.186 0.297 0.082

Factor TWI ground
roughness TRI NDVI distance to water lithology structure distance to road

IGR 0.138 0.195 0.312 0.397 0.523 0.575 0.673 0.215

In addition, this study used the interaction detector in GeoDetector to analyze the
interactions between elements quantitatively. The outcomes of the factor detector are
presented in Table 3. The Q-value signifies the explanatory power of the conditioning
factors on landslides and provides an indication of their influence magnitude. Notably,
slope exhibited the highest Q-value (Q = 0.745), followed by lithology (Q = 0.672), distance
from fault (Q = 0.474), and distance to water (Q = 0.435), underscoring its significant
contribution in relation to the landslides studied. Hence, slope exhibited the highest level
of explanatory power in relation to landslides. Conversely, STI exhibited the weakest
explanatory power, with minimal association between STI and the incidence of landslides
within the study area.

Table 3. Factor detector results.

Factor Slope Aspect Slope Length Elevation Plan
Curvature

Profile
Curvature SPI STI

Q value 0.745 0.379 0.269 0.286 0.254 0.054 0.208 0.007

Factor TWI ground
roughness TRI NDVI distance to

water lithology structure distance to
road

Q value 0.241 0.167 0.148 0.422 0.435 0.672 0.474 0.316

The Pearson correlation analysis results for the sixteen factors are listed in Table 4. For
the benefit of typesetting, the factors in the table are numbered by Arabic numerals, which
are in the same order as in Figure 8. According to work by [71], the correlation threshold
of the Pearson correlation coefficients between factors was set to 0.7. On this basis, most
elements can be regarded as independent. For instance, the correlation between the SPI
and road distance was zero. However, the correlation coefficients between STI and TRI and
STI and plan curvature were 0.89 and −0.57, showing a relatively high correlation. Based
on the coefficient threshold, STI and TRI were excluded from the LSM.

Furthermore, the multicollinearity analysis of sixteen selected leading factors using
the R program was conducted; the results of the variance enlargement factor (VIF) and
tolerance factor (TOL) are listed in Table 5. Referring to the work by [18], VIF > 10 or
TOL ≤ 0.1 indicated severe collinearity of environmental factors. The TOL value of slope
length was only 0.08, and the VIF value was >10, indicating that this factor should be
excluded from the LSM. In addition, the TRI factor was excluded as its VIF value was also
>10, which is consistent with the Pearson correlation results.
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Table 4. Pearson correlation coefficients between two influencing factors.

Factor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1
2 0.01 1
3 −0.04 0 1
4 0 −0.27 −0.05 1
5 −0.02 −0.56 0 0.04 1
6 0.04 0.05 0 0 −0.09 1
7 −0.14 0.01 0.19 0.04 0.2 0.01 1
8 −0.02 −0.57 0 0.05 0.89 −0.09 0.2 1
9 −0.08 0.03 0.03 0.12 0.05 0.21 0.19 0.15 1
10 −0.01 −0.15 0 −0.05 0.11 0 0.09 0.14 0.22 1
11 0.03 0.02 0.03 0 −0.05 0.04 −0.08 −0.04 0.05 −0.02 1
12 0.07 −0.04 0.15 0.04 0.21 0.03 0.22 0.04 0.06 0 −0.13 1
13 0.08 −0.01 0.08 −0.01 0.15 0.07 0.05 0 0 −0.04 0.12 0.08 1
14 0 0.11 0 0 −0.14 0.26 −0.13 −0.13 0.06 −0.05 0.04 0 0.14 1
15 0 0.2 0 −0.32 −0.01 0 0.05 −0.01 0 −0.05 0 0.02 0 0.01 1
16 0 0.01 0.14 0.03 0.03 0.04 0 0.03 0.08 0 0 0.17 0.12 −0.01 −0.01 1

Table 5. Multicollinearity of the causal factors (VIF and TOL).

Factor Slope Aspect Slope
Length Elevation Plan

Curvature
Profile

Curvature SPI STI

TOL 0.382 0.131 0.08 0.763 0.489 0.128 0.916 0.929
VIF 2.615 7.654 12.493 1.31 2.046 7.836 1.092 1.076

Factor TWI ground
roughness TRI NDVI distance to

water lithology structure distance to
road

TOL 0.868 0.895 0.11 0.993 0.695 0.989 0.963 0.886
VIF 1.152 1.117 10.065 1.007 1.438 1.011 1.038 1.129

Collectively, STI, plan curvature, TRI, and slope length were excluded based on the
results of these four analyses. Therefore, the LSM modeling and analysis presented in the
following section are based on the remaining twelve factors.

5. Landslide Susceptibility Modelling
5.1. Parameter Determination of Machine Learning

Following the establishment of the landslide inventory map and the influencing factor
maps, the outcomes derived from the FR analysis were employed as input. Subsequently,
machine learning techniques were utilized to generate the ultimate landslide susceptibility
map (LSM). The study area comprised a total of 2,622,482 cells. Concurrently, the dataset
contained 5328 landslides, partitioned into two subsets: 70% were randomly allocated
as the training dataset, whereas the remaining 30% were utilized for model validation.
While the ratio for splitting the training and validation datasets is customizable, the most
commonly employed within the relevant fields is 70% and 30%, respectively [5,18,72].

An equivalent number and proportion of nonlandslide cells were likewise selected and
allocated to provide essential insights into unfavorable conditions for landslide incidents.
Consequently, during the training phase, the attribute matrix representing the influencing
factors associated with these cells was designated as the input data. Conversely, the output
data encompassed the probability matrix reflecting the occurrence of landslide events,
presented as binary response data in the form of 0 and 1. Analogous configurations were
established during the validation stage. The parameter configurations for all machine
learning methods in this study can be found in Tables 6 and 7.
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Table 6. Parameter settings for different methods.

Method Parameter Search Space Final Setting

RF
Iterations [1, 2, 3, . . ., 15] 13

Tree numbers [10, 20, 30, . . .,100, 150, 200, . . ., 500] 10
Tree depth [10, 15, 20, 25, 30, 40, 50] 25

SVM
Penalty [0.1, 1, 10, 100, 1000] 1000

Kernel function parameter [10, 1, 0.1, 0.001, 0.0001] 0.001

LR
Penalty [L1, L2] L2

C reciprocal of regularization strength. [0.001, 0.01, 0.1, 1, 10, 100] 0.1

BP-ANN
Batch size [100, 200, 500, 1000, 2000, 3000] 3000

Learning rate [0.001, 0.01, 0.1, 1,10] 0.01
Square root error [0.0005, 0.001, 0.005, 0.01] 0.01

RBF-ANN
Batch size [100, 200, 500, 1000, 2000, 3000] 3000

Learning rate [0.001, 0.01, 0.1, 1, 10] 0.01
Square root error [0.0005, 0.001, 0.005, 0.01] 0.01

Table 7. Tuning parameters for the CNN.

Parameter Value

Convolutional Kernel size 8 × 1
Number of convolution unit 50

Max pooling kernel size 2 × 1
Number of epochs 500
Activation function Relu

Optimizer Adamax
Learning rate 0.001

Initial learning rate 0.1
Dropout rate 0.5
Weight decay 0.0001

5.2. Modelling Process of Machine Learning

The modeling process was executed utilizing the MATLAB 2021, with support vector
machines (SVM) serving as a specific exemplification. This iterative process primarily
encompassed the sequential execution of the following steps:

(i) The training dataset was imported into the software, where the influence factor values
for each unit were derived using the GIS and subsequently fed into the constructed
SVM model. The probabilities of landslide occurrences within these units were
computed, with all values standardized on a dimensionless scale spanning from 0
to 1.

(ii) The factor values of all identified landslide points, combined with a comparable num-
ber of non-landslide points and their respective states (zero denoting non-landslide
and one indicating landslide), were amalgamated into a consolidated matrix. This
matrix was utilized as input for the MATLAB 2021 to assess the contribution of
each factor. Following this analysis, the penalty and RBF kernel parameters were
determined as the definitive configuration, documented in Table 6.

(iii) The probability matrix, obtained from step (ii), indicating the likelihood of landslide
occurrences, was imported into the SPSS 24.0. The K-means clustering algorithm was
employed on the dataset to identify and define the five centroids. Data points near
each centroid were subsequently reclassified into their respective groups, with each
centroid representing the central focal point of its group. The average value between
two adjacent centroids was implemented as the threshold for segregating distinct
susceptibility bands, as it effectively discriminated between datasets exhibiting diverse
properties. Accordingly, a comprehensive landslide susceptibility map was delineated,
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effectively partitioning the study area into four discrete susceptibility zones: low,
medium, high, and extremely high.

(iv) The model’s effectiveness, as assessed by diverse statistical indicators elucidated in
Section 3.2, was substantiated by scrutinizing the spatial distribution of both landslide
inventory points and randomly sampled points. This meticulous analysis facilitated a
comprehensive assessment of performance relative to alternative methodologies.

6. Discussion and Comparison Analysis
6.1. Factor Effects on Landslides

The FR, LR, and IQ values of each category for the twelve influencing factors are listed
in Table 8 and Figure 9. Without loss of generality, the topography factors considered slope,
elevation, relief, and surface roughness as examples. Given the factor of the slope, the
probability of a landslide was normally distributed with the slope and reached a peak at
20◦. When the slope ranged from 10 to 20◦ and 20 to 30◦, the probability of landslides was
>0.25, and the FR values were 1.518 and 1.384, respectively. The LR and IQ values also
had strong positive correlations. Similarly, the probability of a landslide was normally
distributed with elevation. The elevation of Shiyan City was mainly concentrated in the
range of 60 to 800 m and the ranges of 0 to 314 m, 314 to 482 m, 482 to 644 m, 644 to 806 m,
806 to 976 m, 976 to 1175 m, and 1175 to 2715 m, while the FR values were 2.12, 1.73, 1.33,
0.82, 0.42, 0.17, and 0.10, respectively. Meanwhile, the relief degree was mainly distributed
from 0 to 50 m. The FR values of 0–20 m, 20–30 m, 30–40 m, 40–50 m, 50–60 m, 60–80 m, and
80–342 m were 1.49, 1.32, 0.86, 0.55, 0.36, 0.27, and 0.22, respectively. The corresponding IQ
values were 0.58, 0.4, −0.21, −0.87, −1.47, −1.87, and −2.19, respectively. The maximum
normalized LR value was 0.392. With an increase in surface roughness, the frequency
ratio of landslides decreased, and the FR value of 0–1.05 m was the largest (1.43). The
corresponding FR values of 0–1.05 m, 1.05–1.1 m, 1.1–1.15 m, 1.15–1.2 m, and 1.2–5.5 m
were 1.43, 1.17, 0.86, 0.51 and 0.34, respectively.

Table 8. The FR, LR, and IQ values of each category with twelve relative influencing factors.

Factor Category FR LR IQ Factor Category FR LR IQ

profile
curvature

0–9 1.135 0.132 0.183

lithology

Q4dl + el 0.328 0.041 −1.609
9–12 1.165 0.135 0.220 Q2dl + pl 1.192 0.148 0.254
12–18 1.057 0.123 0.080 loose soil 1.082 0.135 0.114
18–24 1.34 0.155 0.422 clastic rocks 0.477 0.059 −1.068

24–30 0.824 0.096 −0.279 carbonate
rocks 1.453 0.181 0.539

30–35 0.744 0.086 −0.427 metamorphic 1.05 0.131 0.070
35–40 0.791 0.092 −0.339 magmatic 1.304 0.162 0.383

40–50 0.797 0.092 −0.327 Z1yl1,
pt3wy 1.159 0.144 0.213

50–82 0.768 0.089 −0.380

elevation

78–314 2.12 0.307 0.997

slope

0–10 1.026 0.147 0.037 314–482 1.73 0.252 0.715
10–20 1.518 0.218 0.602 482–644 1.33 0.239 0.635
20–30 1.384 0.199 0.469 644–806 0.82 0.121 −0.351
30–40 1.005 0.144 0.007 806–976 0.42 0.062 −1.312
40–50 1.126 0.162 0.171 976–1175 0.17 0.02 −2.978
50–60 0.472 0.068 −1.083 1175–2715 0.10 0.015 −3.523

60–80 0.298 0.063 −1.749
distance to

river

0–200 1.618 0.395 0.694

aspect
–1 0 0 0 200–400 0.868 0.212 −0.203

0–22.5 0.963 0.11 −0.055 400–600 0.519 0.127 −0.947
22.5–67.5 1.41 0.162 0.496 600–800 0.931 0.227 −0.103
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Table 8. Cont.

Factor Category FR LR IQ Factor Category FR LR IQ

aspect

67.5–112.5 1.004 0.115 0.006 distance to
river

800–1000 0.239 0.039 −2.654
112.5–157.5 1.063 0.122 0.088 1000–2000 0.060 0 0

157.5–202.5 0.969 0.111 −0.046

TWI

0–5 0.960 0.165 −0.059
202.5–247.5 0.99 0.114 −0.015 5–10 0.963 0.166 −0.054
247.5–292.5 0.847 0.097 −0.24 10–15 1.212 0.209 0.277
292.5–360 0.747 0.086 −0.42 15–18 0.619 0.106 −0.693

road

0–400 3.245 0.229 1.698 18–20 1.001 0.172 0.002
400–600 2.487 0.175 1.315 20–25 1.055 0.182 0.077

600–800 1.280 0.090 0.356

ground
roughness

0–1.05 1.428 0.285 0.441
800–1000 1.100 0.078 0.147 1.05–1.1 1.170 0.291 0.47

1000–2000 0.800 0.063 −0.159 1.1–1.15 0.859 0.174 −0.271
2000–3000 0.590 0.062 −0.190 1.15–1.2 0.509 0.101 −1.06

structure

0–400 0.800 0.151 −0.321 1.2–5.5 0.338 0.078 −1.423

400–600 1.539 0.29 0.622

relief

0–20 1.490 0.392 0.580
600–800 1.08 0.204 0.111 20–30 1.320 0.318 0.400
800–1000 1.003 0.189 0.005 30–40 0.860 0.142 −0.210

1000–2000 0.88 0.166 −0.185 40–50 0.550 0.086 −0.870

NDVI

0–0.2 0.151 0.267 1.105 50–60 0.360 0.062 −1.470
0.2–0.35 0.505 0.207 0.59 60–80 0.270 0 −1.870
0.35–0.5 0.548 0.203 0.631 80–342 0.220 0 −2.190

0.5–0.7 0.317 0.003 0.397
0.7–1.0 1.752 0.320 0.990

The distance from the water system can characterize the influence of the hydrological
environment on landslide development. The FR analysis results in Table 8 differed regard-
ing the distance from the river. The area near the river was prone to landslides, and the FR
value was higher. The FR values were 1.62, 0.87, 0.52, 0.93, 0.24, and 0.06, corresponding
to distances from the river of 0–200 m, 200–400 m, 400–600 m, 600–800 m, 800–1000 m,
and 1000–1500 m, respectively, consistent with the results of Dou et al., (2020) [72] and
Huang et al., (2020a) [3].

Rock and soil types represented the material basis of the landslide. According to previ-
ous studies, a higher FR value represents a larger landslide probability (Wang et al., 2020).
The results in Table 8 showed that the occurrence probability of a landslide under a meta-
morphic rock was as high as 59.3%, with an FR value of 1.453. However, the occurrence
probability of landslides under clastic rock conditions was only 29.1%, corresponding to
an FR of 1.304. The IQ and LR values under these two lithologies were also positively
correlated. Few carbonate rocks were in this area, and their FR value was 0.6. In short,
landslides were relatively high in metamorphic and clastic rock areas and relatively low in
magmatic rock areas. NDVI can quantitatively estimate vegetation growth and biomass.
In this study, when the NDVI value ranged from 0.8 to 1.0, the probability of landslide
occurrence was greater, and the FR IQ and normalized LR values were 1.75, 0.99, and 0.32,
respectively. The maximum FR value occurred at a 0–400 m distance from the road with a
value of 3.25.
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Figure 9. The FR, LR, and IQ values with twelve relative influencing factors.

6.2. Landslide Susceptibility Mapping

To conduct a comprehensive comparative analysis, Figure 9 presents graphical depic-
tions of eight distinct landslide susceptibility maps created using the IQ, FR, LR, RBF-ANN,
BP-ANN, RF, SVM, and CNN methodologies. Each map classifies susceptibility into
four levels: low, moderate, high, and very high. An intricate evaluation was conducted to
determine the proportionate distribution of these susceptibility classes for each respective
method. The detailed results of this assessment can be found in Table 9.

Table 9. Frequency ratio of landslide susceptibility classes using eight methods.

Methods Susceptibility Class Pixels No. Landslide
Number

Landslide
Pixels No.

Landslide
Ratio

Frequency
Value

IQ

low 6,080,773 177 0.241 0.033 0.137
moderate 7,033,777 1129 0.279 0.212 0.759

high 7,892,631 2187 0.312 0.410 1.314
very high 4,232,035 1835 0.168 0.344 2.048

FR

low 2,324,558 154 0.092 0.029 0.314
moderate 5,931,356 261 0.235 0.049 0.208

high 8,279,600 1217 0.328 0.228 0.695
very high 8,703,702 3695 0.345 0.694 2.012

LR

low 7,442,452 120 0.295 0.022 0.075
moderate 8,422,881 1663 0.334 0.312 0.934

high 4,680,089 1645 0.185 0.309 1.166
very high 4,693,794 1900 0.186 0.357 1.919

RBF-ANN

low 3,627,430 174 0.159 0.033 0.204
moderate 10,231,670 1325 0.451 0.249 0.551

high 6,592,760 2629 0.291 0.494 1.698
very high 2,225,480 1199 0.098 0.225 2.294
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Table 9. Cont.

Methods Susceptibility Class Pixels No. Landslide
Number

Landslide
Pixels No.

Landslide
Ratio

Frequency
Value

BP-ANN

low 5,058,490 376 0.223 0.071 0.317
moderate 8,324,470 1361 0.366 0.255 0.698

high 6,366,830 1967 0.28 0.369 1.318
very high 2,983,380 1623 0.131 0.305 2.322

RF

low 4,790,563 200 0.184 0.038 0.204
moderate 7,330,020 499 0.282 0.094 0.332

high 9,091,277 2244 0.349 0.421 1.205
very high 4,790,563 2384 0.184 0.448 2.429

SVM

low 6,080,773 175 0.241 0.033 0.136
moderate 7,033,777 677 0.279 0.127 0.456

high 7,892,631 2023 0.313 0.379 1.214
very high 4,232,035 2452 0.168 0.46 2.745

CNN

low 7,442,452 151 0.295 0.028 0.096
moderate 8,422,881 757 0.334 0.142 0.426

high 6,680,089 2237 0.265 0.419 1.587
very high 2,693,794 2182 0.107 0.409 3.838

For all LSM results, the high and very high landslide susceptibility areas were mainly
distributed on both sides of river gullies, faults, and metamorphic rock areas, which are
likely related to structure and lithology. Specifically, LSM results generated by the IQ
method (Figure 10a) showed that 16.8% of the area was in the very high class, and 31.2%,
27.9%, and 24.1% were in the high, medium, and low susceptibility classes. The results of
the FR method revealed that the percentages from very high to low susceptivity were 34.5%,
32.8%, 23.5.9%, and 9.2%, respectively (Figure 10b). Meanwhile, the LSM results obtained
by the LR method were 18.6%, 18.5%, 33.4%, and 29.5%, respectively (Figure 10c). Based on
the statistical methods, the percentage of the very high class was approximately 16–35%,
among which the proportion determined by the FR was the largest. However, the very
high rate of LSM determined by the machine learning methods was smaller than that of the
statistical methods. Based on the LSM by RBF-ANN, the model predicted that only 9.8% of
the area was at a very high level, and 29.1%, 45.1%, and 15.9% were in the high, medium,
and low susceptibility classes, respectively (Figure 10d). Considering the BP-ANN method
(Figure 10e), the very high susceptibility zone accounted for 13.1%, while 28%, 36.6%, and
22.3% were assigned to the high, medium, and low landslide susceptibility zones. For the
RF method, 18.4% was at a very high level (Figure 10f), while the SVM (Figure 10g) and
CNN (Figure 10h) methods identified 16.8% and 10.7% of the area as being very highly
susceptible to landslides, respectively. Moreover, the RF method identified 34.9%, 28.2%,
and 18.4% of the area as being at high, medium, and low susceptivity levels. In comparison,
the SVM method identified 31.3%, 27.9%, and 24.1%, and the CNN case classified 26.5%,
33.4%, and 29.5% of the area as having high, medium, and low susceptibly, respectively.
For the RF method, 18.4% was at a very high level (Figure 10f). The SVM (Figure 10g) and
CNN (Figure 10h) methods identified 16.8% and 10.7% of the area as highly susceptible to
landslides, respectively. Moreover, the RF method identified 34.9%, 28.2%, and 18.4% of
the area as being at high, medium, and low susceptivity levels. In comparison, the SVM
method identified 31.3%, 27.9%, and 24.1%, and the CNN case classified 26.5%, 33.4%, and
29.5% of the area as having high, medium, and low susceptibility.

The frequency values of all examined methods were <1.0 for low susceptibility levels
(Table 9 and Figure 11). However, the frequency values increased sharply from moderate
to very high susceptibility levels. Although IQ and LR are two different methods, the
data laws of the contribution degree for each index factor classification in Table 9 were
relatively the same, and the results of landslide susceptibility prediction were also similar.
The frequency values of the five methods representing the higher level were 3.838 (CNN),
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2.745 (SVM), 2.429 (RF), 2.322 (BP-ANN), and 2.294 (RBF-ANN), approximately four times
the moderate and low susceptibility levels. Hence, with increased landslide sensitivity,
the distribution of landslide pixels gradually concentrated. Among them, the CNN
method had the best performance, demonstrated by the largest frequency value for very
high and high sensitivity levels and the smallest frequency at low sensitivity. Thus, in
the LSM drawn by the CNN method, the increased susceptibility area had the largest
degree of landslide concentration, while fewer landslides were incorrectly classified as
low susceptibility areas.
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6.3. Accuracy Assessment and Comparison

This section adopted statistical metrics to assess and compare the accuracy of different
methods. Table 10 lists the statistical results of the training and test datasets of the machine
learning methods. The definitions and calculations of these statistical indices are addressed
in Section 3.2.

Table 10. Accuracy comparison of training and test datasets for different machine learning methods.

Parameter
RBF-ANN BP-ANN RF SVM CNN

T V T V T V T V T V

TP 3588 1480 3605 1501 3597 1468 3584 1495 3700 1589
TN 3274 1502 3480 1432 3486 1490 3531 1517 3598 1554
FP 349 90 185 162 200 100 160 90 90 20
FN 227 116 168 93 155 130 163 86 50 25

Sensitivity 0.940 0.927 0.955 0.942 0.959 0.919 0.956 0.946 0.987 0.985
SPE 0.904 0.943 0.949 0.898 0.946 0.937 0.957 0.944 0.976 0.987
ACC 0.926 0.935 0.953 0.920 0.952 0.928 0.957 0.945 0.981 0.986

F1-measure 0.926 0.935 0.953 0.922 0.953 0.927 0.957 0.940 0.981 0.986
Jaccard 0.862 0.878 0.911 0.855 0.91 0.865 0.917 0.895 0.964 0.972
MCC 0.946 0.879 0.91 0.853 0.909 0.859 0.917 0.895 0.963 0.972
RMSE 0.231 0.247 0.204 0.237 0.201 0.238 0.203 0.238 0.196 0.211
AUC 0.756 0.76 0.844 0.688 0.895 0.822 0.948 0.911 0.957 0.940

ROC result 0.908 0.9075 0.936 0.926 0.915 0.925 0.956 0.966 0.976 0.966
MSE 0.135 0.245 0.042 0.062 0.006 0.0091 0.089 0.069 0.011 0.089
MAE 0.303 0.403 0.157 0.286 0.071 0. 081 0.125 0.248 0.125 0.576

MAPE 0.894 0.894 0.623 0.724 0.535 0.535 0.002 0.002 0.002 0.045
SSE 0.063 0.054 0.038 0.035 0.028 0.046 0.062 0.052 0.062 0.072

Error rate 0.012 0.0014 0.08 0.065 0.0028 0.0028 0.005 0.005 0.005 0.009

Among the five machine learning methods, CNN was the best based on the perfor-
mance of training datasets, followed by the RF, SVM, and BP-ANN methods; the worst was
RBF-ANN. The CNN method had the largest sensitivity (0.987), indicating that it could
correctly classify 98.7% of landslide pixels as a landslide. The RF method had a slightly
lower sensitivity (0.959). Considering the sensitivity of the test datasets, CNN also had
the highest accuracy (0.985), followed by SVM (0.946), BP-ANN (0.942), RBF-ANN (0.927),
and RF (0.919). For the F1-measure of the test datasets, the largest value was obtained
for CNN (0.987), followed by SVM (0.940), RF (0.953), BP-ANN (0.953), and RBF-ANN
(0.926). Regarding the other indices in Table 10, including SPE, ACC, and Jaccard, the
performance order varied according to indicators. Overall, the CNN method was the best,
and the BP-ANN or RBF-ANN methods were the worst.

The ROC curves of the eight methods were also calculated and compared in Figure 12.
Interestingly, according to the AUC, the ROC curves differed for the various methods.
Overall, the AUC values for the machine learning methods were larger than those for the
traditional methods. For the five machine learning methods, the AUC values from largest
to smallest were 95.7% (CNN), 94.8% (SVM), 93.2% (RF), 91.6% (RBF-ANN), and 89.5%
(BP-ANN). All were > 70%, indicating that all LSMs drawn by machine learning methods
exhibited sufficient performance.

Moreover, MCC and RMSE are critical additional evaluation criteria, as a high AUC
value does not invariably translate to high accuracy in spatial predictions. By computing
the RMSE values for the five employed machine learning methods, a degree of alignment
with the analysis conducted using other performance indicators was observed. The calcu-
lated RMSE values spanned from 0.076 to 0.469, further substantiating the reliability and
coherence of the assessment. It revealed that CNN performed the best, followed by SVM
and RF methods.



Remote Sens. 2023, 15, 5256 26 of 31
Remote Sens. 2023, 15, x FOR PEER REVIEW 28 of 34 
 

 

 

Figure 12. ROC curves for the statistical and machine learning methods using the training dataset. 
Figure 12. ROC curves for the statistical and machine learning methods using the training dataset.

6.4. Typical Landslide Deformation Analysis

As an economically effective monitoring method, InSAR technology has been widely
used in the deformation monitoring of landslides. To further analyze the deformation
characteristics of typical landslides in high-risk areas, 16 sets of Sentinel-1 radar im-
ages from November 2020 to March 2023 were selected (the less coherent image was
eliminated), and SBAS-InSAR technology was applied to extract the displacement time
series of the landslide and project it onto the main sliding direction of the landslide.
According to the SBAS-InSAR interpretation results in Figure 13, the landslide is in a
continuous deformation state, and the annual deformation rate of most feature points
is as high as 90 mm/year. Further field investigations of the landslide revealed that
certain severe deformation points were consistent with the field survey, with the roads
and houses on the landslide severely damaged. Time-series analysis of typical feature
points revealed that they are in continuous deformation. Among them, PS2 exhibits
the most serious deformation, reaching 30 mm during the interpretation period. Mean-
while, this feature point exhibited some rebound deformation during March 2022, which
may be caused by the bulging of the frontal edge of the landslide due to continuous
deformation [59,66]. The results obtained from the susceptibility assessment technique
facilitated the classification of the spatial extent of the landslide. Using InSAR technology
to monitor landslides without surface monitoring conditions has important implications
for deformation warnings.
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7. Conclusions

This paper presents the realization of dynamic landslide hazard mapping by inte-
grating spatio-temporal probability analysis with the time-varying deformation velocity
of the ground, obtained using the MT-InSAR method. LSMs that can be relied upon are
crucial resources for risk managers and governmental authorities in effectively mitigating
landslide hazards. The LSMs of Shiyan City, China, were first drawn using different data-
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driven methods, including IQ, FR, LR, ANN, RF, SVM, and CNN. The database included
5328 landslide and 5328 nonlandslide points and was randomly divided into 70% training
and 30% test samples. The main conclusions are as follows:

(1) By remote sensing images and field investigations, sixteen landslide influencing fac-
tors, including topographical, hydrological environment, basic geological, and human
engineering activity factors, were considered to construct the landslide inventory map.
Additionally, different sensitivity analysis methods, such as Pearson correlation anal-
ysis, multicollinearity analysis, information gain ratio, and GeoDetector, were used
to determine the importance of these factors to landslides. The results identified STI,
plan curvature, TRI, and slope length as factors to be excluded when drawing LSMs.

(2) The LSM results by different methods demonstrated that the material basis and
internal geological conditions of landslide development were mainly affected by
internal factors such as slope structure (along slope), fault distance (<200 m), formation
lithology, and slope degree (6◦, 20◦). For external factors, landslide occurrence was
primarily affected by water distance (<200 m) and road distance (<50 m). Moreover,
the comparison of frequency values showed that the CNN method had the best
performance, supported by the highest frequency at very high and highly sensitive
levels and the lowest frequency at low sensitivity levels among the different data-
driven methods.

(3) By comparing the model performance, it was determined that the training and pre-
diction accuracy of machine learning methods was higher than that of the statistical
methods. For example, the AUC values for the IQ, FR, LR, BP-ANN, RBF-ANN,
RF, SVM, and CNN methods were 0.810, 0.854, 0.828, 0.895, 0.916, 0.932, 0.948, and
0.957, respectively. For the F1-measure of test datasets for different machine learn-
ing methods, the largest value was for CNN (0.987), followed by SVM (0.940), RF
(0.953), BP-ANN (0.953), and RBF-ANN (0.926). Given other statistical indicators,
such as SPE, ACC, and Jaccard, although the performance order varied according to
indicators, overall, the CNN method was the best, and the BP-ANN and RBF-ANN
methods were the worst. This indicates that CNN has better nonlinear predictive
ability than the traditional statistical model. When the nonlinear relationship between
landslides and their influencing factors is more complex, the advantage of CNN will
be more apparent.

These findings demonstrate the importance of InSAR ground deformation measure-
ments in the context of dynamic landslide hazard mapping. This technique proves instru-
mental in accurately delineating the boundaries of significant landslides, such as the Fuxi
and Lijiaping landslides. The process of landslide hazard mapping necessitates the miti-
gation of false positive and false negative errors. By computing the deformation velocity,
the accuracy of the preliminary disaster map and field survey outcomes can be effectively
improved, rectifying erroneous assessments. Integrating ground velocities over a temporal
dimension facilitates a more precise mapping of dynamic landslide hazards.

Author Contributions: Y.S. and Y.L. organized the data and wrote the paper; G.X. and W.C. analyzed
and processed the data; B.J. and C.Z. supervised and reviewed the work. All authors have read and
agreed to the published version of the manuscript.

Funding: The authors would like to acknowledge the financial support provided by the Key Research
and Development Project of Hubei Province (No. 2021BCA219), supported by key research and
development program of Hubei province (No. 2021BID009), Science and Technology Project of Hubei
Provincial Department of Natural Resources (Grant No. ZRZY2022KJ17).

Data Availability Statement: Not applicable.

Acknowledgments: We would also like to thank the data support from the Geological Environmental
Center of Hubei Province.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.



Remote Sens. 2023, 15, 5256 29 of 31

References
1. Chen, W.; Zhao, X.; Tsangaratos, P.; Shahabi, H.; Ilia, I.; Xue, W.; Wang, X.; Ahmad, B.B. Evaluating the usage of tree-based

ensemble methods in groundwater spring potential mapping. J. Hydrol. 2020, 583, 124602. [CrossRef]
2. Chikalamo, E.E.; Mavrouli, O.C.; Ettema, J.; van Westen, C.J.; Muntohar, A.S.; Mustofa, A. Satellite-derived rainfall thresholds

for landslide early warning in Bogowonto Catchment, Central Java, Indonesia. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102093.
[CrossRef]

3. Huang, F.; Cao, Z.; Guo, J.; Jiang, S.-H.; Li, S.; Guo, Z. Comparisons of heuristic, general statistical and machine learning models
for landslide susceptibility prediction and mapping. Catena 2020, 191, 104580. [CrossRef]

4. Khosravi, K.; Shahabi, H.; Pham, B.T.; Adamowski, J.; Shirzadi, A.; Pradhan, B.; Dou, J.; Ly, H.-B.; Gróf, G.; Ho, H.L.; et al. A
comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning
Methods. J. Hydrol. 2019, 573, 311–323. [CrossRef]

5. Tien Bui, D.; Hoang, N.D.; Martinez-Alvarez, F.; Ngo, P.T.; Hoa, P.V.; Pham, T.D.; Samui, P.; Costache, R. A novel deep learning
neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Sci. Total
Environ. 2020, 701, 134413. [CrossRef]
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