
Citation: Bao, Y.; Zhang, H.; Liu, X.;

Jiang, Y.; Tao, Y. Design of Robust

Sparse Wideband Beamformers with

Circular-Model Mismatches Based on

Reweighted `2,1 Optimization.

Remote Sens. 2023, 15, 4791. https://

doi.org/10.3390/rs15194791

Academic Editor: Esteban

Tlelo-Cuautle

Received: 20 August 2023

Revised: 24 September 2023

Accepted: 29 September 2023

Published: 30 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Technical Note

Design of Robust Sparse Wideband Beamformers with
Circular-Model Mismatches Based on Reweighted
`2,1 Optimization
Yu Bao 1,∗ , Haixiao Zhang 1, Xiaoli Liu 1, Yuhan Jiang 1 and Yu Tao 2,3

1 College of Electronic and Information Engineering, Changzhou Institute of Technology, Changzhou 213031,
China; zhanghax@czu.cn (H.Z.)

2 College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing 211100, China; taoyu@cslg.edu.cn

3 School of Electronic and Information Engineering, Changshu Institute of Technology, Suzhou 215500, China
* Correspondence: baoyu@czu.cn

Abstract: Wideband beamformers have been widely studied in wireless communication, remote
sensing and so on. Generally speaking, to improve the spatial filtering ability of beamformers, there
usually needs more sensors, which implies increased computational complexity and hardware costs.
Besides that, wideband beamformers are known to be exceedingly sensitive to sensor mismatches
in practice. Nevertheless, there is still a gap in research on the design of robust sparse wideband
beamformers. In this paper, a two-step design of this topic is proposed. Firstly, a robust design based
on the worst-case performance optimization (WCPO) using circular-model (CM) sensor mismatches is
reformulated to address shortcomings of constraint sensitivity. Secondly, inspired by the joint sparse
technology in compressive sensing theory, we focus on the sparse design of wideband beamformer.
The constraints for the response characteristics and robustness are set from first step, and an iterative
algorithm based on reweighted `2,1 optimization is adopted to achieve maximum sparsity of the
sensor array. The mainly advantages of the work are that the proposed design exhibits accordant
performance in terms of response and robustness, but few sensors compared with the counterpart
with uniform array. Moreover, we surprisingly find that the optimized sparse array is also applicable
to other design based on WCPO criterion. Simulation results are provided to verify the superior of
the proposed methods compared to the existing counterparts.

Keywords: wideband beamformers; sensor arrays; worst-case performance optimization; robustness;
sparse array

1. Introduction

Beamforming, as one of the key technologies in array signal processing, has widely ap-
plied in practice, such as wireless communication, medical imaging, radar, remote sensing,
etc. [1–12]. In wireless communication and remote sensing array signal processing fields,
wideband signals are mostly concerned and wideband beamformers based on finite impulse
response (FIR) of sensor arrays have been applied in recent years. Wideband beamformer
in general can be categorized as data-dependent beamformer or data-independent beam-
former [1]. By contrast, data-independent beamformers, also called fixed beamformers,
have benefits of low computational complexity and the offline preset beamformer weights.
Moreover, they do not require to consider the interference of desired signal coherence [13].
Accordingly, data-independent wideband beamformers provide appropriate degrees of
design freedom and related works have been extensively studied [14–18].

It is conventional that the beamforming performance can be improved by increasing
the number of sensors in a uniform linear array (ULA) [1]. Unfortunately, this leads to
more computational complexity and higher hardware costs. One desirable alternative
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is the sparse arrays, which can provide more degrees of freedom to achieve a better
beamforming performance with nonuniform array or less number of sensors in contrast to
the uniform one [19–22]. Some efforts have been made to optimize the location of sensors
for sparse array, such as Genetic Algorithm [19,20], Simulated Annealing [21], Matrix
Pencil Method [22], to reach an acceptable performance for array response. However, these
nonlinear optimizations suffer potential extended computing time and non-optimal results.
It is noticed the sparse estimation methods for direction of arrival using compressive sensing
(CS) methodology have been widely applied [23–27]. Motivated by techniques in CS fields,
several sparse array designs have been proposed in narrowband beamforming [28,29]. In
contrast to narrowband, sparse array optimizations for wideband require sparse all FIR tap
coefficients along the associated sensor, resulting in a lack of in-depth studies. Recently, a
design of wideband sparse array based on complex-valued norm minimization has been
proposed in [30], successfully achieving a frequency invariant beamformer with sparse
array. Although this work achieves sparse design and shows efficiency in reaching the
optimal solution compared to GA design, there is still a gap that whether the CS-based
method can achieve benefits in terms of hardware or computation costs compared to
conventional ULAs with same aperture size.

Another problem of interest is the robustness of sparse array. As well known, the
characteristics of sensors are usually influenced by sensor mismatches, i.e., sensor gain,
phase and location errors, which are normally inevitable in applications [13]. Conventional
wideband beamformers are sensitive to these mismatches, especially for super-directive
beamforming [15,17,18]. To combat the problem, it is necessary to design robust wideband
beamformers. The classic approaches utilize white noise gain (WNG) constraints to achieve
robustness [31]. As the WNG is not directly related to sensor errors, it is challenging to
ensure the optimal robustness [15]. Over the past decade, many efforts have been made to
improve robust designs by using some prior knowledge of sensor mismatches [13,15,32–38].
Among them, there is one type of approaches that utilizes unknown but bounded mis-
matches on sensor characteristics using the worst-case performance optimization (WCPO)
criterion. Representative designs include the second-order cone programming (SOCP)
based design approach [32], the semidefinite programming (SDP) based approach [38] and
the design using a circular-model (CM) variation to represent the sensor mismatches [36].
However, it is worth noting that, to the best of our knowledge, the research on the design
of robust sparse wideband beamformers is still left blank.

Recall that the CM-based approach adopts a two-phase design, which achieves robust
design using WCPO criterion in the first step and further improves the WNG in the second
step [36] . In this paper, we refer to the two-phase strategy of CM-based method to
fulfill the design of robust sparse wideband beamformers. To ensure a more economical
sparse beamformer than existing ULA one, there needs a wideband beamformer with
good performance and robustness as a reference. Consequently, we attempt to remedy
the problems of existing CM-based method. Although the CM-based design has been
demonstrated to be superior to SOCP-based counterpart, the performance of array response
may degrade significantly with tight stopband level constraint [38]. To address the problem,
a reformulate CM (RCM) representation of mismatches is proposed by applying the first-
order Taylor series expansion, and an efficient rectangular region of variation of sensor
errors is expressed. To proceed, we separate the cost function into the part of passband and
the part of robustness to efficiently adjust the tradeoff between beamforming passband
performance and robustness. Afterwards, we propose a two-phase robust sparse design
method. In the first phase, the improved RCM-based method with ULA is used to derive
the response performance and robustness constraints. In the second phase, an iterative
algorithm based on reweighted `2,1 optimization is made to reduce the number of sensor
elements and maintain the similar beamforming performance as the counterpart in the first
phase. Inspired by joint sparsity of the multiple measurement vectors [24–26], we divide
the aperture into dense discrete grids, and the sensor locations are assumed to lie on a gird.
As a consequence, the coefficients of a beamformer can be represented as a row-sparse
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matrix, where each row corresponds to a gird and the elements of a row are FIR taps, and
the sparsity of a row-sparse matrix can be defined as the number of nonzero rows. In order
to achieve further sparse solution, we herein introduce an iterative strategy to construct
the weighting terms for better estimation of the nonzero coefficient locations, which takes
advantage from a reweighted `1-norm minimization [27,28]. Experiment results show that
the sparse design provides less sensors than the ULA, but achieves similar beamforming
performance, filling the gap in sparse array beamforming design. Moreover, it is also
interesting noticed that the proposed optimal sparse array can be applied in different
WCPO-based robust wideband beamformers and meets the above results, which provides
an insight into the theoretical support for practical applications.

As for the rest of the paper, it is organized as follows. Section 2 describes the math-
ematical model of wideband beamformers with sensor mismatch and an introduction to
existing related methods. In Section 3, we present the proposed RCM-based design and a
sparse array design method based on reweighted `2,1 norm optimization is further derived.
Section 4 presents several simulation examples and comparison results to illustrate the
advantages of the proposed design. Section 5 concludes the paper.

2. Background
2.1. Problem Statement

Consider a filter-and-sum structured wideband beamformer with M sensors in farfield,
followed by an L-tap FIR filter for each sensor, as shown in Figure 1. Without losing
generality, the center of the array is set to the reference point. Define the coefficients of
FIR filter as wm = [wm,0, wm,1, . . . , wm,L−1]

T ∈ RL×1, where wm,l is the lth factor of the
mth sensor and (·)T represents the transpose. Therefore, the weight vector of wideband
beamformer is given by

w =
[
wT

0 , wT
1 , · · · , wT

M−1

]
∈ RML×1. (1)

As a result, the array response of the wideband beamformer with the angle ϑ at
frequency f can be expressed as

B(ϑ, f ) = wTg(ϑ; f ) (2)

where g(ϑ; f ) = h(ϑ; f )⊗ e( f ) denotes the vector of array response, ⊗ is the Kronecker
product, and we have

h(ϑ; f ) = [h0(ϑ; f ), h1(ϑ; f ), · · · , hM−1(ϑ; f )]T (3)

e( f ) =
[
1, e−j2π f / fs , · · · , e−j2π f (L−1)/ fs

]T
(4)

with fs being the sampling frequency, and j =
√
−1 in (4). The sensor transfer function

hm(ϑ, f ) in (3) is given by

hm(ϑ; f ) = exp(−j2π f dm cos ϑ/c) (5)

where dm expresses the distance between the reference point and the mth sensor, and c
represents the speed of signals. For ease of description, we also define the following vectors:

g(ϑ; f ) = [g0(ϑ; f )T , g1(ϑ; f )T , . . . , gM−1(ϑ; f )T ]T (6)

with gm(ϑ; f ) = [gm,0(ϑ; f ), gm,1(ϑ; f ), . . . , gm,L−1(ϑ; f )]T .
When existing sensor mismatches, the mth sensor characteristics can be determined by

κm(ϑ; f ) = [1 + ∆am(ϑ; f )] exp[−j∆φm(ϑ; f )] (7)
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where ∆φm(ϑ; f ) = ∆ϕm(ϑ; f ) + 2π f ∆dm cos ϑ/c, ∆am(ϑ; f ), ∆ϕm(ϑ; f ), and ∆dm refer to
the mth sensor gain, phase and location errors, respectively. According to the WCPO
criterion, ∆am(ϑ; f ), ∆ϕm(ϑ; f ) and ∆dm are assumed to be random, independent but
bounded. Specifically, assign |∆am| ≤ δa, |∆ϕm| ≤ δϕ, and |∆dm| ≤ δd , where δa, δϕ and
δd are the disturbance boundaries of sensor errors. For ease of notation, (ϑ; f ) of errors
will be omitted. As a result, the sensor transfer function with sensor mismatches can be
derived as

h̃m(ϑ; f ) = κm(ϑ; f ) exp(−j2π f dm cos ϑ/c) (8)

Thus, the array response with sensor mismatches is given by

B̂(ϑ; f ) = wT ĝ(ϑ; f ) (9)

where ĝ(ϑ; f ) = ĥ(ϑ; f )⊗ e( f ), and ĥ(ϑ; f ) =
[
h̃0(ϑ; f ), h̃1(ϑ; f ), · · · , ˜hM−1(ϑ; f )

]T

The design problem is to find an optimum weight vector w under certain design
criterion in order that the array response with mismatches B̂(ϑ; f ) excellently matches a
preset Bd(ϑ; f ), given the description of unknown but bounded sensor mismatches.

L-tap FIR  w0

L-tap FIR  w1

L-tap FIR  wM-1
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Figure 1. Configuration of wideband beamformer with filter-and-sum structure.

2.2. Existing CM-Based Design Approach

Herein, we briefly introduce a robust design approach based on a CM representation of
sensor mismatches [36]. Define ϑp, ϑs and fi are discrete points in passband, stopband and
frequency band, respectively. The optimization problem for CM-based design is derived as

min
w

max
ϑp , fi

{
|uTq(ϑp, fi)wTg(ϑp, fi)− Bd(ϑp, fi)|+ rχ

M−1

∑
m=0

∣∣∣wT
mgm(ϑp, fi)

∣∣∣} (10)

s.t. max
ϑs , fi

{
|uTq(ϑs, fi)wTg(ϑs, fi)|+ rχ

M−1

∑
m=0

∣∣∣wT
mgm(ϑs, fi)

∣∣∣} ≤ Γsb.

where u = [1, j]T for complex calculations. q(ϑ; f ) ∈ R2×1 and rχ represent the center and
the radius of the circle in the complex plane, respectively. Γsb is a parameter that controls
the stopband level and Bd(ϑp, fi) is the preset passband response.

3. Proposed Design Approaches

In this section, we firstly provide a simplified variation of sensor mismatches, and
then reformulate the cost function of the CM-based design into several parts to overcome
the shortcomings of the CM-based approach. In addition, an iterative algorithm based on
reweighted `2,1 optimization is proposed to achieve the sparsity maintaining robustness
simultaneously.
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3.1. Reformulation Approach

Consider the condition with existing minor sensor mismatches, by applying ternary
first-order Taylor series expansion to (7) at the point (∆am = 0, ∆ϕm = 0, ∆dm = 0), the mth
sensor characteristics can be approximated as [34]

κm(ϑ; f ) ' 1 + ∆am − j(∆φm). (11)

Consequently, the real and imaginary parts of κm(ϑ; f ) are respectively given by

Re{κm(ϑ; f )} = 1 + ∆am (12)

Im{κm(ϑ; f )} = −∆φm. (13)

Since all sensor errors are bounded, the variation of sensor errors can be actually bounded
to the rectangular area, which is marked in gray color in Figure 2. It can be derived from
the geometric that the center of the gray area is at (1, 0) and the lengths of the two sides
are 2δa and 2[δϕ + |2π f δd cos ϑ/c|] respectively. One key feature of the CM-based design is
to define a compact set of circle to encompass the sensor errors variation. Evidently, the
minimum-area circle is the tangent circle represented by the dashed line in Figure 2, and
the circle center is coincidentally located at (1, 0), and the radius is

r′χ =
√

δ2
a + (δϕ + |2π f δd cos ϑ/c|)2. (14)

By (14), the CM-based approach can be simplified as

min
w

max
ϑp , fi

{
|wTg(ϑp, fi)− Bd(ϑp, fi)|+ r′χ

M−1

∑
m=0

∣∣∣wT
mgm(ϑp, fi)

∣∣∣} (15)

s.t. max
ϑs , fi

{
|wTg(ϑs, fi)|+ r′χ

M−1

∑
m=0

∣∣∣wT
mgm(ϑs, fi)

∣∣∣} ≤ Γsb.

Note that the drawback of origin CM-based design is that the passband performance
is sensitive to the setting parameters, and may degrade badly if the constraints are chosen
tightly. To deal with this problem and earn the passband performance, we split the cost
function into two parts: the passband response part and the robustness part. Therefore, the
optimization problem can be further reformulated as the following expression:

min
η,w

η (16)

s.t.



∣∣wTg(ϑp, fi)− Bd(ϑp, fi)
∣∣ ≤ λ,

r′χ
M−1
∑

m=0

∣∣wT
mgm(ϑp, fi)

∣∣ ≤ η − λ,∣∣wTg(ϑs, fi)
∣∣+ r′χ

M−1
∑

m=0

∣∣wT
mgm(ϑs, fi)

∣∣ ≤ Γsb.

Through such reformulation, the passband performance and robustness of the beam-
former are independently considered and constrained, thus having the potential to better
control the trade-off between the two. This will be verified in subsequent experiments. Be-
sides, the cost function and constraints in (16) are all convex, thus the convex optimization
packages such as CVX [39] can efficiently solve (16).
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Figure 2. Exhibition for the variation of κa(ϑ; f ). The gray rectangular is the region of sensor
mismatches. The dashed circle is the tangent circle of the rectangular.

3.2. Sparse Design via Reweighted `2,1 Optimization

In general, beamformers can reach better performance by expending the number of
the sensors, resulting in an increased cost. Inspired by CS theory, the sparse design of
narrowband beamforming has been studied, the array response can fit the desired response
or an acceptable performance level with minimally sensors [28,29]. Nevertheless, different
with the narrowband, each sensor of wideband beamformers array has a FIR filter behind.
Reducing the sensor should minimize all filter weights to zero simultaneously and then the
corresponding sensor can be considered to be inactive and eliminated to fulfill the sparse
design, e.g., wm = 0 [30]. Recall the design idea of narrowband sparse array based on CS
representation, all potential locations of the sensors lie on a prescribed uniform grid of the
array aperture size, and the grid needs to be dense enough to ensure the optimum results
are close to the grid points, which reminds a large enough M. Sparse beamformers are
optimized to match the desired response by selecting as few non-zero valued weights as
possible. In the case of wideband, we continue to use the discrete grid for array aperture.
The main difficulty is how to minimize plenty of wm to zeros simultaneously. To achieve
this, we firstly introduce the l2,0 norm and l2,1 norm [26].

Suppose w ∈ RML×1 and wm are defined same as in (1) above.

Property 1. the `2,0 norm of w is given by:

‖w‖2,0 = #{m : ‖wm‖2 > 0} (17)

counts the nonzero entries of wm.

Property 2. the `2,1 norm of w is expressed as:

‖w‖2,1 =
M−1

∑
m=0
‖wm‖2 (18)

With Property 1, it is clear that the sparse design can achieve the minimization of
sensors by minimizing the `2,0 norm of w and penalize all non-zero valued wm. However,
the optimization problem using `2,0 is NP hard to solve. One of efficient methods is convex
relaxation, and the tightest convex relaxation of `2,0 norm is given by the `2,1 norm defined
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as in Property 2. Therefore, the design of minimize sensor number of wideband beamformer
problem can be derived as

min
w
‖w‖2,1 (19)

s.t.


max
ϑp , fi

{
|wTg(ϑp, fi)− Bd(ϑp, fi)|

}
≤ Γph1

pb

max
ϑs , fi

{
|wTg(ϑs, fi)|

}
≤ Γph1

sb

max
fi
‖wTΛ( fi)‖2 ≤ Γph1

G

where Λ( f ) = IM ⊗ e( f ), IM is a M-dimensional unit matrix. Γph1
pb , Γph1

sb and Γph1
G are the

resulting passband ripple, stopband attenuation and WNG of the proposed method in (16)
and given by

Γph1
pb = max

ϑp , fi

{
|wT

op1g(ϑp, fi)− Bd(ϑp, fi)|
}

, (20)

Γph1
sb = max

ϑp , fi

{
|wT

op1g(ϑs, fi)|
}

, (21)

Γph1
G = max

fi
‖wT

op1Λ( fi)‖2, (22)

and wop1 is the optimized wideband beamformer weight vector in (16).
The sparse design approach (19) is a convex relaxed problem, which leads to part of

optimized wm that can be thinned out are only closed to zeros. When the optimization
problem (19) is solved, wm should be set to zeros while ‖wm‖2 is less than a user-set
threshold, and achieves the design of wideband beamformers with sparse array. However,
this `2,1 minimization suffers that there may be plenty of directly adjacent grids, which
makes it difficult to accurately determine the active sensor locations.

To further improve the sparse results and obtain better approximation to the results
of `2,0 norm, we firstly recall the iterative reweigthed `1 norm minimization employed in
the narrowband sparse arrays [28]. Therefore, we refer to reweighting all ‖wm‖2 as large
weights used to discourage active locations and minor weights used to encourage others.
Thus, the reweighted sparse design based on `2,1 norm minimization can be expressed as

min
w

M−1

∑
m=0

a(i)m ‖w
(i)
m ‖2 (23)

s.t.


max
ϑp , fi

{
|w(i)T

g(ϑp, fi)− Bd(ϑp, fi)|
}
≤ Γph1

pb

max
ϑs , fi

{
|w(i)T

g(ϑs, fi)|
}
≤ Γph1

sb

max
fi
‖w(i)T

Λ( fi)‖2 ≤ Γph1
G

where
a(i)m =

(
‖w(i−1)

m ‖2 + ε
)−1

(24)

is the reweighting term and i is the iteration index. The parameter ε is a constant that pro-
vides stability and ensures the zero-valued components not strictly prohibiting a nonzero
estimate at the next iteration. Apparently, in each iteration a(i)m becomes large with small
non-zero or nearly-zero valued coefficients, which would keep the coefficients closed to
zeros in the next step, and turns out to small with large coefficients. Therefore, the problem
penalizes all non-zero valued coefficients uniformly, leading to a better approximation to
`2,0 norm minimization. Specifically, if we set i = 0 and am = 1 for m = 0, 1, . . . , M− 1, and
run iteration only once, the optimization problem (23) can be simplified to the one (19).
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It is worth noting that although the amounts of coefficients in optimized w after the
iteration are extremely close to zero but not equal to zero. We need to choose an appropriate
threshold value, i.e., ρ, to zero these small values. In addition, the termination condition
can be set for a specific number of iterations or expected sparse array sensors, depending on
design requirements. On the whole, the flow diagram of iterative algorithm that alternates
between estimating non-zero beamforming weights and redefining the reweighting terms
is shown in Figure 3. The specific input and initial parameters and steps are also provided
in Algorithm 1 as follows

Algorithm 1 The Iterative Reweighted Algorithm based on `2,1 norm minimization

Input: Initial weight vector: The optimized results w(0) by (19); The resulting solution
in (16): Γph1

pb , Γph1
sb and Γph1

G ; Maximum iterations: id; Number of sensors used in (16):
MULA; Threshold value: ρ

Output: optimal w(i)

1: initial i = 1;
2: repeat
3: Calculate a(i)m by (24);
4: Solve the reweighted `2,1 norm minimization (23);
5: i = i + 1;
6: until i = id or active number of sensors Ms<MULA;
7: Set w(i)

m = 0 when ‖w(i)
m ‖ ≤ ρ.

Start

Input and Initial 

Calculate         by (24)

Solve optimization problem 

(23)

( )i

m
a

1i i= +

or

Output: 

d
i i= s ULA

M M< No

i
w

Yes

End

( ) ( )Set  wheni i

m m
r£=w w0

Figure 3. The flow diagram of the reweighted sparse design based on `2,1 norm minimization.

As mentioned above, the convex minimization (19) and (23) can be optimized by the
CVX package as well.
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4. Numerical Results

In this section, we show several design examples to elucidate the performance of
the proposed RCM-based and Reweighted `2,1-based design approaches. For ease of
comparison with design approaches, we first introduce some performance measures.

For the passband performance, the maximum change in the array response magnitude
of called Passband Ripple is defined as

σp = 20 log10


max
ϑp , fi

∣∣B(ϑp, fi)
∣∣

min
ϑp , fi

∣∣B(ϑp, fi)
∣∣
. (25)

Moreover, beamformers with passband frequency invariance are usually provided
to maintain the undistorted passband signals. To study this performance, the Passband
Invariance Factor (PIF) is given by [18]

PIF = 10 log10


1
K ∑K

k=1∑
Np
n=1

[∣∣∣B(ϑ(n)
p , f (k))

∣∣∣−M(ϑ
(n)
p )
]2

∑
Np
n=1M2(ϑ

(n)
p )

 (26)

where

M(ϑ
(n)
p ) =

1
K

K

∑
k=1

∣∣∣B(ϑ(n)
p , f (k))

∣∣∣ (27)

It is noted that a larger PIF implies worse frequency-invariant characteristic.
For the stopband performance, the maximum value of the array response magnitude

named as Stopband Level is given by

σs = 20 log10


max
ϑp , fi

∣∣B(ϑp, fi)
∣∣

max
ϑs , fi
|B(ϑs, fi)|

. (28)

For the robustness of the beamformes, we take sensor mismatches into account and
define worst passband ripple (WPR) and worst stopband attenuation (WSA) respectively as

σ
(wc)
p = max

n=1,··· ,N
20 log10


max
ϑp , fi

∣∣B̂(ϑp, fi)
∣∣

min
ϑp , fi

∣∣B̂(ϑp, fi)
∣∣
 (29)

σ
(wc)
s = min

n=1,··· ,N
20 log10


max
ϑp , fi

∣∣B̂(ϑp, fi)
∣∣

max
ϑs , fi

∣∣B̂(ϑs, fi)
∣∣
 (30)

where B̂(ϑp, fi) and B̂(ϑs, fi) are the actual passband response and stopband response at
the nth test. In the following examples, each results is obtained from N = 100 tests.

In the simulations, a ULA with M = 7 is considered, and the inter-element distance
dm = 4 cm, which means the array aperture is 0.24 m. Set the FIR tap length L = 20,
and the frequency band [1500, 3500] Hz. fs is set to 8000 Hz, and the speed of signal is
specified as sound in air, i.e., c = 340 m/s. The passband and stopband range are chosen
as [80◦–100◦] and [0◦–60◦] ∪ [120◦–180◦], respectively. The desired Bd(ϑ; f ) is prescribed
as exp{−j2π f (L− 1) f−1

s /2}, conforming to group-delay. The sensor gain, phase, and
location errors are supposed to follow uniform distribution in [−0.05, 0.05], [−5◦, 5◦], and
[−0.001, 0.001] m, respectively. The beampatterns presented in this study are obtained by
averaging the results of 100 Monte Carlo trials, each involving random samples of sensor
mismatches. In order to facilitate comparison, the beamformer weights are normalized such



Remote Sens. 2023, 15, 4791 10 of 15

that the maximum of the mean array response is equal to unity. The wildly used convex
optimization package CVX [39] is employed to solve the associated design problems.

4.1. Example 1 and 2

In this subsection, we compare the CM-based and the proposed RCM-based design
in Section 3.1. In the first example, we set the parament of stopband level Γsb = −6 dB,
and the beampatterns of the wideband beamformers designed by the two approaches are
shown in Figure 4a,b. The second example shows the resultants with a tighter stopband
level constraint of Γsb = −13 dB, and the beampatterns are shown in Figure 5a,b. The
numerical results on the WPR and WSA for Example 1 and 2 are shown in Table 1.

As reported in [38], the problem of the CM-based design is that it is sensitive to
stopband level constraint Γsb. If the stopband level constraint is chosen tightly, i.e., −13 dB,
the passaband performance of the CM-based design degrades badly. This is once again
proven through Figures 4a and 5a. The WPR deteriorates from 1.5541 dB to 5.8838 dB,
which causes unnecessary distortion of the desired directional signal. In comparison, the
proposed RCM-based method only changes the WPR from 1.5193 dB to 1.7423 dB, which
can still be considered to maintain comparable passband performance and achieve better
stopband attenuation. As a result, compared with the CM-based design, the proposed
RCM-based design can provide better beamforming performance under different stopband
constraints, demonstrating its great robustness performance.
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Figure 4. Beampatterns for the ULA, where Γsb=−6 dB. The resultant plots are drawn across
20 uniformly sampled frequencies within [1500, 3500] Hz. (a) The CM design. (b) The proposed
RCM design.
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Figure 5. Beampatterns for the ULA, where Γsb=−13 dB. The resultant plots are drawn across
20 uniformly sampled frequencies within [1500, 3500] Hz. (a) The CM design. (b) The proposed
RCM design.
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Table 1. Numerical Results of Design for Examples 1 and 2

Approaches Γsb = −6 dB Γsb = −13 dB
σ
(wc)
p (dB) σ

(wc)
s (dB) σ

(wc)
p (dB) σ

(wc)
s (dB)

CM 1.5541 7.7327 5.8838 13.2296
Proposed RCM 1.5193 7.6838 1.7423 10.7635

4.2. Example 3 and 4

In this subsection, we consider the sparse array design proposed in (19) and (23).
Remind that the purpose of sparse arrays is to achieve an approximate or even better
beampapttern performance with fewer sensors using the same array aperture as these
ULAs. To do so, we set 101 grid for potential sensor locations uniformly spread over
an aperture of 0.24 cm, which is just same as the one in Example 1. Γph1

pb , Γph1
sb and Γph1

G
are calculated from the solution to the optimal weighting w based on the reformulated
convex design in Example 1 due to (20)–(22), and we have Γph1

pb = 0.047, Γph1
sb = 0.41 and

Γph1
G = 0.39, respectively. The parament ε = 9× 10−5 and the threshold value below which

sensor grids will be considered inactive is set to ρ = 10−7.
The third example explores the impact of the number of iteration on sparsity for the

robust design (23), and the number of iteration i are set to 1, 4, and 8, respectively. In
Figure 6, the nonzero ‖wm‖2 after setting the coefficients below the threshold to zeros
are illustrated along the x-axis labeled as all positions of potential sensor elements. It
can be seen that the `2,1 sparse design with no iteration obtains the same size as the
ULA, i.e., [−0.12, 0.12] m, but the remaining elements are around [−0.574, 0, 0.574] m,
which leads to the problem that several grids remained directly adjacent, which is nearly
impossible to implement these sensors in practice. Subsequently, the reweighted `2,1
optimization with iterations can further sparse the array with sensor accurately located at
[−0.12,−0.0648, 0, 0.0648, 0.12] m respectively, overcoming the problem of adjacent girds
and earn less sensor elements than the uniformly linear array.
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Figure 6. The locations of nonzero ‖wm‖2 along the horizontal axis.

To better understand the performance difference in the above designs, the beampat-
terns of different iterations and threshold value are shown in Figures 7 and 8, and parameter
values are summarized in Table 2. Recall that the `2,1 design has to discard coefficients
below the set threshold. Hence, we also give the beampattern with large threshold value
of non-iteration `2,1 design in Figure 7. When choosing a larger threshold value, the main
difference is that extra elements will be rounded off, especially around [−0.574, 0, 0.574] m,
as shown in Figure 6. And the number of remaining elements is the same as the result of
multiple iterations, which is five. The large threshold value indeed spares more grids, but
this method of obtaining sparsity suffers a poor passband performance of beampattern
shown in Figure 8a. Results in Table 2 further confirm that the passband ripple decreases
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from 1.0436 to 1.7262 dB and the stopband level decreases from 9.1358 to 7.8791 dB for ρ
changed from = 10−7 to 0.01. Moreover, the robustness characteristic also has degraded for
the large threshold in terms of WPR and worst-case stopband level in Table 2. Simulation
results indicate that it is inappropriate for eliminating more array elements by choosing
a larger threshold value,which leads to a decrease in the performance of the beampatten.
On the other hand, it is also noticed that the `2,1 designs with i = 4 and i = 8 show
identical results on all compared results, simultaneously exhibiting optimal robustness and
frequency invariant performance. This indicates that the proposed sparse design method
can achieve stable optimization results with only a few iterations, and has efficient sparse
beamforming performance.
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Figure 7. Beampatterns for the `2,1 optimization, where iteration i = 1. The beampattern plots are
obtained across 20 uniformly sampled frequencies within the frequency band [1500, 3500] Hz. (a) The
threshold value ρ = 10−7. (b) The threshold value ρ = 0.01.
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Figure 8. Beampatterns for the `2,1 optimization, where threshold vale ρ = 10−7. The beampattern
plots are obtained across 20 uniformly sampled frequencies within the frequency band [1500, 3500] Hz.
(a) The iteration value i = 4. (b) The iteration value i = 8.

Furthermore, it is curious whether the sparse array can be used for different design
methods. Thus in the fourth example we choose the proposed RCM-based method, existing
second-order cone programming (SOCP) based [32] and semidefinite programming (SDP)
based approaches [38] to design beamformers using optimized five-element sparse array
obtained from `2,1 design with i = 4 in Example 3. The simulation data of robust broadband
beamformers using various design methods with proposed five-element sparse array and
seven-element ULA are recorded in Table 3. It can be seen that the WPR of all three design
approaches for sparse array are slightly larger than those for ULA, while the WSA are
somewhat better. Comparing the PIFs, the beamformers of the same design method have
nearly the same frequency invariant properties under the two design conditions of the
sensor array. Therefore, compared to scenarios using seven-element ULA under similar
conditions, the proposed five-element sparse array can be applied to different WCPO
design method, providing appropriate passband performance and robustness.
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Table 4 shows the CPU time for the design of various beamformers, where each
result is an average of twenty trials. Computations were performed on a computer with an
Intel Core i7-9750H processor at 2.60 GHz and 32 GB RAM and have been implemented
in Matlab R2015b. It can be found that using fewer sensors can significantly reduce the
computational time in the design process of robust wideband beamformers. Based on the
above discussion and analysis, the sparse design proposed in this paper can significantly
reduce computational complexity and also have the advantage of reducing hardware costs
in practical applications, while ensuring good passband performance and robustness of the
designed broadband beamformers.

Table 2. Numerical Results of Design for Example 3.

Approaches σp (dB) σs (dB) σ
(wc)
p (dB) σ

(wc)
s (dB) PIF (dB)

Proposed RCM 1.0202 9.0632 1.5193 7.6838 −34.9116
`2,1 design with

i = 1 and ρ = 10−7 1.0436 9.1358 1.5194 8.0592 −33.3758

`2,1 design with
i = 1 and ρ = 0.01 1.7262 7.8791 2.3956 6.9615 −30.0297

`2,1 design with
i = 4 and ρ = 10−7 0.8171 8.1433 1.3793 7.4694 −34.6292

`2,1 design with
i = 8 and ρ = 10−7 0.8171 8.1433 1.3793 7.4694 −34.6292

Table 3. Numerical Results of Design for Example4.

Approaches
5-Element Sparse Array 7-Element ULA

σ
(wc)
p (dB) σ

(wc)
s (dB) PIF (dB) σ

(wc)
p (dB) σ

(wc)
s (dB) PIF (dB)

SOCP 2.6462 9.2248 −28.3147 2.6045 9.0276 −28.9776
SDP 1.5315 8.4879 −35.9086 1.4900 8.3515 −34.6050

Proposed RCM 1.5332 8.4835 −35.5277 1.5193 7.6838 −34.9116

Table 4. CPU time of the Design Approaches for Example 4.

Approaches
CPU Time(s)

5-Element Sparse Array 7-Element ULA

SOCP 11.46 21.36
SDP 68.16 167.08

Proposed RCM 27.95 82.25

5. Conclusions

In this paper, we have proposed a robust sparse design approach that utilizes reweighted
l2,1 norm optimization using CM-based criterion. The significance of this method is to use
sparse, i.e., fewer array elements, to achieve the same beamforming results as a ULA. To
achieve this, a broadband beamformer with stable passband performance and robustness
is required as an initial. Therefore, a optimal problem of CM-based design is firstly refor-
mulated to enhance the tradeoff between beamforming performance and robustness, by
separating passband respond performance from origin cost function. This reformulation
allows for improved adaptability to different settings of the stopband level constraints.
Furthermore, a l2,1 norm optimization is proposed, aiming to simultaneously minimize all
coefficients of the mth L-tap FIR filter for reducing the number of sensors on the predeter-
mined grids. However, it has been observed that this results in the presence of multiple
adjacent sensor locations, posing challenges in the selection of active sensors. While adopt-
ing a lenient threshold can address this issue, it may adversely affect the beamforming
performance. Consequently, an iterative process with a reweighting l2,1 term is introduced.
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The proposed sparse design based on reweighting l2,1 optimization can further improve the
sparsity of sensor locations and fulfill the comparative results with fewer sensors compared
to a ULA design. Meanwhile, simulation results have surprisingly shown that the opti-
mized sparse array can be applied to various WCPO-based design methods and achieve
similar results as above.

Author Contributions: Conceptualization, Y.B.; software, Y.B. and X.L.; validation, H.Z. and Y.J.; formal
analysis, Y.B., H.Z. and Y.J.; resources, X.L.; writing—original draft preparation, Y.B.; writing—review
and editing, Y.B. and Y.T.; project administration, Y.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No. 62001060), the Qing Lan Project of Jiangsu Province, the Natural Science Fundation of the Jiangsu
Higher Education Institutions of China (Grant No. 23KJD140001) and Changzhou Sci&Tech Program
(Grant No. CJ20220256), Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing
University of Aeronautics and Astronautics), Ministry of Education (Grant No. NJ20220008).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to follow-up studies are being further
conducted.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Benesty, J.; Chen, J.; Huang, Y. Microphone Array Signal Processing; Springer: Berlin/Heidelberg, Germany, 2008.
2. Cai, L.; Chu, R.; Ding, Z.; Zou, Y.; Li, H. Robust Low-Sidelobe Transmit Beamforming under Peak-to-Average-Power Ratio

Constraint. Sensors 2023, 23, 4468. [CrossRef] [PubMed]
3. Wang, X.; Guo, Y.; Wen, F.; He, J.; Truong, K.T. EMVS-MIMO radar with sparse Rx geometry: Tensor modeling and 2D direction

finding. IEEE Trans. Aerosp. Electron. Syst. 2023, in press. [CrossRef]
4. Han, B.; Qu, X.; Yang, X.; Zhang, Z.; Li, W. DRFM Repeater Jamming Suppression Method Based on Joint Range-Angle Sparse

Recovery and Beamforming for Distributed Array Radar. Remote Sens. 2023, 15, 3449. [CrossRef]
5. Zhang, Y.; Wang, G.; Peng, S.; Leng, Y.; Yu, G.; Wang, B. Near-Field Beamforming Algorithms for UAVs. Sensors 2023, 23, 6172.

[CrossRef]
6. Yan, J.; Pu, W.; Zhou, S.; Liu, H.; Greco, M.S. Optimal Resource Allocation for Asynchronous Multiple Targets Tracking in

Heterogeneous Radar Network. IEEE Trans. Signal Process. 2020, 68, 4055–4068. [CrossRef]
7. Wen, F.; Gui, G.; Gacanin, H. Compressive sampling framework for 2D-DOA and polarization estimation in mmWave polarized

massive MIMO systems. IEEE Trans. Wirel. Commun. 2023, 22, 3071–3083. [CrossRef]
8. Zhang, Z.; Wen, F.; Shi, J. 2D-DOA estimation for coherent signals via a polarized uniform rectangular array. IEEE Signal Process.

Letters. 2023, 30, 893–897. [CrossRef]
9. Yan, J.; Jiao, H.; Pu, W. Radar Sensor Network Resource Allocation for Fused Target Tracking: A Brief Review. Inf. Fusion 2022, 86,

104–115. [CrossRef]
10. Li, Z.; Peng, C.; Tan, W.; Li, L. An Efficient Plaintext-Related Chaotic Image Encryption Scheme Based on Compressive Sensing.

Sensors 2021, 21, 758. [CrossRef]
11. Wen, F.; Shi, J.; Gui, G. 3D Positioning method for anonymous UAV based on bistatic polarized MIMO radar. IEEE Internet Things

J. 2023, 10, 815–827. [CrossRef]
12. Yan, J.; Pu, W.; Zhou, S.; Liu, H.; Zheng, B. Collaborative detection and power allocation framework for target tracking in multiple

radar system. Inf. Fusion 2020, 55, 173–183. [CrossRef]
13. Doclo, S.; Moonen, M. Design of broadband beamformers robust against gain and phase errors in the microphone array

characteristics. IEEE Trans. Signal Process. 2003, 51, 2511–2526. [CrossRef]
14. Nordholm, S.E.; Rehbock, V.; Teo, V.; Nordebo, V. Chebyshev optimization for the design of broadband beamformers in the near

field. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 1998, 45,141–143. [CrossRef]
15. Doclo, S.; Moonen, M. Superdirective beamforming robust against microphone mismatch. IEEE Trans. Audio Speech Lang. Process.

2007, 15, 617–631. [CrossRef]
16. Nongpiur, R.C.; Shpak, D.J. L-infinity norm design of linear-phase robust broadband beamformers using constrained optimization.

IEEE Trans. Signal Process. 2013, 61, 6034–6046. [CrossRef]
17. Berkun, R.; Cohen, I.; Benesty, J. Combined beamformers for robust broadband regularized superdirective beamforming.

IEEE/ACM Trans. Audio Speech Lang. Process. 2015, 23, 877–886. [CrossRef]
18. Chao, P.; Chen, J.; Benesty, J. Reduced-order robust superdirective beamforming with uniform linear microphone arrays.

IEEE/ACM Trans. Audio Speech Lang. Process. 2016, 24, 1544–1555.
19. Haupt, R.L. Thinned arrays using genetic algorithms. IEEE Trans. Antennas Propag. 1994, 42, 993–999. [CrossRef]

http://doi.org/10.3390/s23094468
http://www.ncbi.nlm.nih.gov/pubmed/37177674
http://dx.doi.org/10.1109/TAES.2023.3297570
http://dx.doi.org/10.3390/rs15133449
http://dx.doi.org/10.3390/s23136172
http://dx.doi.org/10.1109/TSP.2020.3007313
http://dx.doi.org/10.1109/TWC.2022.3215965
http://dx.doi.org/10.1109/LSP.2023.3296038
http://dx.doi.org/10.1016/j.inffus.2022.06.009
http://dx.doi.org/10.3390/s21030758
http://dx.doi.org/10.1109/JIOT.2022.3204267
http://dx.doi.org/10.1016/j.inffus.2019.08.010
http://dx.doi.org/10.1109/TSP.2003.816885
http://dx.doi.org/10.1109/82.659466
http://dx.doi.org/10.1109/TASL.2006.881676
http://dx.doi.org/10.1109/TSP.2013.2283463
http://dx.doi.org/10.1109/TASLP.2015.2410139
http://dx.doi.org/10.1109/8.299602


Remote Sens. 2023, 15, 4791 15 of 15

20. Li, Z.; Yiu, K.F.C.; Feng, Z. A hybrid descentmethod with genetic algorithmfor microphone array placement design. Appl. Soft
Comput. 2013, 13, 1486–1490. [CrossRef]

21. Crocco, M.; Trucco, A. Stochastic and Analytic Optimization of Sparse Aperiodic Arrays and Broadband Beamformers With
Robust Superdirective Patterns. IEEE Trans. Audio Speech Lang. Process. 2012, 20, 2433–2447. [CrossRef]

22. Shen, H.; Wang, B. Two-dimensional unitary matrix pencil method for synthesizing sparse planar arrays. Digit. Signal Process.
2018, 73, 40–46. [CrossRef]

23. Donoho, D.L.; Elad, M. Optimally sparse representation in general (nonorthogonal) dictionaries via `1 minimization. Proc. Natl.
Acad. Sci. USA 2003, 100, 2197–2202. [CrossRef]

24. Davies, M.E.; Eldar, Y.C. Rank awareness in joint sparse recovery. IEEE Trans. Inf. Theory 2012, 58, 1135–1146. [CrossRef]
25. Fornasier, M.; Rauhut, H. Recovery algorithms for vector-valued data with joint sparsity constraints. SIAM J. Numer. Anal. 2008,

46, 577–613. [CrossRef]
26. Eldar, Y.; Rauhut, H. Average case analysis of multichannel sparse recovery using convex relaxation. IEEE Trans. Inf. Theory 2010,

56, 505–519. [CrossRef]
27. Candes, E.J.; Wakin, M.B.; Boyd, S.P. Enhancing Sparsity by Reweighted `1 Minimization. J. Fourier. Anal. Appl. 2008, 14, 877–905.

[CrossRef]
28. Fuchs, B. Synthesis of sparse arrays with focused or shaped beampattern via sequential convex optimizations. IEEE Trans.

Antennas Propag. 2012, 60, 3499–3503. [CrossRef]
29. Prisco, G.; D’Urso, M. Maximally sparse arrays via sequential convex optimizations. IEEE Antennas Wirel. Propag. Lett. 2012, 11,

192–195. [CrossRef]
30. Hawes, M.B.; Liu, W. Sparse Array Design for Wideband Beamforming with Reduced Complexity in Tapped Delay-Lines.

IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 1236–1247. [CrossRef]
31. Cox, H.; Zeskind, R.; Kooij, T. Practical supergain. IEEE Trans. Acoust. Speech, Signal Process. 1986, ASSP-34, 393–398. [CrossRef]
32. Chen, H.; Ser, W.; Yu, Z.L. Optimal design of nearfield wideband beamformers robust against errors in microphone array

characteristics. IEEE Trans. Circuits Syst. I Reg. Pap. 2007, 54, 1950–1959. [CrossRef]
33. Chen, H.; Ser, W.; Zhou, J. Robust nearfield wideband beamformer design using worst case mean performance optimization with

passband response variance constraint. IEEE Trans. Audio Speech Lang. Process. 2012, 20, 1565–1572. [CrossRef]
34. Bao, Y.; Chen, H. A Chance-Constrained Programming Approach to the Design of Robust Broadband Beamformers With

Microphone Mismatches.IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 26, 2475–2488. [CrossRef]
35. Dam, H.H.; Nordholm, S. Design of Robust Broadband Beamformers With Discrete Coefficients and Least Squared Criterion.

IEEE Trans. Circuits Syst. II Exp. Briefs 2013, 60, 897–901. [CrossRef]
36. Nongpiur, R.C. Design of minimax broadband beamformers that are robust to microphone gain, phase, and position errors.

IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 1013–1022. [CrossRef]
37. Crocco, M.; Trucco, A. A computationally efficient procedure for the design of robust broadband beamformers. IEEE Trans. Signal

Process. 2010, 58, 5420–5424. [CrossRef]
38. Bao, Y.; Chen, H. Design of robust broadband beamformers using worst-case performance optimization: A semidefinite

programming approach. IEEE/ACM Trans. Audio Speech Lang. Process. 2017, 25, 895–907. [CrossRef]
39. Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.2 Beta. 2020. Available online:

http://cvxr.com/cvx (accessed on 1 January 2020).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.asoc.2012.02.027
http://dx.doi.org/10.1109/TASL.2012.2203808
http://dx.doi.org/10.1016/j.dsp.2017.10.019
http://dx.doi.org/10.1073/pnas.0437847100
http://dx.doi.org/10.1109/TIT.2011.2173722
http://dx.doi.org/10.1137/0606668909
http://dx.doi.org/10.1109/TIT.2009.2034789
http://dx.doi.org/10.1007/s00041-008-9045-x
http://dx.doi.org/10.1109/TAP.2012.2196951
http://dx.doi.org/10.1109/LAWP.2012.2186626
http://dx.doi.org/10.1109/TASLP.2014.2327298
http://dx.doi.org/10.1109/TASSP.1986.1164847
http://dx.doi.org/10.1109/TCSI.2007.904667
http://dx.doi.org/10.1109/TASL.2012.2184754
http://dx.doi.org/10.1109/TASLP.2018.2868416
http://dx.doi.org/10.1109/TCSII.2013.2285971
http://dx.doi.org/10.1109/TASLP.2014.2315044
http://dx.doi.org/10.1109/TSP.2010.2053710
http://dx.doi.org/10.1109/TASLP.2017.2674968
http://cvxr.com/cvx

	Introduction
	Background
	Problem Statement
	Existing CM-Based Design Approach

	Proposed Design Approaches
	Reformulation Approach
	Sparse Design via Reweighted 2,1 Optimization

	Numerical Results
	Example 1 and 2
	Example 3 and 4

	Conclusions
	References

