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Abstract: Automatic, efficient, and accurate individual tree species identification and crown parame-
ters extraction is of great significance for biodiversity conservation and ecosystem function assessment.
UAV multispectral data have the advantage of low cost and easy access, and hyperspectral data can
finely characterize spatial and spectral features. As such, they have attracted extensive attention in
the field of forest resource investigation, but their applicability for end-to-end individual tree species
identification is unclear. Based on the Mask R-CNN instance segmentation model, this study utilized
UAV hyperspectral images to generate spectral thinning data, spectral dimensionality reduction
data, and simulated multispectral data, thereby evaluating the importance of high-resolution spectral
information, the effectiveness of PCA dimensionality reduction processing of hyperspectral data, and
the feasibility of multispectral data for individual tree identification. The results showed that the
individual tree species identification accuracy of spectral thinning data was positively correlated with
the number of bands, and full-band hyperspectral data were better than other hyperspectral thinning
data and PCA dimensionality reduction data, with Precision, Recall, and F1-score of 0.785, 0.825, and
0.802, respectively. The simulated multispectral data are also effective in identifying individual tree
species, among which the best result is realized through the combination of Green, Red, and NIR
bands, with Precision, Recall, and F1-score of 0.797, 0.836, and 0.814, respectively. Furthermore, by
using Green–Red–NIR data as input, the tree crown area and width are predicted with an RMSE
of 3.16m2 and 0.51m, respectively, along with an rRMSE of 0.26 and 0.12. This study indicates that
the Mask R-CNN model with UAV optical images is a novel solution for identifying individual
tree species and extracting crown parameters, which can provide practical technical support for
sustainable forest management and ecological diversity monitoring.

Keywords: Mask R-CNN; individual tree level; tree species; crown parameters; UAV optical image;
complex plantation forests

1. Introduction

Tree species identification is a critical task in forest resource investigation [1], and
obtaining precise tree species information is significant for forest resource management [2],
ecosystems conservation [3], and species diversity assessment [4]. The traditional method
of tree species investigation mainly relies on field surveys, which has the advantages of
reliability and accuracy and could provide sample data for remote sensing model training
and validation [5]. However, it is time consuming, labor intensive, information limited [6],
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and difficult to realize continuous spatial mapping [1]. As a lightweight and flexible remote
sensing platform, the unmanned aerial vehicle (UAV) can carry various types of sensors,
including RGB, multispectral, and hyperspectral cameras to acquire high-resolution remote
sensing data [7]. Therefore, it has the ability to capture forest information comprehensively
and quickly [8], which has great potential for application in forest tree species surveys and
individual tree parameters measurement [9,10].

Compared with the stand-scale tree species classification, individual tree species
identification aims to acquire more refined information about the forest, such as tree
species, spatial location, and the attached parameter of individual trees [11], which is
useful for precise and scientific forest resource management [12]. However, it places higher
demands on the spatial–spectral information content of the remote sensing image and the
interpretation method [13]. Previous studies on individual tree species identification have
mostly adopted a combination of segmentation and classification methods, i.e., crowns
segmentation and species classification are performed firstly, and then the two results are
combined to obtain individual tree species identification results [12,14,15]. Although this
method is simple and straightforward, it needs to combine the results of the two stages, it
cannot realize end-to-end model training, and it is difficult to meet the requirements for
the automatic identification of individual tree species [16].

Mask R-CNN [17] is a versatile and efficient instance segmentation algorithm that
performs semantic segmentation based on high-precision target detection, enabling simul-
taneous acquisition of target class information and pixel-level segmentation to satisfy the
needs of end-to-end individual tree species identification tasks [11,18]. The input data of
the model are usually RGB images [19] or multispectral data after dimensionality reduc-
tion [20]. UAV-based RGB and multispectral images usually have high spatial resolution
and contain fine canopy texture information. Both data have advantages in terms of low
cost and easy access, but they contain limited spectral information, which may affect the
effectiveness of tree classification [21]. Hyperspectral data, which usually have ten to
hundreds of bands and high spectral resolution, contain extremely rich and fine spectral
information of the tree canopy [22], and they have been used with excellent performance
in tree species identification [23,24]. However, the effectiveness of directly using hyper-
spectral data for end-to-end individual tree species identification remains uncertain. This
raises a question: are hyperspectral data with richer spectral information more efficient or
accurate for individual tree species identification? In addition, the costs associated with
acquiring and processing UAV RGB images, multispectral data, and hyperspectral data
are quite different in forest resource investigation, and it is undoubtedly wise to adopt
a more economical data acquisition solution under the premise of meeting the accuracy
requirements. This leads to another question: what are the differences in the instance
segmentation model for individual tree species identification when using different optical
data, i.e., hyperspectral spectral data, multispectral data, or RGB images?

The main objective of this study is to evaluate the feasibility and practicality of dif-
ferent UAV hyperspectral and multispectral data for individual tree species identification
based on the Mask R-CNN instance segmentation model. The main aspects include the
following: (1) exploring the response of hyperspectral data thinning in different proportions
(1/1, 1/2, 1/4, 1/8, and 1/16) and PCA dimensionality reduction data to individual tree
species identification; (2) verifying the feasibility and practicality of UAV multispectral data
for individual tree species identification using commonly used multispectral bands (Blue,
Green, Red, NIR) simulated from hyperspectral data; and (3) evaluating the accuracy of the
Mask R-CNN model to extract crown parameters based on individual tree species identifi-
cation. This study could provide a theoretical foundation for end-to-end individual tree
species identification and crown parameters extraction using various optical images. It has
practical application potential for automated and intelligent individual tree species surveys
in the current era of smart forestry [25], and it could support precise forest management
and service value assessment of the forest ecosystem [15].
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2. Materials and Methods
2.1. Study Area

The study area is located in Gaofeng Forest Farm (22◦57′~22◦58′N, 108◦21′~108◦23′E)
in Nanning, Guangxi Province, China (Figure 1a,b). The area has a subtropical monsoon
climate with an average annual temperature of about 22 ◦C, an average annual precipitation
of about 1300 mm, and an average relative humidity of about 79%. It is a hilly landscape
with undulating topography and an elevation between 150 and 260 m. The soil layer is thick
and mainly lateritic red soil, which is suitable for the growth of tropical and subtropical tree
species. The forest farm is rich in forest resources and it has a complex composition of tree
species, mainly including Cunninghamia lanceolata (CL), Eucalyptus spp. (EU), Castanopsis
hystrix Miq. (CH), and Camellia oleifera Abel. (CO). The area is dominated by plantation
forests with high homogeneity and relatively continuous distribution of the same tree
species. However, there is a high canopy density due to dense planting and a diversity of
stand age and crown size due to rotational management, which poses a great challenge to
individual tree species identification and crown parameter extraction.
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Figure 1. Overview of the study area. (a) Location of the study area; (b) Location of hyperspectral
data distribution; (c–g) True color display of hyperspectral data.

2.2. Data Acquisition and Preprocessing

Hyperspectral data were collected from January 8 to January 12, 2020 using a DJI
M600 Pro UAV (DJI, Shenzhen, China) with a Nano-Hyperspec VNIR hyperspectral imager
(Headwall Photonics Inc., Bolton, MA, USA), and five plots of UAV hyperspectral images
were acquired in total. The UAV flew at an altitude of 100 m and a speed of 4 m/s. During
the acquisition of hyperspectral data, a standard calibration panel (11%, 30%, and 56%
reflectance level) accompanying the imager was deployed on the ground for the radiometric
correction. In addition, the GNSS/IMU equipment recorded both the geographic location
and attitude information (pitch, roll, and yaw) frame by frame of the imager for subsequent
pre-processing. The wavelength of the collected hyperspectral data ranges from 400 to
1000 nm and contains 271 bands; the spectral resolution is 2.2 nm. The specific parameters
of the UAV flight and image are shown in Table 1.
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Table 1. Parameters of UAV flight and hyperspectral sensor.

Parameters Values Parameters Values

Flight altitude 100 m Flight speed 4 m/s
Wavelength range 400–1000 nm Spectral number 271
Spectral resolution 2.2 nm Spatial resolution 0.1 m
Lens focal length 8 mm Field of view 33◦

Bit depth 12 bits CMOS pixel size 7.4 µm

The pre-processing of the hyperspectral data mainly includes radiometric calibration,
orthorectification, and denoising, with specific information as described below. First, the
raw digital number images acquired by the hyperspectral imager were converted to radiance
data using the calibration file provided by the manufacturer (Radiance = Gain × DN + Bias).
Then, the radiance data were converted to surface reflectance data through empirical linear
modeling based on the reflectance data of the calibration panel. After radiometric calibration,
the orthorectification was realized by calculating the real ground coordinates of pixels using a
collinear equation based on the geographic position and attitude information of hyperspectral
imager and DEM data (spatial resolution of 1 m) generated from airborne LiDAR data [22].
All of the above operations were performed in the SpectralView software (Version 3.3.0.1,
Headwall Photonics Inc., Bolton, MA, USA). Finally, the hyperspectral images were smoothed
using the Savitzky–Golay filter [26] in ENVI software (Version 5.3, Exelis Visual Information
Solutions Inc., Boulder, CO, USA) to reduce the noise of the data.

2.3. Individual Tree Species Sample Set

Sub-compartment data obtained from forest resource investigation, ground survey,
and previous tree species classification results of our team [22] were used as auxiliary data
to construct the sample set for individual tree species identification, which was used to
determine the distribution information of tree species in the study area. Considering the
actual situation in the study area, four tree species (namely, Camellia oleifera Abel. (CO),
Cunninghamia lanceolata (CL), Eucalyptus spp. (EU), and Castanopsis hystrix Miq. (CH)) were
included in the individual tree species identification system, while a very small number of
other tree species, shrubs, grasses, and roads were considered as the background.

The hyperspectral images were cropped into image blocks of 512 × 512 pixel size
to meet the input data requirements of the Mask R-CNN model. With reference to the
auxiliary data, we utilized the Labelme tool (Version 4.5.6, Computer Science and Artificial
Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA) to manually
delineate the crown boundary of each tree in the images and label their species information.
The shape and location of the crown contours were expressed as two-dimensional coordi-
nates of the boundary polygons vertex by vertex. In total, 80% of the data set was randomly
selected as the training set, and the remaining 20% was the test set; the specific information
of the sample set is shown in Table 2. Because the Mask R-CNN instance segmentation
model has many parameters, a small number of training sets may cause model overfitting,
so rotating (90◦, 180◦, 270◦) and flipping (horizontal and vertical flipping) were conducted
to augment the number of training sets.

Table 2. Number of trees (plants) of all species in the sample set.

Tree Species Training Set Test Set

CO 1352 328
CL 984 251
EU 546 130
CH 573 141
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2.4. Methods
2.4.1. Individual Tree Species Identification Model

Mask R-CNN is a commonly used instance segmentation model that integrates image
target detection and semantic segmentation tasks. It can automatically acquire target
bounding boxes and pixel-level masks of multiple tree crowns in images so as to obtain
individual tree location, tree species, and crown structure information simultaneously to
achieve end-to-end individual tree species identification [18]. As shown in Figure 2, it
mainly includes a backbone network (Backbone) layer, region proposal network (RPN) layer,
RoIAlign layer, bounding box regression, classification, and mask branch. Considering the
computational efficiency and accuracy, we chose the residual network (ResNet50) combined
with the feature pyramid network (FPN) as the backbone network for extracting the deep
features of the input image. Then, a series of RoIs was generated by the RPN layer, and the
RoIAlign layer was used to convert RoIs of different sizes into feature maps of the same size.
Finally, the output of the RoIAlign layer was connected to a fully connected layer and a
fully convolutional network, where the fully connected layer outputs the classification class
and predicted bounding box of each RoI, and the fully convolutional network generates a
binary mask to achieve pixel-level segmentation.
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Figure 2. The framework of Mask R-CNN model.

The loss function in the Mask R-CNN model training process is calculated as follow:

L = Lcls + Lbox + Lmask (1)

where L denotes the total model loss, Lcls denotes the classification error loss, Lbox denotes
the bounding box regression error loss, and Lmask denotes the mask segmentation error loss.
For each RoI, the mask branch produces Km2 dimensional output, i.e., K binary masks
with m × m resolution, corresponding to K output categories, using a sigmoid function on
each image element. Lmask is defined as the mean binary cross-entropy loss, where each RoI
is associated with the ground truth category kth, and Lmask is associated only with the kth
mask and the other mask outputs do not affect the loss.

Because the original Mask R-CNN network can only input images with three channels,
hyperspectral data or multispectral data cannot be directly used as input data. Considering
that screening three bands from the hyperspectral data or reducing dimension of data into
three channels may result in the loss of hyperspectral information [27], in this study, we
adjusted the channel dimension of the filters in the first convolutional layer of the backbone
network to match the number of channels of the input data (n ∈ [3, 271]) so as to realize the
direct input of hyperspectral data.
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2.4.2. Experimental Design

Hyperspectral data contain a large number of narrow spectral bands with rich and
fine spectral information, which can be used to classify tree species with high species
diversity [28]. However, the effectiveness of hyperspectral data as input data for the
Mask R-CNN model for individual tree species identification is unclear, and it remains
to be investigated whether the rich spectral information in hyperspectral data is more
advantageous compared to RGB and multispectral images. Therefore, three experiments
were designed in this study to evaluate the applicability of RGB images and multispectral
and hyperspectral data applied to the Mask R-CNN model for individual tree species
identification (Table 3).

Table 3. Experimental design for individual tree species identification.

Experiments Data Processing Methods Data Description Number of Bands

A Spectral thinning

A1: 1/1 bands 271
A2: 1/2 bands 135
A3: 1/4 bands 67
A4: 1/8 bands 33
A5: 1/16 bands 16

B Spectral dimensionality
reduction

PCA dimensionality
reduction data 3

C Spectral simulation
C1: Blue–Green–Red 3
C2: Green–Red–NIR 3

C3: Blue–Green–Red–NIR 4

The number of bands in hyperspectral data is usually ten to hundreds, and the different
spectral information content and fineness of data with different numbers of bands may also
affect the effectiveness of the classification task. In order to evaluate the effect of spectral
information fineness on the individual tree species identification, experiment A uses data
with a different number of bands as the model input, where the 271 hyperspectral bands
are thinned according to different ratios (1/1, 1/2, 1/4, 1/8, and 1/16), and five different
spectral thinning data sets are obtained (Table 3). Among them, the 1/1 band data (A1) use
all 271 bands of hyperspectral data (full band data), the 1/2 thinning data (A2) are extracted
from the full band data at an interval of 1 band, and a total of 135 bands are obtained as
model input data; the 1/4 thinning data (A3) are extracted from the 1/2 thinning data at
an interval of 1 band, and a total of 67 bands are obtained. The 1/8 thinning data (A4) are
extracted from 1/4 thinning data with an interval of 1 band, and a total of 33 bands are
obtained; the 1/16 thinning data (A5) are extracted from the 1/8 thinning data with an
interval of 1 band, and a total of 16 bands are obtained as model input data. The thinning
processing is shown in Figure 3.

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 20 
 

 

2.4.2. Experimental Design 

Hyperspectral data contain a large number of narrow spectral bands with rich and 

fine spectral information, which can be used to classify tree species with high species di-

versity [28]. However, the effectiveness of hyperspectral data as input data for the Mask 

R-CNN model for individual tree species identification is unclear, and it remains to be 

investigated whether the rich spectral information in hyperspectral data is more advanta-

geous compared to RGB and multispectral images. Therefore, three experiments were de-

signed in this study to evaluate the applicability of RGB images and multispectral and 

hyperspectral data applied to the Mask R-CNN model for individual tree species identi-

fication (Table 3). 

Table 3. Experimental design for individual tree species identification. 

Experiments 
Data Processing 

Methods 
Data Description Number of Bands 

A Spectral thinning 

A1: 1/1 bands 271 

A2: 1/2 bands 135 

A3: 1/4 bands 67 

A4: 1/8 bands 33 

A5: 1/16 bands 16 

B 
Spectral dimension-

ality reduction 

PCA dimensionality re-

duction data 
3 

C Spectral simulation 

C1: Blue–Green–Red 3 

C2: Green–Red–NIR 3 

C3: Blue–Green–Red–NIR 4 

The number of bands in hyperspectral data is usually ten to hundreds, and the dif-

ferent spectral information content and fineness of data with different numbers of bands 

may also affect the effectiveness of the classification task. In order to evaluate the effect of 

spectral information fineness on the individual tree species identification, experiment A 

uses data with a different number of bands as the model input, where the 271 hyperspec-

tral bands are thinned according to different ratios (1/1, 1/2, 1/4, 1/8, and 1/16), and five 

different spectral thinning data sets are obtained (Table 3). Among them, the 1/1 band data 

(A1) use all 271 bands of hyperspectral data (full band data), the 1/2 thinning data (A2) 

are extracted from the full band data at an interval of 1 band, and a total of 135 bands are 

obtained as model input data; the 1/4 thinning data (A3) are extracted from the 1/2 thin-

ning data at an interval of 1 band, and a total of 67 bands are obtained. The 1/8 thinning 

data (A4) are extracted from 1/4 thinning data with an interval of 1 band, and a total of 33 

bands are obtained; the 1/16 thinning data (A5) are extracted from the 1/8 thinning data 

with an interval of 1 band, and a total of 16 bands are obtained as model input data. The 

thinning processing is shown in Figure 3. 

 

Figure 3. Schematic diagram of spectral thinning processing. Figure 3. Schematic diagram of spectral thinning processing.

Experiment B evaluates the effect of hyperspectral dimensionality reduction data on
individual tree species identification. Principal Component Analysis (PCA) is an unsuper-
vised learning method that does not require category labeling information, and it performs
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well in tree species classification tasks of hyperspectral images [29,30]. In view of this, we
selected PCA as the dimensionality reduction method for hyperspectral data. This method
uses mathematical transformation to map hyperspectral data from high-dimensional space
to low-dimensional space using a transformation matrix to achieve hyperspectral data
dimensionality reduction [31]. After PCA dimensionality reduction processing, there is
an orthogonal relationship between each principal component, which can eliminate the
correlation between the original hyperspectral bands and reduce data redundancy [32]. We
performed PCA processing using the python language and the sklearn library [33]. After
PCA processing, the first three principal components used in this study retained more than
99.8% of the hyperspectral data information according to the feature variance percentage.

Experiment C has two objectives: (1) to evaluate the performance differences of
hyperspectral data relative to multispectral data for individual tree species identification,
and (2) to seek a practical data collection scheme applicable to individual tree species
identification. The blue, green, and red (RGB) bands and the near-infrared (NIR) bands are
the most commonly used range of multispectral data in UAV remote sensing [34]. The MCA
sensor (Tetracam Inc., Chatsworth, CA, USA) is a widely used multispectral camera that
can be equipped with UAV [35,36]. We simulated its multispectral data using the Spectral
Library Resampling tool in ENVI software (Version 5.3) based on UAV hyperspectral data
and the MCA spectral response function (Figure 4). The simulated multispectral data have
four bands, which are blue (490 nm), green (550 nm), red (680 nm), and near-infrared
(900 nm), each with a bandwidth of about 25 nm. Then, the simulated data were combined
into three data sets: Blue–Green–Red, Green–Red–NIR, and Blue–Green–Red–NIR.
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Figure 4. Spectral response curve of MCA sensor.

The training parameters of the Mask R-CNN model are as follows: the batch size is 1,
the epoch is 350 times, and we set to train 100 times each epoch. The optimizer is Stochastic
Gradient Descent (SGD), and the learning rate, momentum, and weight decay are 0.0001,
0.9, and 0.0001, respectively.

All experiments were performed on Windows 10 operating system using TensorFlow
1.8.0 with the Keras 2.1.6 deep learning framework; the programming language is Python
3.6. The hardware platform is a Dell Precision T7910 (AWT7910) graphics workstation with
IntelR Xeon(R) E5-2620 v4 @2.10GHZ CPU, NVIDIA GTX 1080ti GPU, 128GB RAM, and
2TB SSD.

2.4.3. Crown Parameters Extraction

Beside tree species identification, we also obtained crown structure parameters simul-
taneously. The east–west and north–south projection lengths of the masks were calculated
to obtain the east–west crown width and the north–south crown width, and the average
of the east–west and north–south crown widths was obtained as the crown width (CW).
The crown projection area (CPA) was obtained by counting the number of pixels in each
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mask, and the relationship between the number of pixels and the crown projection area
was calculated as follows.

CPA = Pmask × S2 (2)

where CPA indicates the crown projection area, Pmask indicates the number of pixels con-
tained in the tree crown mask, and S is the spatial resolution of the remote sensing image.

2.4.4. Accuracy Evaluation

The IoU (Intersection over Union) was used to determine whether the detected crown
was correct or not [37]. The IoU value was calculated using the ground truth samples
and the prediction results (Equation (3)), and the crown was considered to be correctly
predicted if the IoU value was ≥0.5 in this study.

IoU =
Area(Ctrue ∩ Cpredicted)

Area(Ctrue ∪ Cpredicted)
(3)

where Ctrue denotes the true area of the crown and Cpredicted denotes the predicted area of
the crown.

The accuracy of the Mask R-CNN individual tree species identification model was
evaluated using Precision (P), Recall (R), and F1-score (Equations (4)–(6)), which can be
calculated from the confusion matrix [38]. P is the ratio of the number of correctly identified
individual trees to the number of identified individual trees, and R is the ratio of the
number of correctly identified individual trees to the number of individual trees in the
actual sample. F1-score is defined as the harmonic average of P and R, which is used to
combine the effects of P and R. The range of these metrics is 0~1, and the higher value
indicates the better performance of the model in identifying individual trees.

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

F1-score =
2(P× R)

P + R
(6)

where TP (True Positive) represents the number of individual trees correctly identified by the
model, FP (False Positive) represents the number of individual trees incorrectly identified,
and FN (False Negative) represents the number of individual trees not correctly identified.

To test the accuracy of the crown parameters extraction, the measured values of the
crown parameters were compared with the estimates extracted by the model, and the
RMSE (root mean square error) and rRMSE (relative RMSE) were used to evaluate the
effect of the crown parameters extraction (Equations (7) and (8)) [10].

RMSE =

√
1
n∑n

i=1 (yi − xi)
2 (7)

rRMSE =
RMSE

xi
(8)

where n is the number of individual trees, yi is the predicted crown parameter, xi is the
measured crown parameter, and xi is the mean of the measured crown parameters. Because
the model cannot completely detect all trees, we used all correctly predicted individual
trees to evaluate the accuracy of crown parameters extraction.
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3. Results
3.1. Performance of Different Spectral Thinning Data

Figure 5 shows the spectral reflectance curves of four tree species and non-tree back-
grounds (mainly shrubs and bare soil) with different hyperspectral thinning data (experi-
ments A1~A5). The full-band data have more abundant spectral information and can reflect
more subtle differences between different tree species and backgrounds than other data
(Figure 5a). As the number of hyperspectral thinning data bands decreases, the spectral
information is gradually coarsened. Among them, Eucalyptus spp. shows a high agreement
with the spectral reflectance of Castanopsis hystrix Miq. in the visible range (400–760 nm),
but it shows differences with other species in the near-infrared range (760 nm–1000 nm).
The spectral reflectance of Cunninghamia lanceolata and Castanopsis hystrix Miq. has a high
similarity between wavelengths 690 and 820 nm, and the difference in spectral reflectance
of Cunninghamia lanceolata and Castanopsis hystrix Miq. gradually decreases as the num-
ber of bands decreases. The spectral reflectance characteristics of Cunninghamia lanceolata
and Castanopsis hystrix Miq. are very similar when the thinning data have only 16 bands
(Figure 5e). The spectral reflectance of Camellia oleifera Abel. is lower than the other three
species in the wavelength range of 400–1000 nm, especially in the wavelength range of
740–1000 nm, where the spectral difference with other species is more obvious. The spectral
reflectance of the background differs considerably from that of the trees, which can perhaps
be distinguished more easily by spectral features.
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The identification accuracy of Experiment A is shown in Table 4. On the whole, the
overall accuracy of the Mask R-CNN model for individual tree species identification varies
significantly for different spectral thinning data. Experiment A1 uses all spectral informa-
tion and achieves the best individual tree species identification with an overall F1-score
of 0.802. As the number of spectral bands of the input data decreases, the accuracy of
individual tree species identification shows a gradual decreasing trend. For experiments A2,
A3, and A4, compared with experiment A1, the accuracy of the overall F1-score decreases
by 0.016 0.021 and 0.047, respectively. For experiment A5, only 16 bands are used, the
performance of individual tree species identification is relatively poor, and the overall
F1-score is only 0.598. In general, the rich spectral information of hyperspectral data has a
positive effect on individual tree identification, but the accuracy gain decreases with the
number of bands, i.e., there is a phenomenon of diminishing returns.
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Table 4. Identification accuracy of different hyperspectral processing data.

Experiments Species P R F1-Score

A1

CO 0.814 0.868 0.840
CL 0.724 0.788 0.755
EU 0.826 0.965 0.890
CH 0.774 0.677 0.722

Overall 0.785 0.825 0.802

A2

CO 0.796 0.866 0.829
CL 0.800 0.734 0.766
EU 0.775 0.919 0.840
CH 0.661 0.729 0.693

Overall 0.763 0.815 0.786

A3

CO 0.850 0.790 0.819
CL 0.772 0.715 0.742
EU 0.825 0.930 0.874
CH 0.703 0.677 0.689

Overall 0.788 0.778 0.781

A4

CO 0.773 0.836 0.803
CL 0.800 0.622 0.700
EU 0.789 0.936 0.856
CH 0.635 0.689 0.661

Overall 0.750 0.771 0.755

A5

CO 0.784 0.531 0.633
CL 0.718 0.58 0.642
EU 0.586 0.895 0.708
CH 0.676 0.294 0.410

Overall 0.691 0.575 0.598

B

CO 0.794 0.338 0.474
CL 0.700 0.705 0.702
EU 0.613 0.925 0.737
CH 0.811 0.716 0.761

Overall 0.730 0.671 0.669

The identification effect of different tree species has significant differences, with P, R,
and F1-score ranging from 0.586 to 0.850, 0.294 to 0.965, and 0.410 to 0.890, respectively
(Table 4). Among them, Eucalyptus spp. has a better result than other species, with an
F1-score ranging from 0.708 to 0.890. The average F1-score of Camellia oleifera Abel. and
Cunninghamia lanceolata are slightly lower than those of Eucalyptus spp. by 0.033 and 0.097,
respectively. Castanopsis hystrix Miq. has the worst performance, with an average F1-score
of 0.635.

We also counted the prediction results of each category using the confusion matrix
(Figure 6). In general, there are few identification errors (mixed classification) between tree
species, but there are some misclassifications between trees and backgrounds; this is what
is called false detection and misdetection. For experiments A1 to A4, the number of bands
used is relatively high, and the false detections and misdetections are about the same; the
phenomenon of species category mixing occurs mainly between Cunninghamia lanceolata
and Castanopsis hystrix Miq., while the misclassification among other species is not obvious.
In experiment A5, the 16 bands are relatively few in the data, which is not conducive
to the identification of individual tree species, so the phenomenon of individual tree
misidentification increases significantly; in addition, the phenomenon of species category
misclassification increases significantly. Some Camellia oleifera Abel. trees are misclassified
as Eucalyptus spp., and a few Castanopsis hystrix Miq. trees are misclassified as Cunninghamia
lanceolata. There are also large differences in the misidentification and misclassification of
different tree species. Few Eucalyptus spp. trees are identified as background by the model,
with R ranging from 0.895 to 0.965, and the misclassification between Camellia oleifera Abel.
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and Cunninghamia lanceolata is higher than that of other tree species, with P ranging from
0.773 to 0.850 and 0.718 to 0.800, respectively.
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3.2. Performance of PCA Dimensionality Reduction Data

The accuracy of individual tree species identification for Experiment B is shown in
Table 4. It can be seen that the overall P, overall R, and overall F1-score of individual
tree species identification with PCA dimensionality reduction data are 0.730, 0.671, and
0.669, respectively, which are reduced by 0.055, 0.154, and 0.133, respectively, compared
with the full-band hyperspectral data. This indicates that although PCA processing can
compress a large amount of information into fewer dimensions, to a certain extent, some
key information in the original hyperspectral image that is effective for individual tree
species identification may be lost, so the identification effect of experiment B is lower than
that of experiment A1 (full-band hyperspectral data).

The confusion matrix of Experiment B is shown in Figure 6f. Compared with Experiment
A1, there is a significant increase in the misidentification of forest trees as background caused
by using PCA dimensionality reduction data, and the misidentification of Camellia oleifera Abel.
is particularly significant, with an R value of only 0.338. However, the number of backgrounds
it identified as individual trees was decreased compared to the full-band data.

3.3. Performance of Simulated Multispectral Data

Table 5 shows the individual tree identification effects of three simulated multispectral
data as Mask R-CNN model data sources (Experiment C). The identification effects of
different multispectral data were significantly different. When the Green–Red–NIR data
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are used as the model input, the individual tree species identification performs better
than other combinations, and the overall F1-score reaches 0.814, which is slightly higher
than that of Experiment A1 (full-band hyperspectral data). When the band combination
is Blue–Green–Red, the individual tree species identification accuracy is the lowest, and
the overall F1-score is only 0.187. The overall F1-score of Blue–Green–Red–NIR data is
0.757, which decreases by 0.057 and increases by 0.57, compared to Green–Red–NIR data
and Blue–Green–Red data, respectively. The addition of the blue band reduces the effect
of individual tree species identification, while the NIR band improves the effect of the
individual tree species identification effect. This suggests that the blue band may be an
interfering factor and the NIR band may be a band that contributes to individual tree
species identification.

Table 5. Accuracy of individual tree species identification with different multispectral data.

Experiment Species P R F1-Score

C1

CO 0.400 0.010 0.019
CL 0.222 0.068 0.104
EU 0.500 0.838 0.626
CH 0 0 0

Overall 0.281 0.229 0.187

C2

CO 0.779 0.896 0.833
CL 0.728 0.806 0.765
EU 0.861 0.936 0.897
CH 0.821 0.706 0.759

Overall 0.797 0.836 0.814

C3

CO 0.817 0.793 0.805
CL 0.727 0.747 0.737
EU 0.712 0.942 0.811
CH 0.719 0.636 0.675

Overall 0.744 0.780 0.757

The confusion matrix of individual tree species identification for Experiment C is shown
in Figure 7. All three data sets have the phenomenon of misdetection, false detection, and
misclassification. Both the Green–Red–NIR and Blue–Green–Red–NIR data have a rela-
tively low rate of tree misidentification. However, when the input data are Blue–Green–Red,
the performance of individual tree species identification is poor, and the misdetection phe-
nomenon is more prominent for three species (Camellia oleifera Abel., Cunninghamia lanceolata,
and Castanopsis hystrix Miq.), all of which have an R close to 0. This indicates that the visible
band has a limited ability to provide effective spectral information for distinguishing other
tree species and backgrounds.

In general, the Green–Red–NIR data perform well as the input data of the model, and
they have a good ability to identify individual tree species in different forest stand densities.
Figure 8 shows the detailed results of individual tree species identification in different
typical areas. It can be seen that all individual trees have been identified with a high success
rate. Comparing Figure 8a1,b1, it can be seen that the crowns of Eucalyptus spp. are more
obvious and the identification effect is better. Figure 8b2,b3 show the predicted results
for the mixed region of Cunninghamia lanceolata and Castanopsis hystrix Miq. The crown
boundary of the two tree species is not obvious, so there is a small part of misdetection.
From Figure 8a4,b4, it can be seen that the crown of Camellia oleifera Abel. is small, densely
distributed, and closely connected between the canopies; this may be a reason for the
phenomenon of some misdetection. Due to the interference of other shrubs, Camellia oleifera
Abel. also has a small number of false detections.
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Figure 8. The results of individual tree species identification in different typical regions with Green–
Red–NIR data. (a1–a4) Ground truth; (b1–b4) Prediction results.

In addition, we predicted the individual tree species of all obtained images using
Green–Red–NIR data (Figure 9). It can be seen that the study area has typical characteristics
of southern complex plantation forests with mixed multi-species, diverse tree planting
density, and some shading phenomenon of adjacent crowns. The predicted maps show
that the crown segmentation results can reflect the true crown shape with little confusion
in the classification of different tree species, and the trees are clearly distinguished from the
backgrounds of roads and shrubs, indicating that the Mask R-CNN model and the UAV
optical image have good practicability and accuracy for individual tree scale species surveys.
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3.4. Individual Tree Crown Parameters Extraction

Using the Green–Red–NIR data as the model input (Experiment C2), we predicted
crown parameters for all correctly predicted individual trees in the study area and compared
them with the measured values. Figure 10 shows the scatter plots of the predicted and
measured values of crown area and crown width. Overall, the model is capable of extracting
parameters of individual tree crowns, with the RMSE and rRMSE of the crown area
prediction being 3.16 m2 and 0.26, respectively; the RMSE and rRMSE of crown width
prediction are 0.51 m and 0.12, respectively. The prediction errors of the two crucial
individual tree crown parameters (crown area and crown width) are both low, indicating
that the use of the Mask R-CNN model for individual tree crown parameters extraction is a
feasible approach.
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4. Discussion

In this study, we investigated the applicability of UAV hyperspectral and multispec-
tral data applied to the Mask R-CNN instance segmentation model for individual tree
species identification considering the cost of data acquisition and processing as well as the
commonly used UAV optical remote sensing bands, and we compared the individual tree
species identification effects of different spectral thinning data (Experiment A), PCA dimen-
sionality reduction data (Experiment B), and different multispectral data (Experiment C).
We found that there were significant differences in the individual tree species identification
accuracy of different data (Tables 4 and 5).

4.1. Applicability of Hyperspectral Data

In Experiment A, the accuracy of individual tree species identification shows a decreas-
ing trend as the number of bands decreases (Table 4), which can be attributed to the fact
that spectral information plays a crucial role in distinguishing trees from the background
and identifying tree species (Figure 5). The spectral reflectance characteristics of the tree
canopy and backgrounds, such as soil, differ greatly, but they are similar for different
tree species, which leads to greater difficulty in identifying tree species. The rich and fine
spectral information helps to reveal the subtle property differences between different tree
species [22], while a small number of bands tend to cause classification confusion.

Although the PCA dimensionality reduction method shows a favorable capacity for
tree species identification at the stand scale [39], it does not achieve perfect results in indi-
vidual tree species identification. We compared the data before and after PCA processing to
investigate the reasons (Figure 11). Compared with the original hyperspectral data, the tree
crown profile of the PCA dimensionality reduction data becomes less obvious (Figure 11b).
The PCA dimensionality reduction method can compress most of the information of hyper-
spectral data into the first few principal components in the spectral dimension with less
information loss [31]. However, because the PCA method uses linear transformation to
reduce the dimensionality, the obtained principal components are linear combinations of
the original data variables [40], which may disrupt the original texture patterns, e.g., gray
level differences between neighboring pixels become difficult to interpret after the transfor-
mation. In addition, the PCA dimensionality reduction method uses variance to measure
the information content of principal components, which may have some limitations [41]. In
the input data, only the first few principal components with high variance were retained;
as such, maybe some valid key information was not retained (e.g., spatial information).
Individual tree species identification also needs to emphasize the use of spatial information
(e.g., crown boundary features), compared with pixel-by-pixel image classification; this
may be a reason why PCA dimensionality reduction data are ineffective in individual tree
species identification.

4.2. Practicability of Multispectral and RGB Data

This study also verified the practicality of multispectral data with visible and near-
infrared bands for individual tree species identification. Although the Blue–Green–Red–NIR
data contain an additional blue band compared to the Green–Red–NIR data, they have
a relatively low accuracy, indicating that the blue band has a certain interference effect.
According to Figure 5, the spectral reflectance of the four tree species and the background in
the blue band (400–500 nm) are all in the range of 0.05–0.1, with similar spectral reflectance and
low distinguishability, which has a certain interference effect on the tree species classification.
Compared with the Blue–Green–Red data, the Blue–Green–Red–NIR data add one NIR
band, and they have a better identification accuracy of individual tree species. This may be
because there is a large difference between the spectral reflectance of the four species and
background in the NIR range (760–1000 nm) (Figure 5), which is important for distinguishing
tree species from other species and backgrounds [42]. In addition, this study also finds
that although Green–Red–NIR data have only three bands, their performance for individual
tree species identification is slightly better than full-band hyperspectral data. This indicates
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that the Green–Red–NIR combination is effective for individual tree species identification,
while directly using hyperspectral data may not be the best choice due to band interference
and insufficient utilization of image information. Therefore, for individual tree species
identification, selecting specific spectral combination data or appropriate sensors may be more
effective and useful than directly using all wavelength range data.
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Visible and NIR are the most commonly used spectral bands for UAV optical remote
sensing. UAV equipped with an RGB camera has been extensive applied in forestry
investigation [43] and disaster monitoring [44] due to the advantage of low cost. However,
this study shows that it has great limitations in individual tree species identification
using RGB images. On the contrary, UAV equipped with a Green–Red–NIR three-band
camera can obtain accuracy of individual tree species identification similar to that of
the hyperspectral sensor. In addition, a multispectral image typically has better data
quality than a hyperspectral image, e.g., the signal-to-noise ratio. The Green–Red–NIR
solution could perhaps achieve better identification results than simulated data in practical
applications. This can provide a reference for UAV payload selection and design in precision
forest surveys.

4.3. Influence of Stand Conditions and Tree Species Characteristics

Eucalyptus spp. has a better identification result than other species, while the perfor-
mance of other tree species is generally similar, which may be related to the characteristics of
the different species and stand conditions. Eucalyptus spp. has a regular spatial distribution
in the study area, with a certain distance between crowns and less overlap (Figure 8(a1)), so
the proportion of Eucalyptus spp. correctly identified is higher. The mixed growth of Cun-
ninghamia lanceolata and Castanopsis hystrix Miq. has a complex spatial distribution, diverse
crown morphology, obvious overlap between adjacent crowns (Figure 8(a2,a3)), and similar
spectral reflectance, resulting in misclassification of the two species. Although the spectral
reflectance of Camellia oleifera Abel. differs from that of other tree species, they are planted
densely, and their crowns are small with blurred boundaries in the image (Figure 8(a4)),
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which increases the difficulty of individual tree species identification and leads to partial
misdetection of the crown. In order to address the low accuracy of individual tree species
identification due to spectral confusion among trees, it may be helpful to use higher spatial
resolution images to synergize spatial structure and spectral information [45].

4.4. Limitations of this Study

This study also has some limitations: (1) Optical orthophotos can only reflect the
horizontal distribution information of tree crowns, but they lack vertical spatial structure
features, which may cause the delineation of crown outlines to be influenced by shrubs
and adjacent crowns [46]. LiDAR data can obtain three-dimensional spatial information of
the forest, which has the advantage of effectively distinguishing trees from low vegetation
and precisely segmenting crowns [47]. Therefore, a future study will consider synergizing
hyperspectral image with LiDAR data to fully utilize stereo–spatial and spectral information
for individual tree species identification. (2) There is mainly plantation forest in the study
area; future research will conduct experiments in natural forests with a larger area and
more complex tree species composition to further evaluate the advantages and applicability
of different types of UAV remote sensing data for forest resource investigation.

5. Conclusions

In this study, we evaluated the performance of different hyperspectral data, PCA
dimensionality reduction data, and commonly used multispectral data for Mask R-CNN
individual tree species identification models. The main conclusions are as follows: (1) The
accuracy of individual tree species identification using full-band hyperspectral data is
optimal with an overall F1-score of 0.802, which is higher than that of other thinning data.
(2) The PCA dimensionality reduction process might lose some useful information for
individual tree species identification, resulting in a relatively poor identification effect
compared with full-band hyperspectral data. (3) The Green–Red–NIR band combination is
effective input data for the Mask R-CNN model, with an overall F1-score of 0.814, which
exceeds that of full-band hyperspectral data. The Blue band is an interference band for
individual tree species identification, while the NIR band has an improvement effect. This
conclusion could provide a basis for UAV sensors payload design and selection in a precise
forest survey. (4) The Green–Red–NIR data are effective for extracting individual tree crown
parameters, with an RMSE of 3.16 m2 and 0.51 m for the crown area and crown width and
an rRMSE of 0.26 and 0.12, respectively. This study satisfies the application demand of
end-to-end individual tree species identification under complex forest environment with
high canopy density, multiple species, and irregular crown shape. It can provide technical
support for a tree species survey and forest structure parameters extraction, and it has
practical value for efficient and precise forest management and ecosystem conservation.
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