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Abstract: The 2013 heavy rainfall event (from June to July) in the Tianshui area triggered the most
serious rainfall-induced group-occurring landslides since 1984, causing extensive casualties and
economic losses. To better understand the characteristics and triggers of these loess landslides, we
conducted a detailed analysis of the landslides and relevant influencing factors. Based on the detailed
rainfall-induced landslide database obtained using visual interpretation of remote sensing images
before and after rainfall, the correlation between the landslide occurrence and different influencing
factors such as terrain, geomorphology, geology, and rainfall condition was analyzed. This rainfall
event triggered approximately 54,000 landslides with a total area of 67.9 km2, mainly consisting
of shallow loess landslides with elongated type, shallow rockslides, collapses, and mudflows. The
landslides exhibited a clustered distribution, with the majority concentrated in two specific areas
(i.e., Niangniangba and Shetang). The abundance index of landslides was closely associated with the
hillslope gradient, total rainfall, and drainage (river) density. The landslide area density (LAD) was
positively correlated with these influential factors, characterized by either an exponential or a linear
relationship. The Middle Devonian Shujiaba formation (D2S) was identified to be highly susceptible
to landslides, and the landslide events therein accounted for 35% of the total landslide occurrences
within 22% of the study area. In addition, the E-SE aspect was more prone to landslides, while the
W-NW aspect exhibited a low abundance of landslides.

Keywords: landslides; 2013 strong rainfall event; Tianshui area; spatial distribution; topographic
locations

1. Introduction

Loesses are predominantly observed in arid and semi-arid regions, and they are a
result of the accumulation of fine sand and clay particles transported by wind. Covering
approximately 6.6% of China’s total area, loess deposits span about 640,000 km2, with
the majority concentrated in the northwest region [1]. Due to the distinct topographic
and geomorphological features, as well as engineering properties such as low mechanical
strength, the presence of macro-pores, and susceptibility to collapse [2,3], loess landslides
are considered to be the most prevalent and serious geological hazard in loess areas. Rainfall
is widely acknowledged as a crucial triggering factor for loess landslides. Moreover, the
uneven distribution of precipitation in the loess regions, coupled with frequent short-term
rainstorms, often gives rise to concentrated and clustered occurrence of rainfall-induced
landslides [4,5].

Remote Sens. 2023, 15, 4304. https://doi.org/10.3390/rs15174304 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15174304
https://doi.org/10.3390/rs15174304
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3956-4925
https://orcid.org/0000-0001-7342-2210
https://doi.org/10.3390/rs15174304
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15174304?type=check_update&version=1


Remote Sens. 2023, 15, 4304 2 of 22

An event-based landslide inventory refers to a newly generated inventory that cap-
tures landslides occurring after a significant triggering event, such as an earthquake, a
volcanic eruption, or a heavy rainfall event. A detailed and objective landslide inventory is
necessary for the regional analysis of landslides triggered by a single extreme event. Fur-
thermore, the data serve as a crucial foundation for subsequent investigations on the spatial
distribution characteristics [6,7], susceptibility and hazard assessment [8–10], formation
mechanisms [11,12], and geomorphological evolution of the relevant landslides [13,14].
In recent years, advancements in RS and GIS technology have led to the development of
high-quality earthquake-induced landslide databases [15,16]. Guzzetti et al. [17] provided
a comprehensive overview of landslide investigation methods, classifying them into two
categories: (1) traditional methods involving geomorphology, on-site surveys, and visual
interpretation of aerial photographs; (2) the utilization of airborne LiDAR, as well as auto-
mated and semi-automatic techniques for landslide identification in high-precision satellite
imagery. Due to the substantial economic and time costs of traditional field investiga-
tion methods, utilizing high-resolution optical images in conjunction with semi-automatic
and automatic recognition techniques has gradually become popular. Nonetheless, the
interpretation accuracy of most of the automated and semi-automatic methods are low,
preventing them from achieving dependable recognition precision for landslides triggered
by single events. For instance, these approaches cannot accurately demarcate individual
landslide boundaries and may even erroneously group multiple landslides as a single
event [18,19]. Therefore, the utilization of high-resolution, multi-temporal remote-sensing
images, combined with the Google Earth (GE) software, has gained widespread traction for
providing a stereoscopic 3D visualization of landslides [20,21]. The successful application
of this method in various natural disaster cases and the satisfactory results have further
demonstrated its reliability.

Significant progress has been made in constructing earthquake-induced landslide
databases, particularly following the 2008 Wenchuan earthquake. Several recent studies
indicated that there are 57 publicly available digital landslide catalogs worldwide, of which
around 46 provide detailed inventories of coseismic landslides by using polygons to delin-
eate landslide boundaries [16,22,23]. These databases offer vital data for understanding
the formation mechanisms and distribution patterns of landslides triggered by individual
earthquakes, as well as for evaluating landslide susceptibility and hazard risk in affected
areas. Noteworthy examples of high-quality coseismic landslide databases established in
the past decade include the 2015 Nepal earthquake [24,25], the 2016 New Zealand earth-
quake [26,27], the 2018 Palu earthquake [11,28], and the 2022 Luding earthquake [29,30].

However, in contrast to earthquake-induced events, the establishment of landslide
inventories associated with heavy rainfall events has encountered enormous challenges,
with only a few databases available [10,31,32]. One of the primary challenges is the presence
of clouds in the affected areas, which often limits visibility in satellite images and hinders
visual interpretation of rainfall-induced landslides [31]. Currently, there are 16 publicly
available landslide inventories worldwide that document landslides triggered by heavy
rainfall events, most of which are on a small scale. Among these databases, only four
contain more than 2000 landslides, including the 6–9 August 2008 Morakot Typhoon event
in southern Taiwan [33], the heavy rainfall event in the Teresópolis region of Brazil from
11 to 13 January [32], the long-term heavy rainfall event from 28 June to 9 July 2018 in
Hiroshima region of Japan [34], and the Hurricane Maria event in the Dominica region
from 18 to 22 September 2017 [35,36]. Thus, compared to earthquake-induced landslide
databases, the establishment of landslide inventories associated with heavy rainfall events
is more urgently needed.

The 2013 continuous rainfall event in the Tianshui region lasted as long as 38 days
(from 19 to 26 July). This intense rainfall process encompasses four episodes of severe
short-term rainfall events, accompanied by prolonged periods of intermittent rainfall.
Under the influence of extreme rainfall, massive landslides occurred in the Tianshui region,
mainly including small-scale shallow loess landslides, debris flows, and mudflows [37,38].
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In addition, this event is the most serious rainfall event in the Tianshui area since 1984.
The impacted population exceeded 50,000, including 24 fatalities. Nearly 10,000 houses
were destructed, leading to an estimated direct economic loss amounting to 8.4 billion
yuan [39,40]. In recent years, some detailed investigations of the formation mechanisms,
causative factors, and mobility characteristics of typical landslides triggered by this rainfall
have been conducted. For instance, Peng et al. [41] analyzed the triggering mechanism
and movement process of the Dagou landslide-debris flow with a volume of about 1.9 ×
105 m3 in the Maiji area, Tianshui City. The results indicated that the maximum speed
of the debris flow reached 7.2 m/s, and the effective rainfall in the early stage was an
important triggering factor. With the assistance of an AI-based method, Qi et al. [42]
successfully finished the landslide susceptibility mapping and assessed the significance
of different factors influencing landslide occurrence in this specific event. Guo, Meng,
Li, Xie, Chen, and He [40] and Yu, Zhang, and Hu [39] studied the 708 landslides of
this rainfall event based on field investigations. According to their results, the landslides
were unevenly distributed and mainly occurred in groups, and the previous effective
rainfalls and instantaneous rainfalls with high intensity were the main driving factors for
landslide occurrence. However, these studies focused on large-scale landslide events or
local areas with severe disasters, and the landslide data used cannot accurately represent
the spatial distribution of rainfall-induced landslides, possibly leading to some deviations
in understanding the distribution characteristics and controlling factors of landslides in the
Tianshui region. Despite the above-mentioned studies, those regarding the distribution
characteristics, control factors, and formation process of the landslides caused by this
rainfall event are still limited.

The massive landslides triggered by heavy rainfall events in the Tianshui area from
June to July 2013 offers a precious opportunity to study the distribution pattern and
causative factors of such group-occurring landslides. Therefore, in order to better under-
stand the characteristics and triggers of landslides induced by the 2013 heavy rainfall event
in the Tianshui area, we compiled a detailed inventory of these landslides and analyzed
the data of relevant influencing factors, including terrain, geomorphology, geology, and
rainfall condition. Additionally, we discussed the impact of the previous earthquake events
on the occurrence of rainfall-induced landslides. This study is essential for understanding
the distribution characteristics and controlling factors of rainfall-induced landslides in the
Tianshui region, as well as in loess areas, and may serve as a significant practical guidance
for predicting the occurrence of rainstorm-type landslides in the loess area.

2. Study Area

The Tianshui area is one of the regions with the most frequent and severe landslides
on the Loess Plateau in China [38,42]. The study area is located at the northern edge
of the Western Qinling Mountains, with geographical coordinates ranging from 33.9◦ to
34.8◦N and 105.5◦ to 106.3◦E. The overall terrain is high in the southwest and low in the
northeast. The elevation in the study area ranges from 748 to 2600 m, with an average
of approximately 1500 m. Due to the fact that its location is at the junction of the Liupan
mountains, Mid-Gansu Loess Plateau, and the Qinling Mountains, the local geological
environment is complex. There are three major active faults in the study area, namely the
Maheyan Fault, Lixian–Luojiapu Fault, and the northern margin of the Western Qinling
fault (Figure 1). The region belongs to a semi-alpine and semi-humid climate, influenced
by the landforms. The average annual temperature is less than 8 ◦C, with July being the
hottest month with an average temperature of 22.8 ◦C, and January being the coldest month
with an average temperature of −2.0 ◦C. Furthermore, the annual average precipitation in
the region is approximately 600 to 750 mm, with June, July, and August being the months
with the highest rainfall, accounting for around 50% of the annual precipitation.
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Figure 1. Map showing the topography, water systems, tectonic settings and landslide distribution 
caused by this rainfall event of the study area; MHYF: Maheyan fault, LYF: Lixian–Luojiabao fault, 
and NWQLF is the northern edge fault of the West–Qinling fault. Small black dots represent land-
slide surface vectors. 

The strata of the study area from new to old include Quaternary (Q), Neogene (N), 
Paleogene (E), Caotangou formation of middle Carboniferous (C2), late Devonian (D3), 
Xihanshui formation of middle Devonian (D2x), Shujiaba formation of middle Devonian 
(D2s), Niutouhe group of Precambrian (PZ1), and magmatic rock (Mag). Specifically, the 
study area is dominantly covered by the Quaternary (Q), the Shujiaba formation of middle 
Devonian (D2s), and the magmatic rock (Mag), accounting for about 75% of the area. The 
Quaternary (Q) strata are mainly composed of fluvial deposits (Q4a1-p1), landslide de-
posits (Q4del), and eolian loesses (Q3eol), with fluvial deposits mainly distributed along 
river banks. The main lithology of Shujiaba formation of middle Devonian (D2s) is 
Quartzite and quartz schist, mixed with sericite quartz schist, which are mainly in the 
south and central parts of the study area. Magmatic rock is mainly composed of Biotite 
granite and medium coarse grained granite, which mostly occur as veins. Table 1 depict 
the primary strata that are exposed within the study area and their corresponding litho-
logical descriptions. 

Figure 1. Map showing the topography, water systems, tectonic settings and landslide distribution
caused by this rainfall event of the study area; MHYF: Maheyan fault, LYF: Lixian–Luojiabao fault,
and NWQLF is the northern edge fault of the West–Qinling fault. Small black dots represent landslide
surface vectors.

The strata of the study area from new to old include Quaternary (Q), Neogene (N),
Paleogene (E), Caotangou formation of middle Carboniferous (C2), late Devonian (D3),
Xihanshui formation of middle Devonian (D2x), Shujiaba formation of middle Devonian
(D2s), Niutouhe group of Precambrian (PZ1), and magmatic rock (Mag). Specifically, the
study area is dominantly covered by the Quaternary (Q), the Shujiaba formation of middle
Devonian (D2s), and the magmatic rock (Mag), accounting for about 75% of the area. The
Quaternary (Q) strata are mainly composed of fluvial deposits (Q4a1-p1), landslide deposits
(Q4del), and eolian loesses (Q3eol), with fluvial deposits mainly distributed along river
banks. The main lithology of Shujiaba formation of middle Devonian (D2s) is Quartzite and
quartz schist, mixed with sericite quartz schist, which are mainly in the south and central
parts of the study area. Magmatic rock is mainly composed of Biotite granite and medium
coarse grained granite, which mostly occur as veins. Table 1 depict the primary strata that
are exposed within the study area and their corresponding lithological descriptions.
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Table 1. Lithology description of the study area.

Stratigraphic Age Lithology Description

Quaternary (Q) Fluvial deposits (Q4a pl), landslide deposits (Q4del), and eolian loess (Q3eol)
Neogene (N) Grey clay rock, red mudstone
Eogene (E) Conglomerates, purple red sandstone conglomerates

Middle Carboniferous (C2) Gray sandstone, Siltstone and argillaceous Siltstone
Late Devonian (D3) Slate interbedded with conglomerate and purple red sandstone

Middle Devonian (D2x) Slate or phyllite, sandstone, siltstone
Middle Devonian (D2s) Quartzite and quartz schist, mixed with sericite quartz schist

Precambrian (Pz) Biotite schist, Biotite Gneiss and Biotite plagioclase gneiss interbedded with
Quartzite and marble

Magmatic rocks (mag) Biotite granite, medium coarse grained granite, etc.

3. Data and Methods
3.1. Rainfall Data

We collected the precipitation data in the Tianshui area from 2000 to 2020. The
statistical results indicated that the overall average rainfall in the entire Tianshui area was
in the range of 600–750 mm over the past twenty years, but there has been an upward
trend in annual rainfall. Specifically, the years 2003 and 2013 recorded the highest rainfall
during this period, with annual precipitation exceeding 750 mm (Figure 2a). Comparing
the monthly rainfall in 2013 with the average monthly rainfall over the past twenty years,
we observed a more concentrated rainfall period in 2013, particularly in June and July,
when the rainfall was significantly higher than the average for the same months in previous
years. In July of 2013, the rainfall reached 230 mm, which is twice the monthly average
(Figure 2b).
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We obtained the rainfall data every 12 h in the study area from June to July us-
ing rainfall stations provided by the National Meteorological Administration. Around
14 rainfall stations within a 100 km range of the study area were utilized for interpolation.
The widely-used Kriging method was selected to interpolate the rainfall data and generate
the spatial distribution of rainfall in the study area. According to the data, the rainfall
persisted for approximately 40 days, from 19 June to 26 July. The total cumulative rainfall
in the study area ranged from 260 mm to 470 mm. Higher rainfall values were mainly in
the northeast, while lower values were in the southwest (Figure 3). Notably, the Shetang
area experienced the highest rainfall, reaching approximately 470 mm. Figure 4 displays
the rainfall data from two stations located in the northwest and southwest for the period
of June to July. The analysis of the rainfall data revealed the occurrence of four intense
short-term heavy rainfall events. In addition to these events, there were also prolonged
periods of intermittent rainfall. These short-term events all lasted approximately two to
three days, and occurred from 19 to 21 June, 8 to 10 July, 20 to 22 July, and 24 to 25 July,
respectively. Furthermore, the rainfall recorded at stations 57006 and 57014 in the northern
area was significantly higher than that at rainfall station 57008 in the southern area.
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Based on the rainfall data and Kriging interpolation, we obtained the rainfall distri-
bution for the four short-term heavy rainfall events (Figure 5). It was observed that the
rainfall in the northern region was slightly higher than that in the southern region. The
rainfall amount of the initial two events was larger than the subsequent two events. In
addition, we observed a considerable time gap between the first and second rainfall events,
whereas the time interval between the third and fourth ones was short.
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3.2. Other Influencing Factors

To investigate the influence of different factors on the distribution of landslides trig-
gered by the Tianshui rainfall event, we obtained various terrain metrics, lithologic infor-
mation, and hydrological data. The terrain metrics encompass elevation, hillslope gradient,
surface roughness, plan curvature, and topographic relief. The elevation data utilized
in this study were acquired from ALOS PALSAR DEM (Digital Elevation Model) with a
resolution of 12.5 m. From this dataset, we derived the distribution of the hillslope gradient
and aspect. Additionally, we computed the topographic relief by determining the elevation
range within a 2.5 km radius. For surface roughness, the roughness index was calculated
by a 13 × 13 matrix to obtain the standard deviation of slope gradients, the value of which
was interpreted as the roughness index [43]. Drainage information was derived from the
DEM using the ArcGIS software. The data of main roads in the study area were derived
from OpenStreetMap Data. Lithology data were obtained from 1:200,000 geological maps
published by China Geological Survey (http://dcc.cgs.gov.cn/ (accessed on 17 August
2022)). We used Land-use and land-cover (LULC) data as a proxy for vegetation cover, and
the LULC map was derived from the 10 m resolution global land cover results [44]. Finally,
eleven influencing factors (i.e., elevation, hillslope gradient, aspect, relief, total rainfall,
surface roughness, plan curvature, drainage density, road density, LULC, and lithology)
were considered for the statistical analysis (Figure 6) and were then converted into a raster
format utilizing a grid cell size of 12.5 m.
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(g) drainage density; (h) road density; (i) land-use and land-cover (LULC) map; The blue lines
represent the distribution of the drainages, while the white lines represent main roads.
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3.3. Method

In this study, the frequency density (FD) was used to analyze the distribution of
landslide and landscape area (i.e., non-landslide area) in each influencing factor. The FD
distribution of these influencing factors was calculated separately for landslide and landscape
areas by Equation (1). The landslide abundance index, often measured using landslide density,
is a commonly utilized index to assess the characteristics of landslides [11,12,45].

FD =

Ni_ls
Ni_total

∗ 100%

Ni_inter
(1)

where FD is the frequency density; I represents the cell number of landslides or landscape
area in the interval, Ni_ls represents the i’s area of each class, Ni_total represents the total i’s
area, and Ni_inter represents the i’s Classification interval.

The impact degree of landslides varies on different sections of slopes [46]. To account
for this variability, we computed the relative positions of individual landslides with respect
to the ridge (dtop) and the valley of the specific slope (dst), as proposed by Meunier, Hovius,
and Haines [46] (Equation (2)). Landslides positioned along the x-axis indicate origins near
or at the crest, with smaller x-axis values indicating closer proximity to the ridge. On the
other hand, landslides located along the y-axis are associated with channels, and larger
y-axis values indicate greater distances from the channel. Landslides positioned away from
both axes are considered to be in a mid-slope position [11,46].

|dst,top| =
dst,top

dst + dtop
(2)

The parameter dtop ranges from 0 to 1, where 0 represents the head scarp of the
landslide located at the mountain ridge, and 1 corresponds to the river channel. dst varies
in the opposite way, that is, 0 represents the deposit area of the landslide located at the
river channel, and 1 corresponds to the mountain ridge.

4. Results

The optical images utilized for landslide interpretation in the study area originated
from the GE software, and the coverage rate of high-resolution optical images in this area
was 100%. Xu, Allen, Zhang, Li, and He [37] employed a visual interpretation method to
identify landslides by comparing optical images before and after the rainfall event. In areas
with dense vegetation coverage, landslide scars were clearly visible in the post-rainfall
optical images. Figure 7 illustrates the abundance of landslides caused by this rainfall event,
especially in Dongjiamo village of the Niangniangba area (105.82◦E, 34.27◦N). The results
indicate that the majority of landslides in this area were narrow and shallow, forming a
continuous distribution with a wide range. Furthermore, claw-shaped shallow debris flows
were observed on the mountain slopes. Figure 8 displays the optical images before and
after the rainfall event in the southwestern region of the Niangniangba area (105.79◦E,
34.21◦N). The images show that landslides in this area were predominantly small-scale and
shallow, with most of them distributed along both sides of the valleys. Under subsequent
rainfall conditions, the deposited materials of the landslides near the river channels may
easily transform into debris flows.
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Figure 7. Map showing the optical images before and after rainfall; the pre- and post-rainfall image
acquisition dates are April 2012 and October 2013, respectively. The location is in the northeast part of
the Niangniangba area, with geographical coordinates of 105.82◦E and 34.27◦N. The yellow polygons
are the boundary of rainfall-induced landslides. (a) pre- rainfall image. (b) post-rainfall image.
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(b) post-rainfall image.



Remote Sens. 2023, 15, 4304 11 of 22

This rainfall event caused approximately 54,000 landslides with a total area of 67.9
km2, mainly consisting of elongated loess landslides, shallow rockslides, collapses, and
mudflows. Among the landslides recorded, the largest one covered an area of 100,000
m2, whereas the smallest was only 30 m2. Out of the total, there were 545 landslides
exceeding 10,000 m2, approximately 1600 landslides ranging between 5000 and 10,000
m2, and around 16,000 landslides with an area between 1000 and 5000 m2 resulting in an
average landslide area of 2000 m2. Notably, the majority of landslides in the study area
were smaller than 1000 m2, making up roughly 67% of the total landslides (Figure 9). To
assess the distribution of landslides, we utilized a Gaussian density kernel function with a
moving window radius of 2.5 km, which enabled the calculation of landslide point density
(LND, the number of landslides per square kilometer (number/km2)) and landslide area
density (LAD, represents the percentage of the affected area occupied by landslides (%))
within the study area.

The analysis revealed that the maximum LAD reached 19.7%, while the maximum
LND was 136/km2 (Figure 10). The landslides overall exhibited a clustered distribution,
primarily concentrated in two specific areas, i.e., the Niangniangba area in the central part
and the Shetang area in the northern part (Figure 10).
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Figure 11 illustrates the frequency density (FD) distribution of landslides and land-
scape areas under various influencing factors, while Figure 12 depicts the relationship
between LAD and factors. For the elevation, landslides were concentrated in the 1200–1400
m and 1600–1800 m sections. The average elevation of landslide area was 1518 m, and the
mean value of landscape area was 1573 m. Overall, the vast majority of landslides were
concentrated in areas with lower elevations. In terms of hillslope gradient, most landslides
had a gradient value with in the range of 20–35◦, while landscape areas were concentrated
in the range of 10–25◦. Otherwise, LAD increases with the rise of hillslope gradient, which
can be described by an exponential relationship, namely, y = e(0.024+0.45∗x) (where x repre-
sents the hillslope gradient and y represents LAD, as shown in Figure 12b). This equation
indicates that as the hillslope gradient increases, the likelihood of landslide occurrence also
increases. In terms of relief, the frequency density of landslide area was basically consistent
with that of landscape areas, which were 346 m and 340 m, respectively (Table 2). Overall,
it was concluded that the development of rainfall-induced landslides in the Tianshui area
was less affected by relief. For the total rainfall, LAD rose with the increase in the total
rainfall and can be described by a linear relationship of y = 0.0135 ∗ x− 2.51. On the other
hand, the surface roughness of most landslides was concentrated in the range from 1.0
to 1.2, while the surface roughness of landscape areas was concentrated in the range of
<1.1 (Figure 11e). The average surface roughness of landslide areas was 1.2, while that
of landscape areas was 1.0 (Table 2). For plan curvature, the LAD reached its minimum
within the range of −1~1, while it was high in areas with high absolute values of plane
curvature, indicating that landslides in the Tianshui area were more likely to occur in areas
with high absolute values of plane curvature. The road density of most landslides was in
the range of 1.5 to 2.5, and that of landscape area was mainly concentrated in the range of
less 2. The mean road density of landslide and landscape areas was 3.2 and 3.0, respectively
(Table 2). The drainage density was mainly concentrated in the range of 1.5 to 2.5, while
that of landscape area was mainly concentrated between 1.0 and 2.0. In addition, LAD and
drainage density exhibited a linear relationship described as y = 2.29 ∗ x− 1.07 (where x
represents drainage density and y represents LAD), indicating that landslides were more
likely to occur in areas with high drainage density (Figure 12h).
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Figure 11. Map showing the frequency density (FD) estimates of landslide and landscape areas for
different factors; (a) elevation; (b) hillslope gradient; (c) relief; (d) total rainfall; (e) surface roughness;
(f) plan curvature; (g) drainage density; (h) road density.
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density; (h) road density.
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Table 2. Statistical indicators of influence factors for the landslides and landscape area.

Variable Landslide Landscape

Hillslope gradient [◦] Mean 25.5 20.5
Max 69 71
Min 0 0

Elevation [m]
Mean 1518 1573
Max 2243 2353
Min 990 921

Surface roughness Mean 1.2 1.0
Max 2.9 4.17
Min 1.0 1

Relief (m) Mean 346 340
Max 797 878
Min 104 14

TWI Mean 5.9 5.9
Max 14.8 15.3
Min 2.0 1.2

Plan curvature Mean −0.1 0.02
Max 8.7 21
Min −10.1 −21.3

River density (m−1) Mean 1.8 1.6
Max 3.13 3.5
Min 0.68 0.6

Road density (m−1) Mean 3.2 3.0
Max 16.3 17.7
Min 0 0

Figure 13 presents the statistical results of frequency density (FD) for both landslide
and landscape areas, as well as the LAD across different slope aspects. The results indicate
a general consistency in the distribution of all aspects within the landscape area. However,
the landslide area demonstrated a higher concentration in the aspects of 90◦–140◦ (E-
SE) and 210◦–240◦ (SW-SWW), with FD values reaching 0.07. Furthermore, the highest
LAD occurred in the aspect range of 90◦–140◦ (SW-SWW), accounting for 8% of the total.
The aspect of 210◦–240◦ followed closely, exhibiting the second highest LAD reaching
approximately 6%. In summary, the E-SE aspect was more prone to landslides, while the
W-NW aspect exhibited a low abundance of landslides.
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Figure 14 illustrates the distribution of areal coverage (%) for both landslides and
landscape areas, as well as the average landslide area across different lithological units.
The results highlight that the primary lithological units in the study area were Quaternary
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sediments (Q), Middle Devonian Shujiaba Formation (D2S), and magmatic rock (Mag),
constituting 15%, 35%, and 18% of the total landslide area, respectively. Among these
units, the Middle Devonian Shujiaba formation (D2S) was highly susceptible to landslides,
accounting for 35% of the total landslide occurrences within a concentrated 22% area.
Secondly, the Paleogene (E) strata accounted for 10% of landslides within 8% of the study
area. Additionally, the average landslide area developed in Neogene (N) strata was the
largest (1700 m2), while the C2 strata exhibited the smallest average landslide area, only
about 1000 m2. Overall, landslides developed in Cenozoic strata had slightly larger scales
compared to those in Paleozoic strata.
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Figure 15 shows the distribution of areal coverage (%) for both landslides and land-
scape areas, as well as the average landslide area across different land-use types. The
predominant land type in the study area was forest, covering approximately 50% of the
total area, followed by cropland and grassland, each comprising more than 20%. Among
all land types, forests exhibited the highest susceptibility to landslides, with approximately
65% of landslides occurring within 50% total area. The second was urban area, which
has experienced nearly 3% of landslides in less than 1% of the area. On the other hand,
grassland demonstrated the lowest susceptibility to landslides, with only 8% of the land-
slide area occurring in nearly 20% of the area. Furthermore, the average landslide area
across different land-use types revealed that bareland and urban areas exhibited the largest
average landslide areas, exceeding 6000 m2. Croplands exhibited an average landslide area
of approximately 1500 m2. In contrast, other land-use types possessed smaller average
landslide areas, ranging from 800 m2 to 1000 m2. It should be noted that the large average
landslide area in bareland and urban areas was primarily due to the limited occurrence of
landslides in these two land-use types, which was not statistically significant.

Figure 16 visually represents the topographic location of rainfall-induced landslides,
displaying their number density, area, and relative distance to ridges and rivers on a hypo-
thetical slope profile. The horizontal axis denotes the relative distance from the boundary
of each landslide to the top of the mountain ridge, while the vertical axis represents the
distance to the valley. The circle size corresponds to the scale of each landslide, and the
background colors indicate the landslide number density. Figure 16a,b specifically depict
the locations of landslides with areas greater than 1000 m2 and 10,000 m2, respectively. The
results show that landslides in the Tianshui area were evenly distributed across different
positions on the slope. However, landslides in the vicinity of river channels (with a relative
distance to the river of less than 0.1) exhibited a clustered distribution. This indicates that
the head scarps of these landslides were more likely to develop in the middle and lower
slope positions, while the deposited areas were often found near the river channels. This
phenomenon was even more pronounced for large-scale landslides (>10,000 m2), where
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approximately 80% of the source areas (highlighted in red as high-density areas) were
situated close to the valley region, with a relative distance to the streams of less than 0.1.
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5. Discussion

The landslides induced by the 2013 heavy rainfall event were found to be predom-
inantly influenced by the interaction of topography, geological conditions, and heavy
rainfall. This influence is reflected by their primary distribution within different geological
formations, including the Quaternary Fluvial deposits (Q4apl) and eolian loesses (Q3eol),
as well as the Devonian Quartzite and quartz schist, intertwined with sericite quartz schist
from the Shujiaba formation (D2S) (Figure 17). The study area’s physical characteristics play
a significant role in inducing the occurrence of landslides. The presence of steep mountains,
deep valleys with substantial height differences, and other related features collectively cre-
ate an environment conducive to landslide occurrence and development. The distribution
map of landslides within the study area revealed distinct patterns, characterized by promi-
nent group-occurring landslide distribution, continuous dispersion, and a wide coverage
area. Remarkably, these landslides are often manifested as formations resembling a “claw”
shape, especially on the slopes of mountainous regions. Another contributing factor is the
continuous and heavy precipitation associated with the aforementioned rainfall event. This
extended period of rainfall has resulted in the near-saturation of the shallow rock-soil layers,
significantly impairing their shear strength. As a result, slopes characterized by shallow
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accumulation layers and pre-existing cracks become more geologically vulnerable [40]. The
Potential Vulnerability in the study area is further complicated by the dense vegetation
coverage and the presence of numerous “V-type” valleys. These elements play pivotal roles
in the formation process of landslides. The precipitation-induced saturated residual slope
soil and the trees on the slopes collectively lead to the sliding of saturated materials into
ditches and then formed barrier lakes. Subsequent collapses of these dam bodies result
in the initiation of debris flows. Intriguingly, in some instances, these ditches can even
become repositories for driftwood [39,40].

It is widely accepted that steeper terrains, weaker rock strength, and higher rainfall
intensities contribute to an increased susceptibility to landslides [47–49]. To gain a deeper
understanding of the spatial distribution relationship between landslides and various
influencing factors, a swath profile (NE-SW) spanning a width of 10 km was presented. The
results show that the landslides triggered by this rainfall event were mainly concentrated
in two areas, i.e., Niangniangba and Shetang areas. Specifically, the Niangniangba area was
the most densely developed area for landsliding with the maximum LAD of roughly 15%.
This region belongs to a high altitude and low terrain area, with an average elevation of
about 1700 m and average relief of about 300 m. The terrain here is steep, with an average
gradient of 20◦–30◦. The drainage systems are densely developed and the river erosion is
strong and, thus, the majority of the landslides develop along the erosion ditches and both
sides of the rivers. In addition, the Niangniangba area was not the region with the highest
rainfall intensity, with a total rainfall of between 350 mm and 400 mm. The local lithology
is mainly metamorphic quartzite, quartz schist, and sericite quartz schist of the Shujiaba
formation (D2S). Sericite schist and quartz schist exhibit well-developed cleavage and
contain a high proportion of mica. Prolonged exposure to physical weathering causes the
fragmentation of rock mass on the bedrock surface, resulting in extensive fissures that are
locally filled with sediments. Consequently, this lithological type is prone to the formation
of weak structural layers over time, serving as natural sliding surfaces for landslides [50,51].
In addition, the weathered rock and soil are characterized by numerous cracks, facilitating
the infiltration of rainwater over-extended periods. Such a process leads to an increased
pore water pressure within the rock mass, while the augmented self-weight of the rock mass
reduces shear resistance. These combined factors contribute significantly to the occurrence
of landslides. This phenomenon was also observed in landslides triggered by the 2016
heavy rainfall in the Sanming area [51]. Another landslide abundance area is the Shetang
area with a low altitude and high relief. The average elevation of the Shetang area is
between 1000 and 1500 m, and the relief range is from 300 m to 500 m. In addition, the
hillslope gradient in this area is relatively small, with an average gradient between 10◦ to
20◦. The lithology of this area is mainly composed of Quaternary fluvial deposits (Q4apl)
and eolian loesses (Q3eol), which is responsible for the substantial shallow loess landslides
therein. In addition, the area suffers the maximum rainfall, with a total rainfall of over 450
mm. As a special type of soil with large pores and high collapsibility, loesses have unique
physical properties. For example, due to the strong water sensitivity, rainfall has become
the most active influencing factor for loess landslides. On the other hand, the increase in
moisture content of unsaturated loess leads to a decrease in the effective stress of the soil,
and the rise in groundwater level leads to a decrease in shear strength of saturated loess.
Therefore, under heavy rainfall conditions, shallow loess landslides in the area are often
densely developed.

Orographic precipitation is produced when moist air is lifted as it moves over a
mountain range [52]. As the air rises and cools, orographic clouds form and serve as the
source of precipitation, most of which falls upwind on the mountain ridge. The orographic
precipitation, along with the projection of rainfall vectors onto hillslopes, can lead to
the increase in precipitation on the windward hillslopes. This phenomenon ultimately
contributes to a higher frequency of landslide occurrence on a hillslope scale [53]. The
Tianshui area is geographically adjacent to Baoji city of Shaanxi Province to the east and
Longnan city of Gansu Province to the south. The terrain structure of the Tianshui area is
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an east–west canyon, and the prevailing wind directions are east (E) and southeast (SE).
The relationship of the rainfall-induced landslides and aspect shows that landslides in
the Tianshui area mostly occur along S, SE, and E directions. This phenomenon can be
primarily attributed to the south-oriented slopes being predominantly windward, resulting
in more intense rainfall and splash erosion [12,51].
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The Tianshui region is located in a semi-arid area with active geological structures
and frequent earthquakes. The Mw 5.9 Minxian earthquake on 22 July 2013 occurred
between the eastern Kunlun fault and the northern edge of the western Qinling fault zone.
Its epicenter is located at 34.512◦N and 104.262◦E, which is about 130 km west of the
study area. According to the published seismic data from the United States Geological
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Survey (USGS), the seismic intensity of the Niangniangba area affected by the earthquake
was about 3.5 degrees. Although the seismic factor itself is not sufficient to cause the
occurrence of massive landslides, earthquakes may lead to the disturbance to the rock–soil
mass, which indirectly promotes the occurrence of landslides [39,54]. The results show that
the landslides triggered by this rainfall event were mostly small-scale shallow landslides
with an area of less than 1000 m2. Due to the fact that the study area was in the semi-
arid Loess Plateau region with high evaporation, the surface and shallow groundwater
cannot maintain high water levels for a long time. Therefore, the impact of the first two
extreme rainfall events on landslide occurrence has significantly decreased [54]. However,
the 22 July Minxian earthquake may cause the development of fissures and cracks in the
rock-soil mass, which can provide favorable conditions for rainfall infiltration, thereby
significantly reducing the strength of the rock mass on the slope and inducing landslides
under rainfall conditions. Therefore, we suggest that the third rainfall event on the day
of the earthquake occurrence and the fourth rainfall event three days later ultimately
contribute to the occurrence of a large number of rainfall-induced landslides in the Tianshui
area. While visual interpretation is pervasively considered as a viable methodology for
detecting landslides and constructing landslide inventories, it is important to acknowledge
its inherent limitations. These constraints encompass factors such as the accessibility and
quality of Earth Observation images with very high resolution, as well as challenges posed
by cloud cover and other environmental variables. Additionally, the accuracy of visual
interpretation is closely associated with the expertise of available professionals [55,56].
Despite its undeniable value, this approach is time-intensive and best suited for local-scale
applications. Considering the scope of regional-scale analyses, the incorporation of more
advanced machine-learning techniques becomes imperative. Nevertheless, it is worth
emphasizing the ongoing necessity of visual interpretation for landslide detection. This
need arises due to the unique characteristics of landslides, encompassing factors such as
size and type, which can be better discerned through the nuanced perception of human
experts. By skillfully combining the strengths of both visual interpretation and automated
methods, a comprehensive and accurate landslide-detection framework can be established.
Numerous studies have underscored the continued relevance of visual interpretation in
landslide detection. For instance, Xu et al. [57] emphasized that visual interpretation
based on high-resolution images can identify subtle morphological indicators of landslides,
especially in complex terrains. Similarly, Xu et al. [58] highlighted the superiority of
interpreting ancient landslides based on visual interpretation.

6. Conclusions

In this study, we investigated the characteristics and triggering factors of landslides
induced by the 2013 continuous rainfall event in the Tianshui region. We also probed the
relationship between the landslide occurrence and different influencing factors (e.g., terrain,
geomorphology, geology, and rainfall condition). After compiling a detailed landslide
inventory, it was found that this rainfall event triggereda approximately 54,000 landslides,
mainly consisting of loess landslides with elongated type, shallow rockslides, collapses,
and mudflows. Most landslides were small-scale shallow landslides with an area of less
than 1000 m2. The landslides exhibited a clustered distribution, and most of them were
concentrated in two specific areas, that is, the Niangniangba area in the central part and
the Shetang area in the northern part. In addition, most of the landslides were observed
in areas with lower elevations, steep hillslope gradients, and high rainfall intensities.
The LAD showed a positive trend as these influencing factors increased, which can be
described by either an exponential or a linear relationship. Among all lithological units,
the Middle Devonian Shujiaba Formation (D2S) was most prone to landslides, with 35% of
landslides occurring in 22% of the study area. Overall, landslides developed in Cenozoic
strata were found to have slightly larger scales compared to those occurred in Paleozoic
strata. Additionally, the E–SE aspect was more prone to landslides, while less landslides
were developed along the W–NW aspect. The highest landslide density was observed
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in the Niangniangba area with a steep hillslope gradient and moderate rainfall intensity,
indicating that the lithological and topographic conditions play major roles in this region,
followed by the rainfall factor. By contrast, the landslides in the Shetang area were more
significantly affected by the rainfall factor. The 22 July Minxian earthquake may cause the
development of fissures and cracks in the rock–soil mass, providing favorable conditions
for rainfall infiltration. Therefore, we suggest that the Minxian earthquake has promoted
the occurrence of landslides in the region.
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