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Abstract: Realization and enhancement of detection techniques for multiple-input–multiple-output
(MIMO) radar systems require polyphase code sequences with excellent orthogonality characteristics.
Therefore, orthogonal waveform design is the key to realizing MIMO radar. Conventional orthogonal
waveform design methods fail to ensure acceptable orthogonal characteristics by individually opti-
mizing the autocorrelation sidelobe peak level and the cross-correlation sidelobe peak level. In this
basis, the multi-objective Archimedes optimization algorithm (MOIAOA) is proposed for orthogonal
waveform optimization while simultaneously minimizing the total autocorrelation sidelobe peak
energy and total cross-correlation peak energy. A novel optimal individual selection method is
proposed to select those individuals that best match the weight vectors and lead the evolution of
these individuals to their respective neighborhoods. Then, new exploration and development phases
are introduced to improve the algorithm’s ability to increase its convergence speed and accuracy.
Subsequently, novel incentive functions are formulated based on distinct evolutionary phases, fol-
lowed by the introduction of a novel environmental selection method aimed at comprehensively
enhancing the algorithm’s convergence and distribution. Finally, a weight updating method based on
the shape of the frontier surface is proposed to dynamically correct the shape of the overall frontier,
further enhancing the overall distribution. The results of experiments on the orthogonal waveform
design show that the multi-objective improved Archimedes optimization algorithm (MOIAOA)
achieves superior orthogonality, yielding lower total autocorrelation sidelobe peak energy and total
cross-correlation peak energy than three established methods.

Keywords: MIMO radar; waveform design; Archimedes optimization algorithm; multi-objective

1. Introduction

MIMO radar is an effective detection technique with good applications [1]. The appli-
cation of MIMO technology and space–time coding to radar systems can provide excellent
performance in target parameter estimation, detection and identification, and tracking [2–4].
It has already received attention from experts and scholars in the radar community. For
example, De et al. considered the problem of implementing MIMO radar with diversity
using space–time coding (STC) and performed a comprehensive performance evaluation to
determine the best achievable performance for MIMO radar systems [5]. Jajamovich et al.
elucidated the optimal firing strategy of a radar when detecting a target at an unknown
location [6]. Deng et al. developed an innovative approach for waveform design that
enables MIMO radars to satisfy the space-domain transmission beamforming limitations
and the time-domain waveform orthogonality criteria [7]. Naghibi et al. investigated
waveform design for target detection and classification in MIMO radar systems under
two different scenarios [8]. Zhang et al. investigated the multi-parameter estimation of a
dual-base EMVS-MIMO radar in the presence of coherent targets [9]. Wang et al. proposed
a method that combines time-domain binomial design and frequency-domain binomial
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design through a pointwise minimum processor (PMP). Their results showed that this new
method has an improved Doppler paravalvular suppression effect [10]. Zhu et al. combined
the Golay complementary waveform radar echo with a proposed point-by-point threshold
processor (PTP), and introduced an improved filtering process for the delay-Doppler map
of the PTP. Their simulations verified that this method results in a delay-Doppler map
virtually free of range sidelobes [11]. Compared with conventional phased array radar
(PAR), MIMO radar is capable of independently emitting distinct waveforms from each
transmitting antenna. The signals transmitted by each transmitting antenna should be
orthogonal to one another in order to ensure independent and uninterrupted reception of
scattered echoes from the target, as well as to achieve higher gain pointing, measurement
accuracy, resolution, anti-jamming capability, and target recognition ability. However,
achieving completely orthogonal signals is infeasible in practice. Therefore, the waveforms
emitted by each antenna of the MIMO radar should be optimized and designed to approxi-
mate orthogonality. This process is known as orthogonal waveform optimization design,
and is a key element of MIMO radar.

In the design of orthogonal waveform optimization, it is usually necessary to ensure
that the waveform has good autocorrelation performance and cross-correlation perfor-
mance, among others. This amounts to a very complex nonlinear multivariate optimization
problem. Various methods have been proposed for orthogonal waveform optimization
design. For instance, He et al. proposed computationally efficient round-robin algorithms
for MIMO radar waveform synthesis that can be applied to design single-mode MIMO
sequences [12]. Song et al. proposed a fast Fourier transform-based algorithm for designing
sets of sequences with good correlation [13]. Li et al. introduced a novel, rapid, and effi-
cient algorithm that can be applied to design single or multiple single-module waveforms
with favorable autocorrelation, cross-correlation, or weighted correlation properties [14].
Wang et al. introduced a MIMO radar waveform design approach allowing for the design
of spatial signals with low sidelobe level, low spatial cross-correlation level, and low time-
varying characteristics, and demonstrated the efficacy of their proposed algorithm through
a practical example [15]; this analysis showed that the convergence speed and convergence
accuracy of these algorithms struggle to meet practical requirements. The problem of multi-
objective optimization is usually characterized as a simple single-objective optimization
problem relying on weighting or other methods. Although the optimization objectives are
simple, they struggle to effectively choose between the weights of each objective, which is
not conducive to the overall consideration.

Meta-heuristic algorithms have been applied to waveform design as well. Khan et al.
employed an enhanced Fletcher–Reeves algorithm. The orthogonal waveform was de-
signed with the autocorrelation sidelobe and the fourth power sum of the cross-correlation
as the cost function [16]. Deng et al. introduced an enhanced statistical simulated an-
nealing algorithm to minimize a single energy-based objective function for numerical
optimization of orthogonal multiplexed code sets, achieving a relatively low autocorre-
lation sidelobe [17]. Lellouch et al. utilized a Genetic Algorithm (GA)-based waveform
design framework to enhance the radar pulse characteristics, employing various metrics as
optimization functions in both the frequency and time domains with the aim of discovering
the optimal polyphase code set [18]. Zhang et al. proposed an optimal design method for
MIMO radar orthogonal waveforms based on the ion motion algorithm, with the objec-
tive of minimizing both the weighted autocorrelation sidelobe and the cross-correlation
sidelobe [19]. Ren et al. designed a modal algorithm based on greedy code searching
(MA-GCS) for the design of orthogonal polyphase codes; their experiments showed that
the code set designed by this algorithm has better autocorrelation and cross-correlation
properties than other methods [20]. Liu et al. proposed integrating a statistical genetic
algorithm (GA) with a conventional iterative code selection method; their experimental
results indicated the effectiveness of this algorithm for designing MIMO radar multiple-
phase signals [21]. Zeng et al. proposed a multi-objective microparticle swarm optimization
algorithm to solve the design of polyphase coded signals. Their MO-MicPSO algorithm
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showed better optimization efficiency and less time consumption compared with particle
swarm optimization or genetic algorithms [22]. Li et al. proposed an adaptive simulated
annealing genetic hybrid algorithm to improve the orthogonality of the signals and Doppler
tolerance of a MIMO radar system for the design of orthogonal polyphase codes. Their
experimental results showed that this method is capable of obtaining polyphase codes with
lower autocorrelation sidelobe peak and better Doppler tolerance [23]. Stringer et al. used
three multi-objective evolutionary algorithms (MOEAs) applied to the issue of designing
radar phase coding waveforms; their experimental results showed that NSGA-II-generated
phase codes exhibit superior autocorrelation characteristics compared to those generated
by SPEA2 or MOEA/D [24].

Waveform design based on meta-heuristic algorithms can achieve improved results
due to its own intelligent properties. However, related studies have generally considered
the minimization of the autocorrelation sidelobe value, the cross-correlation sidelobe value,
the total autocorrelation sidelobe peak energy, or the total cross-correlation peak energy.
While a few have selected the weighted sum of two or three of these as the objectives,
very few orthogonal waveform design models can optimize more than one objective at
the same time. In [22], multiple metrics describing autocorrelation and cross-correlation
characteristics were simultaneously selected to construct a multi-objective orthogonal
waveform optimization model. However, there is a high degree of redundancy between
several of these objective functions; thus, as the number of objectives increases, the solution
performance of multi-objective algorithms declines significantly. This situation leads to
the codeword signal set ultimately not achieving a very high level of orthogonality. The
total autocorrelation parametric peak energy and the total cross-correlation peak energy
are the two most important factors affecting the optimal design of orthogonal waveforms.
Therefore, in this paper we present a multi-objective MIMO radar quadrature waveform
design model that simultaneously minimizes both objectives. Moreover, a new multi-
objective Archimedes optimization algorithm is proposed for MIMO radar quadrature
waveform design. The main innovations of this paper are as follows:

1. A new optimal individual selection method is proposed to select the individuals
that best match the weight vectors and lead the evolution of the individuals in their
respective neighborhoods.

2. New exploration and development phases are proposed to ensure that the algorithm
has sufficient development capability for individuals, improving the convergence
speed and convergence accuracy of the algorithm.

3. A new environment selection method is proposed that evaluates different incentive
functions according to whether or not they are boundary weight vectors, resulting in
a better distributed algorithm;

4. A weight updating method based on the shape of the frontier surface is proposed to
dynamically correct the shape of the overall frontier according to the current concavity
and convexity of the frontier surface and the gap in the function values between
different objectives.

The experimental results of the proposed orthogonal waveform design show that
MOIAOA obtains lower total autocorrelation sidelobe peak energy and total cross-correlation
peak energy than three established methods while achieving better orthogonality.

2. MIMO Radar Quadrature Phase-Encoded Waveform Design

Assuming that the MIMO radar system has L transmitting antennas, each of which
transmits a signal in an orthogonal polyphase code set each having length N, the signal can
be expressed as a polyphase sequence

Sl = Sl(1), Sl(2), ..., Sl(n), ...Sl(N), n = 1, 2, ..., n, ..., N; L = 1, 2, ..., L,

Sl(n) = ejδl(n),

where δl(n) denotes the nth pulse in the signal Sl , a randomly selected one from the set
{0, 2π/M, ..., (M− 1)2π/M}. M is the number of phases selected for the pulse.
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The set of L-row N-column codeword signals consisting of Sl can be expressed as
follows:

S(L, N, M) =


δ1(1), δ1(2), ... ,δ1(N)

δ2(1), δ2(2), ... ,δ2(N)

...
...

...

δL(1), δL(2), ... ,δL(N)


This codeword signals set contains the polyphase sequences, and its corresponding

autocorrelation function and cross-correlation function are shown in Equations (1) and (2),
respectively [17]:

Ap(k) =


1
N

N−k

∑
n=1

exp j[δp(n)− δp(n + k)], 0 6 k 6 N − 1, p = 1, 2, ..., L

1
N

N

∑
n=−k+1

exp j[δp(n)− δp(n + k)],−N + 1 6 k < 0, p = 1, 2, ..., L

(1)

where Ap(k) denotes the nonperiodic autocorrelation function; k denotes the discrete time;
p denotes the pth signal; and δp(n) indicates sub-pulse’s phase in signal p.

Cp.q(k) =


1
N

N−k

∑
n=1

exp j[δp(n)− δq(n + k)], 0 6 k < N, p, q = 1, 2, ..., L

1
N

N

∑
n=−k+1

exp j[δp(n)− δq(n + k)],−N + 1 6 k < 0, p, q = 1, 2, ..., L

(2)

where Cp.q(k) indicates the nonperiodic cross correlation function, k denotes the discrete
time, p and q denote the pth and qth signals, respectively, δp(n) indicates the phase of the
sub-pulse in signal p, and δq(n) indicates the phase of the sub-pulse in signal q.

In general, waveforms with good orthogonality characteristics are more effective in
matching the radar to the detection environment, which can significantly enhance MIMO
radar systems’ ability to detect target signals; therefore, it is often desirable to ensure
orthogonality in the design of polyphase sequences. However, because perfect orthogonal
signals are not found in reality, it is important to ensure that either the autocorrelation
sidelobe peak energy or the cross-correlation peak energy is minimized in the orthogonal
design of polyphase sequences. In order to better achieve the orthogonality of polyphase
sequences, in this paper we take the simultaneous minimization of the total autocorrelation
sidelobe peak energy and total cross-correlation peak energy as the objective function, as
shown in Equation (3).

F(p, q, k) =


min

L

∑
p=1

N−1

∑
k=−N+1

|Ap(k)|2

min
L−1

∑
p=1

L

∑
q=p+1

N−1

∑
k=−N+1

|Cp,q(k)|2
(3)

3. MIMO Radar Orthogonal Waveform Optimization Method Based on Multi-Objective
Archimedes Optimization Algorithm

As shown in Equation (3), the total autocorrelation sidelobe peak energy and the
total cross-correlation peak energy should be minimized at the same time in the design of
orthogonal waveforms for polyphase sequences. As a mathematical concept, this belongs
to the class of multi-objective optimization problems. In this section, the newly proposed
Archimedes optimization algorithm is considered the core evolution strategy to achieve
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better design results and the multi-objective evolutionary algorithm based on decomposi-
tion (MOEA/D) is used as the basic framework to propose the MOIAOA. Finally, a MIMO
radar waveform optimization design method based on MOIAOA is established.

3.1. Archimedes Optimization Algorithm

The Archimedes principle of physics states that when an object is immersed in a
stationary fluid, it experiences buoyancy, the direction of which is vertically upward and
the size of which is equal to the weight of the fluid displaced by the object. Inspired by the
above law, Fatma A. Hashim et al. proposed an Archimedes optimization algorithm [25];
its pseudo-code is shown in Algorithm 1.

Algorithm 1 AOA
Input: population size popsize, maximum number of iterations tmax, Dimensionalities of optimizing problem

Dim, fixed constants C1, C2, C3, C4
Output: The optimal solution and its fitness value
1: Initialization of parameters(popsize, tmax, Dim, C1, C2, C3, C4)
2: The initial population X and the density deni, volume voli and acceleration acci of each individual Xi in the

population are generated according to Equation (4)

Xi,j
0 = XL + rand1 × (XU − XL)

voli,j
0 = rand2 deni,j

0 = rand3

acci,j
0 = XL + rand4 × (XU − XL)

(4)

3: Calculate the fitness value Fitnessi of each individual Xi
4: while t <= tmax do
5: Identify the optimal individual Xbest so far in the iteration, and its corresponding denbest, volbest and

accbest
6: Use Equation (5) to calculate the migration factor TFt

TFt = exp(
t− tmax

tmax
) (5)

7: for each individual Xi in population X do
8: if TF <= 0.5 then
9: Xi ← Xi execution Equation (6) to achieve the update.

xi
t+1 = xi

t + C1× rand(1, D)× accnorm
t × dt × (xk1

t − xi
t) (6)

where xi
t and xi

t+1 represent the positions of individuals before and after updating, respectively; C1 is an
artificially set constant, usually set to 2; rand(1, D) are D random numbers between [0,1]; xki

t is the position
information of a randomly selected individual k1 in the population; dt is the density factor, as shown in
Equation (7). accnorm

t is the normalized acceleration, as shown in Equation (8).

dt = exp(
tmax − t

tmax
)− t

tmax
(7)

accnorm
t = u× acci

t −min(acc)
max(acc)−min(acc)

+ l (8)

10: else
11: Xi ← Xi execution Equation (9) to achieve the update.

xi
t+1 = xbest

t + (−1)rand>0.5 × C2× rand(1, D)× accnorm
t × dt × (C3× TF× xbest

t − xi
t) (9)

where C2 and C3 are artificially set fixed parameters, and it is recommended to set them to 6 and 2 respectively
12: end if
13: end for
14: Update the volume voli, density deni, and acceleration acci of each individual Xi according to Equation (10)

deni
t+1 = deni

t + rand(1, D)× (denbest − deni
t)

voli
t+1 = voli

t + rand(1, D)× (volbest − voli
t)

acci
t+1 = (denk2

t + volk2
t × acck2

t)/deni
t × voli

t

(10)

15: t = t + 1
16: end while
17: Output the global optimal solution and its fitness value
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3.2. Multi-Objective Archimedes Optimization Algorithm

To further enhance the convergence and distribution of the multi-objective algorithm,
in this section we use the Archimedes optimization algorithm as the main evolution
algorithm, and the MOEA/D algorithm [26] as the basic framework to introduce the Multi-
Objective Improved Archimedes Optimization Algorithm (MOIAOA). The pseudo-code is
presented in Algorithm 2.

Algorithm 2 MOIAOA

Input: population size popsize, maximum number of iterations tmax, Dimensionalities of
optimizing problem Dim, fixed constants C1, C2

Output: non-dominated solution sets and non-dominated frontier
1: Initialization of parameters(popsize, tmax, Dim, C1, C2)
2: The initial population X and the density deni, volume voli and acceleration acci of each

individual Xi in the population are generated according to Equation (4)
3: Use the bilayer generation scheme in NSGAIII to generate a set of weight vectors W

uniformly distributed on the normalized hyperplane
4: Calculate the fitness value f (Xi) for each individual Xi and obtain the ideal point Z∗

5: while t <= tmax do
6: Perform the optimal individual evaluation method in Section 3.2.1 and identify the

optimal individual Xibest corresponding to each weight Wi in the iteration so far, as
well as its corresponding denibest, volibest and accibest.

7: Using Equations (5) and (7) to calculate the migration factor TF and density decre-
ment factor d

8: for each individual Xi in population X do
9: if TF <= 0.5 then

10: Xinew ← Xi performs the new exploration phase of Section 3.2.2 to update
its own position

11: else
12: Xinew ← Xi performs the new development phase of Section 3.2.3 to update

its own position
13: end if
14: end for
15: X ← Perform the environment selection framework of Section 3.2.4 for X ∩ Xnew
16: W ← Perform the weight update strategy of Section 3.2.5 for W
17: Update the volume voli, density deni, and acceleration acci of each individual Xi

according to Equation (10)
18: t = t + 1
19: end while
20: Output the global optimal solution and its fitness value

3.2.1. A New Optimal Individual Selection Method

As shown in Algorithm 2, MOIAOA uses a decomposition mechanism for multi-
objective processing. The multi-objective technique based on decomposition relies on
weight vectors to break down a multi-objective problem into a series of individual single-
objective subproblems associated with the weight vectors. The difference with single-
objective optimization, which has only one optimal solution, is that each single-objective
subproblem in the decomposition mechanism corresponds to an optimal value. Evidently,
under the pull of the optimal position of each single-objective subproblem, the evolution-
ary direction and evolutionary information that correspond each individual are relatively
biased. If we adopt the AOA method that relies solely on a globally optimal individual to
drive the evolution of other individuals, then it is only possible to drive each individual
closer to the optimal individual, and we cannot rapidly obtain the optimal solution of each
single-objective subproblem. In general, non-dominated fronts do not mutate, the optimal
solutions of subproblems associated with neighboring weights exhibit greater similarity,
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and the evolutionary directions of individuals in the corresponding weight vector neighbor-
hoods align more closely. Therefore, in MOIAOA, instead of selecting an optimal individual
to guide the evolution of other individuals as in AOA, each single-objective subproblem
selects the optimal individual within the neighborhood of the corresponding weight.

The performance of individuals on single-objective subproblems primarily relies on
Chebyshev aggregation function values and PBI values [26]. However, the Chebyshev
aggregation function ignores the requirement of distribution in the overall evolution pro-
cess and favors the pursuit of convergence. On the other hand, the PBI estimation method
utilizes the projection distance to evaluate the convergence and the vertical distance to
evaluate the distribution; in addition, it balances them with the value of θ; however, θ is
often a fixed value and cannot correspond to the performance of an individual on the corre-
sponding sub-problem in real time. As a result, the requirements of the algorithms cannot
be effectively balanced for convergence and distribution in the different evolution stages.

In summary, the computation of a combined incentive value is introduced to en-
hance the equilibrium between algorithmic convergence and distribution, as depicted in
Equation (11). This value is derived from the Chebyshev aggregation function, vertical
distance, and projection distance. Subsequently, the individual with the lowest combined
incentive value is selected from the neighborhoods corresponding to each weight, then
this individual is considered the optimal option within the spectrum of neighborhoods
associated with that weight.

sort =

{
nom( f itj−wi ) + 0.2× (nom(tj−wi ) + (θ2 − nom(cj−wi ))× nom(cj−wi )) i f TF < 0.55

nom( f itj−wi ) + 0.2× ((θ1 − nom(tj−wi ))× nom(tj−wi ) + 4× (
t

tmax
)× nom(cj−wi )) else

(11)

Here, j represents an individual within the neighborhood BBi corresponding to the cur-
rent weight Wi, the number of individuals within BBi is indicated in Equation (12), nom(.)
represents the min–max linear normalization operation, the calculation of nom

(
f itj−wi

)
is

demonstrated in Equation (13), and tj−wi , f itj−wi , and cj−wi respectively represent the
projection distance, aggregation function value, and vertical distance of individual j
with respect to the current weight Wi; the specific calculation methods are shown in
Equations (14)–(16). Finally, θ1 and θ2 represent penalty factors that are respectively de-
tailed in Equations (17) and (18).

LL =

⌈
20× (

tmax − t
tmax

)
0.55

+ LLmin

⌉
(12)

Here, d.e represents rounding up and LLmin is the minimum neighborhood size, the
value of which is generally 3 to achieve better results

nom( f itj_wi ) =
f itj_wi −min( f itj_wi )

max( f itj_wi )−min( f itj_wi )
(13)

f itj_wi = gtch(Xj|Wi, Z∗) = max
16m6M

(| fm(Xj)− Z∗|/Wi,m) (14)

tj_wi = d1(Xj, Wi) = ||( f (Xj)− Z∗)×Wi||/Wi (15)

cj_wi
= d2(Xj, Wi) = || f (Xj)− (Z∗ + d1(Xj, Wi)× (Wi/||Wi||))|| (16)
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Here, M indicates the number of objectives and Z∗ indicates the ideal point consisting
of the optimal values on each objective.

θ1 = −1× (a0 × (
t

tmax
)3) + b0 (17)

θ2 = c0 × (
t

tmax
)2.5 + d0 (18)

Here, a0, b0, c0, and d0 are artificially set constants, typically set to 0.45, 1, 0.2, and 0.3,
respectively, although these values can also be adjusted.

In summary, the proposed method, which relies on the combined incentive values of
individuals to determine the optimal individual corresponding to each subproblem, offers
the following advantages. First, Equation (12) changes the traditional form of the constant
neighborhood size to make it change adaptively following the number of iterations. In
the early phase of algorithmic evolution, a significant discrepancy arises in the extent of
evolution among individuals, many of whom are far from the optimal frontier. A larger
number of neighboring individuals provide considerable options, thereby rapidly shorten-
ing the evolutionary gap between them and other subproblems by taking advantage of the
evolutionary information of better individuals in the neighboring subproblems. As a result,
the speed of convergence to the optimal frontier is accelerated. In the later phase of the algo-
rithm, all individuals approach the optimal frontier, reducing the number of individuals in
the neighborhood. Thus, the optimal individual can be more accurately selected, precisely
guiding the evolution of this neighborhood. This condition is conducive to the formation
of excellent distributivity, and can effectively save computational resources as well. Second,
in Equation (11), the composite incentive value of the individual is primarily affected by
the normalized Chebyshev function when TF is less than 0.55, signifying the early phase
of algorithmic evolution. The influence of the projection distance is larger than that of the
vertical distance, and the θ2 parameter increases gradually with the number of iterations,
increasing the influence of the vertical distance to an extent. However, it is inferior to the
influence of the vertical distance. This method is conducive to ensuring the convergence of
the algorithm and avoiding the disadvantage of an abundant individuals, which can result
in poor distribution. The composite incentive value of the individual is primarily affected
by the normalized Chebyshev function when the TF is more than 0.55, signifying the later
phase of algorithmic evolution. The influence of the vertical distance is larger than that
of the projection distance, and the θ1 parameter increases gradually with the number of
iterations, reducing the influence of projection distance to a certain extent. Evidently, when
the late evolutionary stage is already closer to the theoretically optimal nondominated
frontier, a uniform distribution of nondominated solutions is achieved while ensuring that
the frontier surface does not recede.

3.2.2. New Exploration Phase

As shown in Equation (6), each individual in the exploration strategy proposed by the
AOA algorithm has an opportunity to learn from any individual within the population.
In this way, the diversity of the population is maintained and global search is realized.
However, the local search capability is insufficient, decreasing the convergence speed of
the algorithm. Thus, the novel exploration strategy shown in Algorithm 3 is proposed to
further balance the global and local search capabilities of the algorithm. The algorithm
shown below involves an oppositional search mechanism, a simulated binary cross search
mechanism, and a mutation search mechanism.
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Algorithm 3 New exploration phase framework

1: if rand > 5/14 then
2: Xinew ← Perform an oppositional search for Xi
3: else if rand <= 5/14 ∩ rand >= 1/14 then
4: Select two individuals X1 and X2 randomly from BBi
5: if (X1 = X2) ∩ (¬ mod (t, 35)) then
6: X1 = normrnd(X1, 0.05) ; X2 = normrnd(X2, 0.05)
7: end if
8: Xinew ← Perform simulated binary cross-learning for X1 and X2
9: Xinew ← Perform a mutation-learning for Xinew

10: else
11: Xinew ← Perform a mutation-learning for Xi
12: end if

(1) Oppositional Search Mechanism
This section describes the oppositional search mechanism, as shown in Equation (19):

Xi(t) =
1
2
× (X′i(t− 1)+X1)+ F× rand(1, Dim)×C1× accnormi(t)× d× (X2−X1) (19)

where X′i(t− 1) denotes the opposing individuals of individual Xi(t− 1) obtained accord-
ing to Equation (20), X1 is an individual selected randomly from its neighboring population
BBi, X2 is a randomly selected individual different from X1 obtained from the population,
C1 and accnormi are the original definitions in the AOA algorithm, which represent the
learning factor and the acceleration of Xi, respectively, and F denotes the updating direction
of each dimension, which is calculated according to Equation (21).

X′i,j(t) = XUi,j + XLi,j − Xi,j(t− 1) (20)

Here, XUi,j and XLi,j denote the upper and lower bounds of Xi, respectively. The
opposing individual X′i(t− 1) of individual Xi(t− 1) only performs the transformation
shown in Equation (20) on the SD randomly selected dimensions of Xi(t− 1). In general,
SD = drand× Dime.

F = (−1)rand(1,Dim)<0.5 (21)

(2) Simulated Binary Cross Search Mechanism
This section employs a simulated binary search mechanism similar to the one used [27],

shown in Equation (22). To further improve population diversity, the BeTa parameter
in [27] is improved in this section to further improve population diversity, as shown in
Equation (23).

Xi(t) =
1
2
× (X1 + X2) +

1
2
× F× beta× (X1 − X2) (22)

Here, X1, X2 are two distinct individuals randomly selected from BBi and F determines
the update direction of each dimension, which is calculated according to Equation (21).

beta = 0.5× normrnd(1, 1/(α)) + 0.5× BeTa(1, Dim) (23)

Here, normrnd(1, 1/(α)) denotes the generation of a random number with mean
1 and variance 1/(α), while BeTa is the original value obtained from [27] as shown in
Equation (24):

BeTaj =

{
2×muj

(1/(20+1)) i f muj < 0.5

2− 2×muj
(−1/(20+1) else

(24)

where mu = rand(1,Dim) denotes a vector of length Dim and magnitude between 0 and 1.
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(3) Mutation Search Mechanism
This section proposes a mutation search mechanism, shown in Equation (25), where

each dimension of an individual Xi is mutated with a probability of 1/Dim:

Xi,j = 0.5× (Xi,j + Xbest,j) + β× deltaq× (XUi,j − XLi,j) + (0.5− λ)× normrnd(0, 1)× Xbest,j

+(λ + 0.1)× trnd(1)× Xbest,j
(25)

where deltaq denotes the polynomial variance factor [27], which is calculated as shown in
Equation (26) and β and λ represent the factors regulating the polynomial, Gaussian, and
Cauchy variances, and are calculated according to Equations (27) and (28), respectively:

deltaq =


(2u + (1− 2u)× (1−

Xi,j − XLi,j

(XUi,j − XLi,j)
)(20+1))1/(20+1) − 1 i f u 6 0.5

1− (2(1− u) + 2(u− 0.5)× (1−
XLi,j − Xi,j

(XUi,j − XLi,j)
)(20+1)) else

(26)

β = (arctan(0.1× t)× 2
π
)× (

t
10× tmax

)
1

2.5 + c (27)

λ = a× (
tmax− t

tmax
)0.5 (28)

where u is a random number between [0,1] and a, c denote artificial set numbers, which are
generally set to 0.5.

In summary, the new exploration strategy proposed in this section has the follow-
ing advantages. First, a comparison between Equations (23) and (24) indicates that the
improved BeTa adds a normal random distribution to the original random exponential,
which increases the range of perturbations of the difference vector X1 - X2 in Equation (22).
However, because the individuals X1 and X2 in Equation (22) are in a neighborhood and
the evolutionary information gap between them is small, the improved BeTa can further
expand the population diversity without destroying the evolutionary direction, satisfying
the algorithm’s requirements for population diversity and convergence speed. Second,
Equation (25) integrates polynomial mutation, Gaussian mutation, and Cauchy mutation.
The proposed mutation approach provides more ways of generating individuals than a
variant approach that simply applies one strategy, further increasing the ability of the
algorithm to jump out of local optima. Throughout the early evolution phase, the algorithm
focuses on finding as many good individuals as possible in a wider and larger search space;
thus, larger mutation perturbations are required. However, β and λ are set such that the al-
gorithm’s mutation power in the early stage originates mainly from polynomial and Cauchy
mutations. Polynomial mutations serve to prevent excessive individual deviations due
to the large perturbation range of the Cauchy mutations, whereas the Cauchy mutations
serve to enable a globally robust search of the solution space. As t increases, the algorithm
enters a late evolution phase in which it focuses on fine search in the vicinity of excellent
individuals, as it is at this point that excellent individuals can be obtained. At the same time,
the adjustment factors β and λ gradually increase and decrease, respectively; therefore, the
fine mutation of the algorithm in the subsequent phase is mainly due to polynomial and
Gaussian mutations, and the effect of Cauchy mutation gradually becomes negligible. The
algorithm uses polynomial mutation to ensure that the evolutionary information of the
original individual is not destroyed, while Gaussian mutation is used for fine search of the
neighboring range. Third, the new exploration strategy incorporates an oppositional search
mechanism, a simulated binary cross-search mechanism, and a mutation search mechanism.
Among these, the oppositional search mechanism utilizes the ability of oppositional learn-
ing to produce individuals with greater randomness and broadness, thereby expanding
the search solution space of individuals and greatly improving the global search capability.
The simulated binary cross-search mechanism operates on two different individuals in
the neighborhood, fully using the good genes carried by the neighboring individuals and
improving the algorithm’s local search capability to a certain extent. The mutation search
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mechanism, on the contrary, allows the individual dimensions to mutate with relatively
low probability, further increasing population diversity without significantly disrupting
the evolutionary direction of the population. In addition, the probability of conducting the
oppositional search is the highest, and is significantly higher than that of the simulated
binary cross search and mutation search. This new exploration strategy is able to consider
the local search on the basis of a better realization of the global search. Consequently,
the possibility of the algorithm converging to the optimal frontier is greatly improved; in
addition, the convergence speed of the algorithm is improved to a certain extent.

3.2.3. New Development Phase

The AOA algorithm enters the development phase during the later evolution stage.
According to Equation (9), all individuals utilize the optimal individual as a reference
vector and learn from the difference vector between the optimal individual and the current
individual. This approach helps speeds up the evolution of the algorithm to the theoretical
optimum. However, unlike single-objective optimization, in decomposition-based multi-
objective optimization the subproblem corresponding to each weight vector is most likely
associated with only one individual. Thus, the optimal individual is most likely the
individual itself. Furthermore, directly following the evolutionary strategy of the original
development phase for solving the multi-objective problem is impossible. Therefore, a
new development strategy, shown in Algorithm 4, is proposed to address numerous multi-
objective problems. The specific mechanisms of search mode 1 and search mode 2 are
detailed below.

Algorithm 4 New development phase framework

1: Determine the intimate population Bi and the neighboring population BBi of each
individual Xi, with dimensions Li and LLi, respectively

2: if rand > 5/14 then
3: if TF > 0.45 ∩ TF < 0.8 then
4: Xinew ← Xi Perform search mode 1
5: else
6: Xinew ← Xi Perform search mode 2
7: end if
8: else if rand <= 5/14 ∩ rand >= 1/14 then
9: One individual X1, X2 is randomly selected from BBi and Bi respectively

10: if (X1 = X2) ∩ (¬ mod (t, 35)) then
11: X1 = normrnd(X1, 0.05) ; X2 = normrnd(X2, 0.05)
12: end if
13: Xinew ← Perform simulated binary cross-learning for X1 and X2
14: Xinew ← Perform a mutation-learning for Xinew
15: else
16: Xinew ← Perform a mutation-learning for Xi
17: end if

(1) Search Mode 1
Search mode 1 is shown in Equation (29):

Xi(t) = Xt + rand(1, Dim)× C2× accnormi(t)× d× (X1 − Xi(t− 1)) (29)

where X1 denotes an individual selected randomly from an intimate population Bi with
a probability of 0.8 or from a neighboring population BBi with a probability of 0.2. The
intimate population Bi is the part of the neighboring population that is closest to the
individuals and contains the number of individuals, as shown in Equation (30); the basis
vectors Xt are determined by Equation (31) in accordance with the probability.

L =

⌈
7× (

tmax− t
tmax

)
0.25

+ LLmin

⌉
(30)



Remote Sens. 2023, 15, 5231 12 of 25

Xt =


Xi_best(t− 1) i f rand ≤ 0.2
Xi(t− 1) elsei f 0.2 ≤ rand ≤ 0.6
0.5× (Xi(t− 1) + Xi_best(t− 1)) else

(31)

Here, Xi−best denotes the optimal individual corresponding to the current weight
vector Wi. When rand > 0.6, if Xi(t− 1) = Xi−best(t− 1), then Xi(t− 1) should be operated
against according to Equation (20); at this time, Xt = 0.5× (X′i(t− 1) + Xi−best(t− 1)).

(2) Search Mode 2
Search mode 2 is shown in Equation (32):

Xi(t) =
{

Xi(t− 1) + rand(1, Dim)× C2× accnormi(t)× d× (X1 − X2) i f Xi(t− 1) 6= Xi_best(t− 1)
0.5× (X′i(t− 1) + Xi(t− 1)) + rand(1, Dim)× C2× accnormi(t)× d× (X1 − X2) else (32)

where X1 and X2 denote one different individual randomly selected from the neighboring
population BBi and intimate population Bi, respectively.

In summary, the new development mechanism proposed in this section has the fol-
lowing advantages. First, the new development mechanism in this section only adapts the
oppositional search mechanism in the exploration search in Section 3.2 to a new search
mechanism that combines search modes 1 and 2. In a binary search strategy, one individual
is obtained from the intimate population and the others remain unchanged; the population
is already relatively close to the optimal frontier, following the early exploration phase. The
development phase no longer uses the adversarial search mechanism of the exploration
phase, which focuses on global search; instead, it uses search modes 1 and 2, which focus
on exploring the vicinity of or the neighborhood of the optimal individual corresponding to
each subproblem. The binary and mutation searches ensure the diversity of the population,
thereby improving the algorithm’s power to converge while providing more candidate
space for search modes 1 and 2. Evidently, the new development mechanism can greatly
enhance the exploration of the algorithm near the optimal frontier as well as the speed of
convergence to the optimal frontier. Second, search modes 1 and 2 are applied in the early
and late development phases, respectively. A comparison between search modes 1 and
2 indicates that the difference between them is mainly reflected in the selection of the basis
vectors and difference vectors. In selecting the basis vectors, the original approach of using
the optimal individuals in AOA is retained in search mode 1, whereas the use of individuals
and the centers of the individuals and the optimal individuals as basis vectors is introduced.
Search mode 1 enhances the direct search in the vicinity of the optimal individual and
further improves the speed of exploring out the optimal frontier. Conversely, in search
mode 2 the base vector is selected as either the individual itself or the midpoint between
the optimal individual and its oppositional counterpart. This preference amplifies the
search within its immediate vicinity. Evidently, the shift from search mode 1 to search mode
2 aligns with the algorithm’s evolving behavior, as the obtained front surface gradually ap-
proaches the optimal front. This transition facilitates swift convergence toward the optimal
front in proximity to the optimal front itself. Subsequently, the algorithm progressively
refines the fine search towards the theoretical optimal frontier. When selecting difference
vectors, in search mode 1, individuals communicate primarily with themselves; the selec-
tion process favors individuals from the intimate population with high probability and
individuals from the neighboring population are selected randomly with low probability.
A large number of full exchanges between individuals and intimate individuals plays a
role in guiding them closer to the current optimal frontier, considering that individuals
within intimate populations typically possess superior evolutionary insights. Furthermore,
limited interaction and learning with individuals from neighboring populations extends
the scope of search, contributing to an increased exploration range. This approach aids in
generating new evolutionary traits, thereby mitigating instances of evolutionary stagnation
to a certain extent. The optimal frontier obtained for the period corresponding to search



Remote Sens. 2023, 15, 5231 13 of 25

mode 2 has been largely formed; at this point, two individuals are randomly selected di-
rectly from the intimate population to communicate with each other. Communication and
learning between them makes for a finer search in their own neighborhood, considering
that the evolutionary information between an individual and the individuals in its intimate
neighborhood is already similar. This condition better facilitates the achievement of a
balanced distribution.

3.2.4. A New Approach to Environmental Selection

Numerous experiments and sources in the literature confirm that in terms of con-
vergence the performance of MOEA/D is generally good. However, there is room for
improvement in terms of its distributivity, especially in the boundary part of the frontier
surface. The algorithm should focus on improving convergence, considering that the fron-
tier obtained by the multi-objective algorithm in the early phase of evolution is generally
far away from the theoretical frontier. In the subsequent stage of evolution, it is relatively
close to the theoretical frontier, and the algorithm should focus on pursuing distributivity.
Accordingly, this section describes improvements to the environment selection method
of the MOEA/D mechanism [26]. The new environment selection approach is proposed
according to the different requirements of the various evolutionary phases, as follows.

(1) An environmental selection approach is applied to the early evolutionary phase.
In addition to the Chebyshev aggregation function value, which can reflect the con-

vergence effect of the individual, the projection distance from the individual to the weight
vector can allow us to directly consider the convergence of the current frontier. Moreover, a
smaller projection distance indicates that the current individual is closer to the theoretical
frontier. In this view, to further improve the convergence speed of the algorithm in the
early phase of evolution, when TF < 0.5, the projection distance is added to the Chebyshev
aggregation function, as shown in Equation (33):

g0
tch(Xj|Wi, Z∗ ) = gtch(Xj|Wi, Z∗ ) + a× ((tmax − t)/tmax)

0.5 × tj_Wi (33)

where a is an artificial setting of the constant; generally, 10 can achieve better results, though
this setting can be modified according to the specific problem at hand.

(2) An environmental selection approach is applied to the subsequent evolution-
ary phase.

An intensive study revealed the following main reasons for the poor distributivity of
the MOEA/D mechanism. The iterative individuals to which the weight vectors belong
are selected through a comparison of the Chebyshev aggregation function values among
individuals within the neighborhood. Multiple neighboring weight vectors can select
the same individual within the neighborhood for the next generation of evolution. This
condition inevitably leads to the number of intersections between the weight vector and
the theoretical frontier being less than the number of weight vectors. This finding leads to
discontinuities at certain locations, resulting in poor distributivity. However, individuals
are associated with weight vectors by angle, and the associated individuals of neighboring
weight vectors are different from each other compared with individuals of neighboring do-
mains. If the weight vectors are used to select individuals from among their own associated
individuals to participate in the next evolution, then the probability of neighboring weight
vectors selecting the same individual must be much lower than the MOEA/D mechanism.
Using the weight vector can enhance distributivity more effectively than the MOEA/D
decomposition mechanism by selecting suitable individuals from among the associated
individuals. However, a large number of experiments have confirmed that boundary
weight vectors generally exhibit worse distributivity than non-boundary weight vectors
that simply use the Chebyshev aggregation function to select superior individuals from
among the associated individuals. A more comprehensive analysis uncovers that this phe-
nomenon stems from the proximity of boundary weights to 0 along at least one dimension.
For the optimal individual associated with such a weight vector, the corresponding fitness
value is also inevitably close to 0 in the dimension where the weight vector approaches
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0. As a result, computation of the TCH value according to Equation (14) inevitably yields
an exceedingly large result. The best individual that most closely matches the boundary
weights cannot be selected due to the nonnadaptability of the boundary individual during
TCH computation. This condition results in extremely poor distributivity in the vicinity of
the boundary weight vectors.

In summary, in order to effectively improve the distributivity, different environment
selection mechanisms should be adopted for boundary weight vectors and non-boundary
weight vectors. In the later evolutionary phase, when TF > 0.5, a new environment selection
method based on boundary separation is proposed with the following steps.

Step 1: The old and new populations are merged, the cosine angle of each individual
with each weight vector is calculated, each individual is associated with the weight vector
with the smallest angle, and the weight vectors of the associated individuals and the
unassociated individuals are identified.

Step 2: For the weight vector with associated individuals, the corresponding set of
associated individuals, which is Ei, is determined. Whether the weight vector is a boundary
weight according to Equation (34) is identified. If it is a boundary weight with all its
associated individuals, then their incentive values are calculated according to Equation (35);
otherwise, Equation (36) is used. Then, the individual with the smallest incentive value is
selected from among the individuals associated with each weight vector to belong to the
weight vector that participates in the next evolution.

length( f ind(W(i, :) 6 1.0× 10−6)) > (M− 2) (34)

Here, length( f ind(W(i, :) 6 1.0× 10−6)) denotes the number of dimensions less than
1.0× 10−6 in each dimension of the weight vector Wi and M represents the number of
objectives. If Equation (34) is satisfied, then it is considered a boundary weight.

g1(j, Wi) = (1 + M× (3t/tmax)
1.25 × Angle(Ej))× (tj_Wi + c× (t/tmax)

3 × cj_Wi) (35)

Here, c is an artificially set constant and Angle(Ej) denotes the angle value between
the weight vector Wi and its corresponding associated individual.

g2(j, Wi) = gtch(Xj|Wi, Z∗ ) + b× (t/tmax)
3 × cj_Wi (36)

Here, b is an artificially set constant.
Step 3: For the weight vectors without associated individuals, the incentive values

of all individuals are calculated according to Equation (35) and the individual with the
smallest incentive value is selected to participate in the next evolution.

In summary, the environment selection method based on boundary separation ap-
plied to subsequent evolution phases possesses the following advantages. First, for the
non-boundary weight vectors, the original Chebyshev aggregation function, which is part
of the decomposition mechanism, continues to be retained in the computation of the ex-
citation function, as shown in Equation (36). This condition ensures the convergence of
the algorithm and avoids the backwardness of the acquired frontier due to the pursuit of
distributivity. On this basis, the vertical distance reflecting the strengths and weaknesses of
individual distributivity is added and the influence of distributivity on individual assess-
ment increases with the number of iterations. This finding is conducive to the realization
of uniform distribution. Second, as shown in Equation (35), the incentive function con-
tains the angle, vertical distance, and projection distance, avoiding the drawback of the
boundary weight vector being unable to consider distributivity due to the calculation of the
Chebyshev aggregation function. The vertical distance and angle are the most intuitive data
reflecting the distributivity of the algorithm. Thus, as the number of iterations increases,
the influence of the vertical distance and angle on the excitation function is gradually
added. This condition is conducive to the realization of a uniform distribution. In addi-
tion, if the projection distance differs from the angle and vertical distance, the algorithm
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approaches the PF surface anyway. At the same time, the effect of using the projection
distance is remarkable in that no loss of convergence occurs due to taking these measures
to maintain distributivity.

3.2.5. Weight Update Method Based on the Shape of the Frontier Surface

Currently, multi-objective algorithms based on decomposition commonly use the
two-layer generation scheme proposed in NSGAIII to generate the weight vectors [27]. If
the theoretical front is in the form of a hyperplane, then this approach ensures that the
weight vectors are evenly distributed on it. However, when the frontier surface shows a
convex shape, the distribution state of the weight vectors is more dispersed in the convex
region. Meanwhile, the distribution state of the weight vectors becomes concentrated when
the frontier surface shows a concave shape. The best practical optimal frontier obtained by
multi-objective methods based on decomposition is the intersection of the theoretical fron-
tier and the weight vectors. Thus, when the front surface is a non-hyperplane, the solution
set distribution of the multi-objective methods based on decomposition is not uniform.

As shown in Figure 1, the normalized fitness value of each dimension of the point on
the hyperplane is equal to 1, using the hyperplane where the black point is located as a
criterion. For points within the convex region, where the red dot is located, the normalized
fitness values across various dimensions exhibit a pattern where values are larger as they
move closer to the central region and conversely smaller as they approach the boundary
areas. These values fall within the range of 1 to 2. For points within the concave region,
where the blue dot is located, the normalized fitness values across various dimensions
exhibit a pattern where values are smaller as they move closer to the central region and
conversely larger as they approach the boundary areas. These values fall within the range of
0 to 1. Therefore, the concave–convex character of the frontier surface can be discriminated
using the individual’s normalized fitness value versus 1. Considerable experimental studies
have found that, for Wa, the weight vector Wa forms a uniformly distributed convex weight
vector when a < 1. Conversely, when a > 1, Wa form a uniformly distributed concave
weight vector. When generating uniformly distributed concave–convex weight vectors, if
the current surface exhibits a convex shape then the dispersion of weight vectors within the
convex region is mitigated. Similarly, if the current surface takes on a concave shape, then
the concentration of weight vector distribution within the concave region is improved.

Figure 1. Different types of nondominated frontier surfaces.

On this basis, the following strategy for adjusting the weight vector using the shape of
the frontier surface is introduced:

Wi = Wi
log(exp(1)−a) ×mean_no_ f it(i)(−1)mean_no_ f it(i)>(1+0.001)

× Z_zhong (37)

where a is an artificially set constant, which is usually set to 0.05 for convex fronts and −0.4
for concave fronts, mean_no_ f it(i) denotes the scale size of the ith individual, andZ_zhong
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denotes the normalized ratio between the dimensions of each individual in the currently
obtained frontier, which is calculated according to Equation (38):

Z_zhong =
F1− Z∗

sum(F1− Z∗)×max( F1−Z∗
sum(F1−Z∗) )

(38)

where F1 represents the ideal fitness value for all individuals. The fitness values in
Equation (37) are not used; rather, the normalized fitness values are used in order to
avoid bias due to the large differences between the values of each objective function. This
bias can lead to an overall front surface that leans toward the side with relatively small
objective function values, subsequently impacting the shape of the front surface. Conse-
quently, a front surface with a hyperplane-like shape cannot be achieved, which impacts
the overall distribution.

In summary, this section presents a weight update method based on the shape of
frontier surface, which is outlined in Algorithm 5.

Algorithm 5 Weight update method based on the shape of the frontier surface

1: if ¬mod(t, round(0.35× tmax)) then
2: no_ f it(Xi) = normalization(FunctionValue(Xi), M, Z∗) % Normalization of fitness

values for each individual
3: mean_no_ f it(Xi) = sum(no_ f it(Xi)) % Sum of normalized fitness values for each

individual
4: if t = 0.35× tmax then
5: % Select the maximum value for each column of {FunctionValuei(x(t))|x ∈ Ω}
6: F1 = ( f1 ∗ (t), ..., fM ∗ (t)), fi ∗ (t) = max{FunctionValuei(x(t))|x ∈ Ω}
7: F2 = [ ]
8: else
9: % Select the maximum value for each column of {FunctionValuei(x(t))|x ∈ Ω}

10: F2 = ( f1 ∗ (t), ..., fM ∗ (t)), fi ∗ (t) = max{FunctionValuei(x(t))|x ∈ Ω}
11: end if
12: if mean(mean_no_ f it) > 1.001 then Prediction of the frontier surface showing a

convex shape
13: F1 = min(F1, F2)
14: Winew←The weights Wi for each individual are updated according to Equations

(37) and (38)
15: else if mean(mean_no_ f it) < 0.999 then Prediction of the frontier surface showing

a concave shape
16: F1 = max(F1, F2)
17: Winew←The weights Wi for each individual are updated according to Equations

(37) and (38)
18: end if
19: Re-identify the neighborhood of the updated weight vector
20: end if

3.2.6. Algorithm Complexity Analysis

In this analysis, the population size is N, the maximum number of iterations is T, the
problem dimension is D, and the number of neighbors is NI. The MOIAOA algorithm mainly
consists of the new exploration phase, the new development phase, and the new approach to
environmental selection. The worst time complexity of each phase of the MOIAOA algorithm
in a single run is analyzed as follows: in the new exploration phase, at most N times (19) or
N × D times (22) or (25) needs to be computed; thus, the worst time complexity of this phase
is O (N × D). In the new development phase, at most N times (29) or N × D times (22) or (25)
needs to be computed; thus, the worst time complexity of this phase is O (N × D). In the new
approach to environmental selection phase, at most N × NI times (33) needs to be computed;
thus, the worst time complexity of this phase is O (N × NI).
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Therefore, the worst time complexity required for a single run of MOIAIA is
O (N × D) + O (N × D) + O (N × NI) = O (N × (2D + NI)).

3.3. MIMO Radar Quadrature Waveform Optimization Based on the MOIAOA Algorithm

The MOIAOA algorithm proposed in Section 3.2 was used as the main optimization
method to optimize the mathematical model of the MIMO radar quadrature waveform
design optimization shown in Equation (3). A MIMO radar quadrature waveform design
optimization algorithm based on MOIAOA was formed; its operation steps are specified
as follows.

Step 1: Initialization
Initialization includes parameter initialization and population initialization, as follows.
Step 1.1: Parameter Initialization
Initialize the following parameters: the number of signals in the signal set is L, the

length of the signals is N, the number of selectable pulse phases is M, the number of
populations is set to popsize, and the maximum number of iterations is tmax.

Step 1.2: Population Initialization
In order to satisfy the criteria of polyphase sequence coding, each individual in the popu-
lation is expanded into an L × N matrix with M-binary encoding. Then, the elements of
each individual are randomly selected from (0, 1, ..., (M− 1)) while corresponding to the
polyphase code phase (0, 2π

M , ..., (M− 1) 2π
M ).

Step 2: Single Evolution of the MOIAOA Algorithm
Step 2.1: The fitness value corresponding to Equation (3) is alculated separately for

each individual
Step 2.2: The migration operator is calculated; if TF < 0.5, then each individual is

individually updated according to the new exploration phase from Section 3.2.2 to produce
a new population (newpop). Otherwise, each individual is individually updated according
to the new exploitation phase from Section 3.2.3 to produce a new population.

Step 2.3: The environmental selection framework outlined in Section 3.2.4 is executed
to choose the next generation of evolved individuals, denoted as X.

Step 2.4: The weight update strategy from Section 3.2.5 is performed.
Step 2.5: The individual attributes are updated according to Equation (10).
Step 2.6: The optimal individual evaluation method from Section 3.2.1 is performed to

identify the optimal individual Xibest corresponding to each weight Wi in the iteration thus
far along with its corresponding denibest, Volibest, and accibest.

Step 3: Determine Whether Further Iterations are Needed
If the maximum number of iterations tmax has been reached, the Pareto optimal frontier

is output; otherwise, the process returns to Step 2 and evolution continues.

4. Experimental Results and Analysis

In order to thoroughly validate the performance of the MOIAOA algorithm, in this sec-
tion we describe our experiments in terms of the following two aspects. First, the MOIAOA
algorithm is compared with three high-performance multi-objective evolutionary algo-
rithms: the MOEA/D algorithm based on differential evolution (MOEA/D-DE) [28]; a novel
multi-objective particle swarm algorithm based on decomposition (MPSO-D) [29]; and a vec-
tor angle-based evolutionary algorithm for unconstrained multi-objective optimization [30].
Our comparative experiments were conducted on a multi-objective test dataset. Second,
the MOIAOA algorithm is compared with orthogonal waveform optimization methods
constructed using the three algorithms mentioned above. These comparative experiments
were conducted on orthogonal waveform design. All simulations were conducted on a
computer with an i5-8265U CPU running the Windows 10 operating system. MATLAB
R2021a was used for programming and running the experiments.

For the sake of fairness in conducting the comparative experiments on the multi-
objective test dataset, all algorithms had a maximum of 1000 iterations, and the initial
population sizes were as indicated in Table 1. The neighborhood size for MOIAOA was
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calculated as popsize/91× 18, while for the other algorithms the neighborhood size was
calculated as popsize/10. In the orthogonal waveform design comparative experiments,
all algorithms had a maximum of 500 iterations and an initial population size of 50, and
the calculation of the neighborhood size followed the same method as described for the
previous experiments. The parameters for each algorithm were set to be the same as
described in the original references, as shown in Table 2.

Table 1. Settings for population size.

Popsize M = 3 M = 5 M = 8 M = 10 M = 15

popsize 91 210 156 275 135

Table 2. Parameter settings for each algorithm.

Algorithm Relevant Parameters

MOIAOA C1 = 2; C2 = 3
MOEA/D-DE pc = 1.0; xc = 20; pm = 1/n; F = 0.5; delta = 0.9

MPSOD c1 = 2; c2 = 2; CR = 0.5; F = 0.5; proM = 1; disM = 20
VaEa proC = 1; disC = 20; proM = 1; disM = 20

4.1. Testing and Analysis of Multi-Objective Experiments

In this section, the most commonly used performance evaluation functions, HV and
IGD, were selected to evaluate the performance of the algorithms. To prevent the adverse
effects on algorithm evaluation of serendipity associated with a single algorithm run, each
algorithm was independently executed 30 times for each test problem. The results of HV
and IGD for each algorithm on the WFG test dataset [31] with different numbers of objec-
tives (M = 3, 5, 8, 10, and 15) are summarized in Tables 3 and 4, respectively. In the tables,
the values outside and inside the parentheses represent the mean and standard deviations,
respectively, of HV and IGD obtained from 30 experiments. The bolded values indicate
that the corresponding algorithm achieved the best performance on the test functions with
that number of objectives.

Table 3. The HV results for each algorithm on the WFG test functions.

Fun M MOIAOA MOEA/D-DE MPSOD VaEa

WFG1 3 9.48E-01(3.13E-04) 6.37E-01(6.39E-02) 5.25E-01(3.61E-02) 9.40E-01(1.27E-03)
WFG1 5 9.99E-01(5.85E-04) 9.70E-01(1.02E-02) 4.82E-01(4.83E-02) 9.97E-01(4.93E-04)
WFG1 8 1.00E+00(1.69E-05) 9.97E-01(1.29E-03) 3.38E-01(3.18E-02) 9.96E-01(1.65E-02)
WFG1 10 1.00E+00(7.75E-06) 9.99E-01(2.97E-04) 3.21E-01(3.83E-02) 9.99E-00(4.18E-04)
WFG1 15 1.00E+00(8.27E-05) 1.00E+00(1.37E-04) 2.87E-01(1.89E-02) 9.99E-01(3.26E-04)
WFG2 3 9.29E-01(6.35E-03) 8.74E-01(3.98E-03) 8.96E-01(5.88E-03) 8.64E-01(6.92E-02)
WFG2 5 9.97E-01(2.89E-03) 9.46E-01(1.93E-02) 8.91E-01(7.51E-03) 9.82E-01(3.20E-02)
WFG2 8 9.92E-01(7.45E-03) 9.80E-01(8.13E-03) 9.26E-01(7.90E-03) 9.74E-01(5.47E-02)
WFG2 10 9.97E-01(2.74E-03) 9.94E-01(4.10E-03) 9.46E-01(6.35E-03) 9.88E-01(3.29E-02)
WFG2 15 9.68E-01(1.42E-02) 9.74E-01(1.11E-02) 9.58E-01(4.58E-03) 9.96E-01(2.54E-03)
WFG3 3 3.93E-01(8.10E-03) 3.69E-01(7.28E-03) 2.85E-01(1.03E-02) 3.73E-01(6.63E-03)
WFG3 5 2.17E-01(1.30E-02) 9.08E-02(5.85E-04) 2.52E-02(2.11E-02) 1.33E-01(2.06E-02)
WFG3 8 1.19E-01(3.92E-02) 8.86E-02(2.39E-03) 0.00E+0(0.00E+00) 5.24E-02(2.12E-02)
WFG3 10 8.63E-02(3.04E-02) 9.30E-02(5.01E-04) 0.00E+0(0.00E+00) 1.80E-02(1.79E-02)
WFG3 15 0.00E+00(0.00E+00) 3.74E-02(3.98E-02) 0.00E+0(0.00E+00) 0.00E+00(0.00E+00)
WFG4 3 5.56E-01(8.26E-04) 4.71E-01(3.85E-03) 5.02E-01(5.65E-03) 5.44E-01(3.06E-03)
WFG4 5 8.11E-01(9.44E-04) 4.97E-01(4.01E-02) 5.99E-01(6.08E-03) 7.53E-01(4.39E-03)
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Table 3. Cont.

Fun M MOIAOA MOEA/D-DE MPSOD VaEa

WFG4 8 9.12E-01(2.52E-03) 5.17E-01(5.71E-02) 4.81E-01(1.75E-02) 8.52E-01(7.12E-03)
WFG4 10 9.62E-01(1.66E-03) 5.83E-01(5.13E-02) 4.98E-01(3.67E-02) 8.80E-01(6.71E-03)
WFG4 15 9.54E-01(6.38E-03) 4.46E-01(5.13E-02) 4.94E-01(5.26E-02) 8.58E-01(1.20E-02)
WFG5 3 5.14E-01(2.46E-03) 4.51E-01(1.53E-03) 4.79E-01(1.56E-03) 5.07E-01(2.99E-03)
WFG5 5 7.55E-01(3.31E-03) 4.88E-01(8.14E-04) 5.67E-01(7.25E-03) 7.21E-01(2.72E-03)
WFG5 8 8.36E-01(2.66E-03) 4.79E-01(3.07E-02) 5.76E-01(2.10E-02) 8.06E-01(6.44E-03)
WFG5 10 8.82E-01(2.92E-03) 5.13E-01(3.00E-02) 6.17E-01(1.85E-02) 8.32E-01(7.21E-03)
WFG5 15 7.40E-01(2.52E-02) 4.13E-01(2.28E-02) 6.17E-01(1.42E-02) 8.03E-01(8.48E-03)
WFG6 3 5.25E-01(3.76E-05) 4.07E-01(5.55E-02) 5.16E-01(7.03E-03) 5.00E-01(1.22E-02)
WFG6 5 7.57E-01(4.03E-02) 4.26E-01(5.29E-02) 6.04E-01(1.59E-02) 7.11E-01(1.69E-02)
WFG6 8 8.72E-01(1.56E-03) 4.63E-01(7.22E-02) 3.98E-01(3.38E-02) 8.17E-01(2.24E-02)
WFG6 10 9.14E-01(1.33E-03) 5.09E-01(1.14E-01) 3.91E-01(2.76E-02) 8.55E-01(1.59E-02)
WFG6 15 8.75E-01(4.15E-02) 4.42E-01(1.02E-01) 3.65E-01(8.05E-02) 8.57E-01(1.96E-02)
WFG7 3 5.59E-01(5.85E-04) 4.96E-01(3.77E-03) 5.30E-01(4.06E-03) 5.49E-01(2.05E-03)
WFG7 5 8.13E-01(3.95E-04) 5.37E-01(3.56E-02) 6.20E-01(5.45E-03) 7.83E-01(2.71E-03)
WFG7 8 9.17E-01(2.30E-03) 5.00E-01(3.99E-02) 5.41E-01(2.97E-02) 8.97E-01(4.04E-03)
WFG7 10 9.63E-01(1.62E-02) 5.77E-01(5.31E-02) 5.71E-01(2.22E-02) 9.39E-01(3.35E-03)
WFG7 15 7.26E-01(1.12E-01) 4.06E-01(2.47E-02) 7.40E-01(4.03E-02) 9.24E-01(6.76E-03)
WFG8 3 4.51E-01(2.42E-02) 3.88E-01(2.33E-02) 4.14E-01(4.51E-03) 4.17E-01(3.71E-03)
WFG8 5 7.48E-01(3.17E-02) 2.65E-01(3.70E-02) 6.14E-01(2.18E-02) 5.89E-01(7.31E-03)
WFG8 8 7.52E-01(1.57E-02) 3.60E-01(3.73E-02) 5.50E-01(3.16E-02) 6.83E-01(1.67E-02)
WFG8 10 8.05E-01(2.64E-02) 3.81E-01(4.56E-02) 5.78E-01(4.95E-02) 7.78E-01(3.05E-02)
WFG8 15 6.28E-01(8.55E-02) 3.57E-01(4.24E-02) 4.85E-01(3.28E-02) 8.54E-01(8.50E-03)
WFG9 3 5.27E-01(2.38E-02) 4.34E-01(5.52E-02) 5.00E-01(5.67E-03) 5.02E-01(3.56E-02)
WFG9 5 7.54E-01(2.62E-03) 3.55E-01(7.27E-02) 5.56E-01(2.98E-02) 6.14E-01(7.71E-02)
WFG9 8 7.91E-01(2.77E-02) 4.00E-01(4.02E-02) 4.94E-01(3.69E-02) 6.30E-01(4.42E-02)
WFG9 10 8.30E-01(1.49E-02) 4.22E-01(4.64E-02) 5.57E-01(2.72E-02) 6.70E-01(6.55E-02)
WFG9 15 7.35E-01(2.34E-02) 3.59E-01(4.84E-02) 5.46E-01(2.31E-02) 6.37E-01(6.73E-02)

Table 4. The IGD results for each algorithm on the WFG test functions.

Fun M MOIAOA MOEA/D-DE MPSOD VaEa

WFG1 3 1.15E-01(9.97E-03) 6.96E-01(1.14E-01) 9.12E-01(8.57E-02) 1.55E-01(4.14E-03)
WFG1 5 3.39E-01(1.26E-01) 1.16E+00(7.68E-02) 1.37E+00(1.21E-01) 3.68E-01(5.29E-03)
WFG1 8 1.10E+00(5.83E-02) 1.61E+00(1.05E-01) 2.25E+00(7.98E-02) 9.67E-01(3.29E-02)
WFG1 10 1.35E+00(6.19E-02) 1.70E+00(5.21E-02) 2.53E+00(1.03E-01) 9.39E-01(3.46E-02)
WFG1 15 3.46E+00(4.26E-01) 2.19E+00(7.14E-02) 3.22E+00(7.88E-02) 1.64E+00(4.56E-02)
WFG2 3 1.60E-01(1.11E-02) 3.06E-01(9.24E-03) 8.96E-01(5.88E-03) 3.10E-01(1.64E-01)
WFG2 5 1.60E-01(1.64E-02) 1.30E+00(1.05E-01) 5.83E-01(1.91E-02) 4.19E-01(1.66E-01)
WFG2 8 1.27E+00(8.31E-02) 1.74E+00(1.06E-01) 1.29E+00(3.06E-02) 1.09E+00(5.00E-01)
WFG2 10 1.56E+00(1.10E-01) 1.67E+00(1.16E-01) 1.32E+00(4.40E-02) 1.09E+00(4.51E-01)
WFG2 15 4.30E+00(2.21E-01) 2.93E+00(4.55E-01) 2.08E+00(6.71E-02) 1.74E+00(3.99E-02)
WFG3 3 8.87E-02(1.15E-02) 1.20E-01(1.02E-02) 2.60E-01(1.87E-02) 1.23E-01(1.21E-02)
WFG3 5 3.07E-01(1.91E-02) 1.56E+00(4.41E-02) 6.24E-01(5.18E-02) 4.94E-01(5.01E-02)
WFG3 8 4.32E-01(6.57E-02) 2.64E+00(8.45E-02) 1.19E+00(4.36E-02) 1.37E+00(1.34E-01)
WFG3 10 6.13E-01(1.33E-01) 3.35E+00(1.05E-01) 1.38E+00(7.06E-02) 1.73E+00(1.49E-01)
WFG3 15 1.91E+00(5.45E-01) 3.67E+00(1.34E-01) 2.26E+00(7.98E-02) 2.87E+00(3.80E-01)
WFG4 3 2.25E-02(1.59E-03) 3.64E-01(7.63E-03) 2.55E-01(2.63E-03) 2.32E-01(4.07E-03)
WFG4 5 4.54E-01(6.75E-02) 2.88E+00(1.83E-01) 1.27E+00(1.03E-02) 9.41E-01(5.22E-03)
WFG4 8 1.01E+00(5.95E-02) 5.06E+00(2.85E-01) 4.82E+00(7.73E-02) 3.01E+00(2.78E-02)
WFG4 10 1.43E+00(4.70E-02) 6.80E+00(2.53E-01) 6.71E+00(1.45E-01) 4.01E+00(1.30E-02)
WFG4 15 3.90E+00(6.97E-01) 1.23E+01(5.49E-01) 1.15E+01(4.79E-01) 8.10E+00(8.32E-02)
WFG5 3 1.02E-01(3.71E-03) 3.38E-01(2.13E-03) 2.54E-01(8.75E-04) 2.42E-01(3.49E-03)
WFG5 5 3.07E-01(3.35E-02) 2.20E-01(5.54E-04) 1.26E+00(1.65E-02) 9.38E-01(6.35E-03)
WFG5 8 1.15E+00(7.67E-02) 4.84E+00(1.33E-01) 3.26E+00(5.27E-02) 3.02E+00(2.88E-02)
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Table 4. Cont.

Fun M MOIAOA MOEA/D-DE MPSOD VaEa

WFG5 10 1.67E+00(1.30E-01) 6.56E+00(1.67E-01) 4.20E+00(5.09E-02) 3.98E+00(2.78E-02)
WFG5 15 9.58E+00(1.05E+00) 1.57E+01(7.32E-01) 8.75E+00(3.08E-01) 7.86E+00(6.27E-02)
WFG6 3 8.27E-02(1.64E-04) 4.16E-01(4.62E-02) 2.59E-01(3.40E-03) 2.56E-01(9.93E-03)
WFG6 5 1.46E-01(9.34E-02) 2.36E+00(2.70E-01) 1.24E+00(1.44E-02) 9.63E-01(1.04E-02)
WFG6 8 7.77E-01(1.03E-01) 5.41E+00(4.21E-01) 4.74E+00(1.93E-01) 3.13E+00(5.87E-02)
WFG6 10 1.25E+00(1.43E-01) 7.38E+00(6.48E-01) 6.68E+00(2.97E-01) 4.06E+00(2.16E-02)
WFG6 15 3.58E+00(1.50E+00) 1.30E+01(5.59E-01) 1.17E+01(3.60E-01) 7.96E+0(05.72E-02)
WFG7 3 2.16E-02(6.39E-04) 3.58E-01(2.39E-03) 2.54E-01(1.99E-03) 2.31E-01(3.60E-03)
WFG7 5 8.46E-02(1.92E-02) 2.78E+00(2.49E-01) 1.25E+00(1.32E-02) 9.45E-01(5.76E-03)
WFG7 8 1.12E+00(6.51E-02) 5.15E+00(1.70E-01) 4.54E+00(1.37E-01) 3.01E+00(3.25E-02)
WFG7 10 1.53E+00(5.03E-01) 6.86E+00(2.32E-01) 6.23E+00(1.04E-01) 4.02E+00(2.42E-02)
WFG7 15 1.22E+01(4.60E+00) 1.68E+01(1.08E+00) 8.80E+00(4.66E-01) 8.13E+00(1.07E-01)
WFG8 3 2.60E-01(5.39E-02) 4.57E-01(3.09E-02) 3.70E-01(9.48E-03) 3.89E-01(8.86E-03)
WFG8 5 8.27E-01(5.06E-02) 3.07E+00(9.24E-02) 1.16E+00(1.10E-02) 1.27E+00(2.01E-02)
WFG8 8 3.04E+00(3.45E-01) 5.45E+00(1.40E-01) 3.45E+00(3.10E-02) 3.37E+00(6.65E-02)
WFG8 10 4.72E+00(5.36E-01) 7.43E+00(2.01E-01) 4.76E+00(4.46E-02) 4.24E+00(1.21E-01)
WFG8 15 1.45E+01(2.51E+00) 1.73E+01(4.89E-01) 9.93E+00(3.25E-01) 8.93E+00(2.06E-01)
WFG9 3 1.14E-01(4.34E-02) 3.65E-01(4.91E-02) 2.41E-01(4.10E-03) 2.38E-01(3.99E-02)
WFG9 5 7.72E-01(2.70E-02) 2.72E+00(7.78E-02 1.16E+00(2.52E-02) 9.86E-01(4.03E-02)
WFG9 8 2.00E+00(4.61E-01) 4.96E+00(1.56E-01) 3.34E+00(1.33E-01) 3.07E+00(3.42E-02)
WFG9 10 3.00E+00(4.43E-01) 6.73E+00(1.86E-01) 4.25E+00(8.40E-02) 4.00E+00(3.54E-02)
WFG9 15 9.34E+00(1.29E+00) 1.60E+01(5.19E-01) 8.76E+00(1.28E-01) 7.76E+00(2.13E-01)

From Tables 3 and 4, it can be seen that although the MOIAOA algorithm exhibits
slightly lower performance in terms of the HV metric compared to the MOEA/D-DE
algorithm on the WFG3 test function with 10 and 15 objectives, in terms of the IGD metric
the MOIAOA algorithm exhibits significant advantages over the other three comparison
algorithms on the WFG3-9 test functions with 3, 5, 8, and 10 objectives. However, it
performs slightly worse than the VaEa algorithm on the WFG1 and WFG2 test functions
with 15 objectives. Although MOIAOA did not significantly outperform the comparison
algorithms for certain target numbers of test functions, it significantly outperformed the
comparison algorithms on most of the objectives of the test function.

4.2. Testing and Analysis of Orthogonal Waveform Design Experiments

Figure 2 shows the results of the closest average effect obtained by each multi-objective
algorithm in 30 independent runs when the number of signals L is 4, the length of signals
N is 36, and the number of optional phases M is 4. As can be seen from Figure 2, the Pareto
frontiers obtained by our proposed algorithm are significantly better than those obtained by
the comparison algorithms in terms of both convergence and distribution, and the results in
terms of VaEa are slightly better than those of MOEA/D-DE and MPSOD. In other words,
under the same autocorrelation side flap peak energy, the total cross-correlation peak
energy value obtained by our proposed MIMO radar orthogonal waveform optimization
method based on the MOIAOA algorithm is clearly lower than those of the other three
methods. Meanwhile, under the same crosscorrelation peak energy, the autocorrelation
sidelobe peak energy value obtained by our proposed MIMO radar orthogonal waveform
optimization method based on the MOIAOA algorithm is clearly lower than those of the
other three methods.
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Figure 2. Non-dominated frontiers obtained from four multi-objective algorithms.

Considering that the VaEa results are slightly better than those of MOEA/D-DE and
MPSOD, only MOIAOA and VaEa are compared below. The autocorrelation and cross-
correlation outcomes of the optimal four-phase code attained using the two algorithms
for L = 4 and N = 36 are depicted in Figures 3 and 4, respectively. As can be seen in
Figures 3 and 4, the MOIAOA algorithm achieves lower autocorrelation sidelobe values
than the VaEa algorithm, with comparable values for the cross-correlation sidelobe.
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Considering that the results of VaEa are slightly better than those of MOEA/D-DE
and MPSOD, only MOIAOA and VaEa are compared below. The autocorrelation and cross-
correlation outcomes of the optimal four-phase code, attained through the two algorithms,
for L = 4 and N = 36 are depicted in Figures 3 and 4, respectively. As seen in Figures 3 and
4, the MOIAOA algorithm achieves to have lower autocorrelation sidelobe values than the
VaEa algorithm with comparable values of the cross correlation sidelobe.
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Considering that the results of VaEa are slightly better than those of MOEA/D-DE
and MPSOD, only MOIAOA and VaEa are compared below. The autocorrelation and cross-
correlation outcomes of the optimal four-phase code, attained through the two algorithms,
for L = 4 and N = 36 are depicted in Figures 3 and 4, respectively. As seen in Figures 3 and
4, the MOIAOA algorithm achieves to have lower autocorrelation sidelobe values than the
VaEa algorithm with comparable values of the cross correlation sidelobe.
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Figure 3. Comparison of autocorrelation results for MOIAOA and VaEa when L=4 and N=36
Figure 3. Comparison of autocorrelation results for MOIAOA and VaEa when L = 4 and N = 36.
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In order to further demonstrate the performance of MOIAOA, we experimented
with sets of signals of different scale sizes. Figure 5 shows the autocorrelation and cross-
correlation curves of the optimal four-phase code obtained by MOIAOA when L = 3
and N = 128. From Figure 5, it is clear that the optimized signal set obtained using the
introduced multi-objective optimization algorithm performs well in terms of both the
autocorrelation and cross-correlation aspects.

Figure 4. Cont.
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Figure 4. Comparison of cross-correlation results for MOIAOA and VaEa when L = 4 and N = 36.

Figure 5. Cont.
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Figure 5. Autocorrelation and cross-correlation results for MOIAOA when L = 3 and N = 128.

5. Conclusions

In this paper, we have proposed an improved MOIAOA for orthogonal waveform
design optimization to obtain orthogonal polyphase codes. First, a novel optimal individual
selection method is proposed to select individuals that best match the weight vectors and
lead to the evolution of the individuals in their respective neighborhoods. Then, a new
exploration phase and development phase are proposed to enable the algorithm to have
sufficient development capability for individuals and to improve the convergence speed
and accuracy of the algorithm. Subsequently, a novel environment selection method is
proposed to evaluate different incentive functions according to whether or not they are
boundary weight vectors in order to ultimately obtain a well-distributed algorithm. Finally,
a weight update method based on the shape of frontier surface is proposed to dynamically
correct the shape of the overall frontier according to the current concavity and convexity
of the frontier surface and the gap of the function values between different objectives.
To showcase the competitiveness of the proposed algorithm, we conducted a thorough
experimental comparison with three state-of-the-art algorithms: MOEA/D-DE, MPSO-D,
and VaEa. Drawing upon comprehensive data analysis, the waveforms engineered by
MOIAOA possess heightened ability to capture the frontier facets of the multi-objective
optimization problem addressed in this study in comparison to those fashioned by the
state-of-the-art algorithms. In addition, the waveforms constructed by MOIAOA exhibit
excellent autocorrelation and cross-correlation properties.
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