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Abstract: In the face of smart and varied jamming, intelligent radar anti-jamming technologies are
urgently needed. Due to the variety of radar electronic counter-countermeasures (ECCMs), it is
necessary to efficiently optimize ECCMs in the high-dimensional knowledge base to ensure that
the radar achieves the optimal anti-jamming effect. Therefore, an intelligent radar anti-jamming
decision-making method based on the deep deterministic policy gradient (DDPG) and the multi-
agent deep deterministic policy gradient (MADDPG) (DDPG-MADDPG) algorithm is proposed.
Firstly, by establishing a typical working scenario of radar and jamming, we designed the intelligent
radar anti-jamming decision-making model, and the anti-jamming decision-making process was
formulated. Then, aiming at different jamming modes, we designed the anti-jamming improvement
factor and the correlation matrix of jamming and ECCM. They were used to evaluate the jamming
suppression performance of ECCMs and to provide feedback for the decision-making algorithm.
The decision-making constraints and four different decision-making objectives were designed to
verify the performance of the decision-making algorithm. Finally, we designed a DDPG-MADDPG
algorithm to generate the anti-jamming strategy. The simulation results showed that the proposed
method has excellent robustness and generalization performance. At the same time, it has a shorter
convergence time and higher anti-jamming decision making accuracy.

Keywords: radar anti-jamming; decision making; electronic counter-countermeasures; DDPG; evaluation

1. Introduction

In the game between radar and electronic jamming, jammers will constantly change
jamming strategies to generate more complex and unpredictable jamming modes [1,2]. This
brings serious threats and challenges to radar’s anti-jamming ability [3]. Accurate decision
making is a crucial prerequisite for efficient countermeasures in radar anti-jamming [4].
Anti-jamming decision making based on template matching is effective when the radar is
faced with simple jamming [5]. When there are only a few ECCMs in the radar knowledge
base, using the multi-attribute decision-making method [6] or the fuzzy analytic hierar-
chy process [7] can also solve the decision-making problem. However, with the rapid
development of jamming [8], there are more and more modes of radar ECCMs [9–13].
Traditional decision-making methods cannot meet the need for intelligent anti-jamming
for cognitive radar [14]. The idea of reinforcement learning (RL) coincides with the issue
of intelligent radar anti-jamming decision making, as it mainly solves sequence decision-
making problems [15]. RL has been successfully applied in the field of communication
anti-jamming [16–19]. Therefore, some scholars have attempted to apply RL to the field of
radar anti-jamming decision making [20–24].

For frequency agile (FA) radar, Q-learning [25] and deep Q-network (DQN) [26]
have been used to design anti-jamming strategies to combat smart jammers. The reward
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functions are different; namely, signal-to-interference-plus-noise ratio (SINR) and detection
probability. Then, a DQN with a long short-term memory (LSTM) algorithm was used to
study two frequency hopping strategies of radar based on an explicit expression for the
uncertainty of the jammer dynamics [27]. For the main lobe jamming problem faced by
FA radar, the detection probability has been used as a reward signal, and the proximal
policy optimization (PPO) with LSTM was adopted for use against four different jamming
strategies [28]. In order to solve the problem of errors caused by unideal observation and
interception in the electromagnetic game, a robust anti-jamming strategy learning method
was designed based on imitation learning and Wasserstein robust reinforcement learning
(WR2L) [29]. To address the problem that the RL-based anti-jamming method cannot handle
non-stationary jamming policies, RL and supervised learning (SL) were combined to design
anti-jamming policies for FA radar [30]. One issue arising from the abovementioned studies
is that they all use FA radar to suppress noise jamming, which is highly targeted. In actual
electromagnetic countermeasures, there are various ECCMs and jamming modes, and they
are not in a one-to-one correspondence. Many ECCMs can suppress the same jamming
mode, and one ECCM can also weaken multiple forms of jamming [31]. Therefore, in a
complex electromagnetic environment, the scale of the radar anti-jamming knowledge base
is becoming larger and larger, resulting in a large action space and a long convergence time
in the optimization process of ECCMs [32]. There are many other RL algorithms. Deep
reinforcement learning (DRL) is a combination of deep neural networks and RL. The DDPG
is a DRL algorithm based on actor–critic architecture [33,34]. It has good performance in
dealing with policy optimization problems. The multi-agent deep deterministic policy
gradient (MADDPG) algorithm is a natural extension of the DDPG algorithm in a multi-
agent system [35], which adopts the framework of centralized training with decentralized
execution. However, using them to solve the optimization problem of radar ECCMs still
needs to be improved and optimized.

Another issue that needs to be considered is how to evaluate the performance of
ECCMs based on the large-scale knowledge base and how to express the feedback from the
environment. Most of abovementioned studies use SINR or detection probability as the
reward function of RL, and they have not conducted detailed research on anti-jamming
performance evaluation. Johnston first proposed the ECCM improvement factor (EIF)
in 1974, which reflects the improvement of the signal-to-interference ratio (SIR) of the
radar after adopting the ECCMs [36]. To obtain a more reasonable evaluation of radar
anti-jamming, angle measurement performance has been used as an evaluation factor,
and an evaluation method based on information fusion was studied [37]. The average
signal-to-noise ratio (SNR) has been defined as an evaluation factor, which was used to
evaluate the performance of radar suppression noise-AM jamming [38]. Aiming at the
diversity of jamming and radar ECCMs, a unified quantitative evaluation method was
proposed by combining robust time-frequency analysis (RTFA) and peak-to-average power
ratio (PAPR) [39]. In the face of the dynamic and uncertain characteristics of jamming and
radar countermeasures, the jamming threat level was defined and used as an evaluation
criterion to select the best anti-jamming strategy [40]. The abovementioned research studied
different evaluation factors in different problems, and one ECCM can suppress multiple
forms of jamming to produce different anti-jamming effects. Therefore, it is necessary to
study the problem of how to uniformly evaluate the performance of ECCMs and how to
express the feedback from the environment.

To solve the issues mentioned above, an intelligent radar anti-jamming decision-
making method based on the DDPG-MADDPG algorithm is proposed. Based on a typical
working scenario of radar and jamming, we designed an intelligent radar anti-jamming
decision-making model, and the decision-making process was formulated. To establish
the relationship between jamming and ECCMs in the large-scale knowledge base, we
propose an anti-jamming improvement factor and a correlation matrix of jamming and anti-
jamming to provide feedback for the decision-making algorithm. Aiming at the problems
of high-dimension action space and long convergence time in the optimization process of
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ECCMs, we propose a DDPG-MADDPG algorithm to generate anti-jamming strategies.
The main contributions of this work are summarized as follows:

• We established a typical electronic radar and jamming countermeasure scenario and di-
vided various jamming modes and ECCMs according to different categories. Therefore,
the dimension of the radar anti-jamming knowledge base was reduced by layering.
According to the dynamic interaction process between radar and jamming, we pro-
posed an intelligent radar anti-jamming decision-making model. By defining the
anti-jamming decision-making elements of the radar, the radar anti-jamming decision-
making process was formulated. This is the basis for the design of the anti-jamming
decision-making algorithm.

• An anti-jamming improvement factor was designed to evaluate the performance of
ECCMs, which can provide feedback to the decision-making algorithm. Based on the
anti-jamming improvement factor, we established the correlation matrix of jamming
and ECCM, which provides prior knowledge for the decision-making algorithm.
Then, according to the limitation of radar anti-jamming resources, we designed four
decisioned objectives and constraints to verify the performance of the anti-jamming
decision-making algorithm.

• We designed the DDPG-MADDPG algorithm to generate anti-jamming strategies,
which includes the outer DDPG algorithm and the inner MADDPG algorithm. Through
the hierarchical selection and joint optimization of two layers, this not only reduces
the dimensionality of the action space, but also finds the global optimal solution in
a shorter convergence time. Simulation results proved that this method has better
robustness, a shorter convergence time, higher decision making accuracy, and better
generalization performance.

The rest of this paper is organized as follows: the intelligent radar anti-jamming
decision-making model is introduced in Section 2. The radar anti-jamming decision-making
method based on the DDPG-MADDPG algorithm is explained in Section 3. Section 4 shows
the specifics of the simulations and the analysis of the results, followed by the conclusion
presented in Section 5.

2. Materials
2.1. Working Scenario of Radar and Jamming

According to the search and tracking operations by radar, the electronic jammer may
adopt different jamming strategies and adaptively change the jamming modes during the
game between radar and jamming. The working scenario of radar and jamming is shown
in Figure 1. There are two targets with jammers, two support jammer, and one stand-off
jammer. During the game process, the jammers generate various jamming modes, such as
noise jamming, dense false target jamming, pull-off deception jamming and the ECCMs of
the radar are also varied. A radar system needs to efficiently select an optimal anti-jamming
strategy (an optimal combination of ECCMs) in the high-dimensional knowledge base to
deal with variable jamming modes and to maximize its jamming suppression effect.
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For different jamming modes and anti-jamming principles, different ECCMs have
been investigated. To establish the vast, high-dimensional, and diverse jamming modes
and ECCMs database, we conducted research on the jamming modes and ECCMs, re-
spectively. The aim was to establish a database of jamming modes and ECCMs and to
provide prior data for the anti-jamming decision-making algorithm. Therefore, we defined
countermeasure elements in the database: jamming modes and radar ECCMs. We divided
the jamming modes and ECCMs according to the category. Table 1 shows the schematic
elements of jamming modes divided according to the category. According to different
effects on radar, the jamming modes were divided into four categories, including noise
jamming, false target deception jamming, pull-off deception jamming, and compound
jamming. Noise jamming includes blocking jamming, aiming jamming, sweep jamming,
etc. False target deception jamming includes range false target deception, sample-and-
modulation deception, intensive false target deception, etc. Pull-off deception jamming
includes range pull-off, velocity pull-off, range–velocity simultaneous pull-off, etc. Com-
pound jamming includes noise jamming + false target deception jamming, noise jamming
+ pull-off deception jamming, false target deception jamming + pull-off deception jam-
ming, etc. There are M jamming modes, and they are numbered in sequence, defined as
{Jam1, · · · , Jamm, · · · , JamM}, where m ∈ {1, 2, · · · , M}.

Table 1. The schematic elements of jamming modes divided according to the category.

Category Jamming Mode Number

Noise
jamming

Blocking jamming Jam1

Aiming jamming Jam2

Sweep jamming Jam3

False target
deception jamming

Range false target deception jamming Jam4

Sample-and-modulation deception jamming Jam5

Intensive false target deception jamming Jam6

Pull-off
deception
jamming

Range pull-off jamming Jam7

Velocity pull-off jamming Jam8

Range–velocity simultaneous pull-off jamming Jam9
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Table 1. Cont.

Category Jamming Mode Number

Compound
jamming

Noise jamming + false target deception jamming Jam10

Noise jamming + pull-off deception jamming Jam11

False target deception jamming + pull-off deception Jam12

. . . Jamm

Table 2 shows the schematic elements of ECCMs divided according to the transform
domains. According to the different transform domains, the ECCMs are divided into
N domains, which are denoted as {TD1, · · · , TDn, · · · , TDN}, where n ∈ {1, 2, · · · , N},
such as time domain, frequency domain, space domain, etc. Each transform domain
TDn contains W ECCMs, and they are denoted as {AJM1, · · · , AJMw, · · · , AJMW}, where
w ∈ {1, 2, · · · , W}. For example, the time domain includes linear filter design, LFM
waveform parameter design, etc. The frequency domain includes carrier frequency fixed
mode agility, carrier frequency random agility, etc. The space domain includes space–time
adaptive filtering, adaptive beamforming, sidelobe cancellation, etc.

Table 2. The schematic elements of ECCMs of radar divided according to transform domains.

Transform Domain ECCM

Name Number Name Number

Time domain TD1

Linear filter design AJM1

LFM waveform
parameter design AJM2

. . . . . .

Frequency domain TD2

Carrier frequency
fixed mode agility AJM1

Carrier frequency
random agility AJM2

. . . AJMw

. . . . . .

Space domain TD3

Space–time adaptive
filtering AJM1

Adaptive
beamforming AJM2

Sidelobe cancellation AJM3

. . . AJMw

. . . TDn . . . . . .

2.2. Intelligent Radar Anti-Jamming Decision-Making Model

In the intelligent game process radar and jamming, the radar observes less information
about the complex electromagnetic environment, and the way the radar interacts with
jamming determines whether the anti-jamming strategy can successfully suppress jamming.
Therefore, the interaction process between radar and jamming is defined as follows: in the
first decision-making round, the radar receives a jamming strategy from the electromagnetic
environment. According to the decision-making goal, the radar quickly selects the current
optimal combination of ECCMs in the high-dimensional and hierarchical knowledge
base, after which the anti-jamming strategy is implemented. In the second decision-
making round, the radar anti-jamming strategy is optimized according to the anti-jamming
effect feedback received from the electromagnetic environment. During one decision-
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making cycle, this process is repeated continuously. Ultimately, the goal of the radar
is to determine the optimal anti-jamming strategy to deal with the jamming strategy.
Therefore, an intelligent radar anti-jamming decision-making model is established, as
shown in Figure 2. The intelligent radar anti-jamming decision-making model includes
four parts: the electromagnetic environment, the receiver, the decision-making system, and
the transmitter. Firstly, the echo from the electromagnetic environment is received by the
receiver to obtain the target and jamming signals. Then, based on the knowledge base,
the observed jamming signal is analyzed, and the anti-jamming strategy is generated by
the decision-making system. Finally, the radar communicates with the electromagnetic
environment through the transmitter.
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The decision-making system includes a knowledge base, a decision-making module,
an evaluation module, and a jamming recognition and analysis module. The knowledge
base contains the jamming information, ECCMs, and the correlation matrix of jamming
modes and ECCMs. The correlation matrix of jamming modes and ECCMs expresses the
effect value of ECCMs on suppressing each jamming mode and provides prior information
for anti-jamming decision making. The decision-making module optimizes the transform
domains and ECCMs to learn anti-jamming strategies online and thereafter updates the
knowledge base. The evaluation module is used to evaluate the performance of the ECCMs,
and the results are used as the feedback of the decision-making module to update the anti-
jamming strategy. The jamming information from the jamming recognition and analysis
module is considered already known.

If we consider the radar and the electromagnetic jamming environment as the agent
and the environment, then we can model the radar anti-jamming decision-making problem
as a Markov decision process (MDP) using RL theory [15]. The anti-jamming decision-
making process of the radar can be defined as a tuple {S, A, P, R}, where the decision-
making elements are shown in Table 3. S is a finite set of state st, where st ∈ S. The
state st at time t is defined as jamming mode Jamm, Jamm ∈ {Jam1, · · · , Jamm, · · · , JamM}.
A is a finite set of action at, where a ∈ A. In order to reduce the dimensionality of the
action space, the action at at time t is the layered ECCMs. We divide action at into action
layer1 (at)layer1 and action layer2 (at)layer2, where (at)layer1 ∈ {TD1, · · · , TDn, · · · , TDN},
(at)layer2 ∈ {AJM1, · · · , AJMw, · · · , AJMW}. Action layer1 (at)layer1 contains one or more
transform domains, and action layer2 (at)layer2 also contains one or more ECCMs. Therefore,
the radar action is a cascading use of ECCMs in multiple domains. P(st+1|st, at ) is the
transition probability describing how the current state st transfers to the next state st+1
when the agent takes action at.R is a finite set of the immediate reward rt, where rt ∈ R.
We use the anti-jamming evaluation result as a reward rt to optimize the anti-jamming
strategy when the decision-making system takes action at according to policy π(at|st ) and
the state changes from st to st+1. The policy π(at|st ) is a mapping function of probability
distributions from state st to action at.

Table 3. The anti-jamming decision-making elements of the radar.

Name Variable

Agent Radar
Environment Electromagnetic jamming environment

State st Jamming mode Jamm
Action at (at)layer1: transform domains, (at)layer2: ECCMs.
Reward rt Anti-jamming evaluation result

The policy π(at|st ) The probability that radar chooses (at)layer1 and (at)layer2
Decision-making cycle 200 pulse repetition intervals (PRIs)

Therefore, the confrontation process between the radar and the electromagnetic envi-
ronment can be described as follows. The decision-making system is in state st = Jamm

at time t and chooses an action at =
{
(at)layer1, (at)layer2

}
according to policy π(at|st ).

When the state is transferred from st = Jamj to st+1 = Jamm
′, the evaluation module

of the decision-making system evaluates the anti-jamming effect. The evaluation result
is fed back to the decision-making algorithm as the reward rt = R. The objective of the
decision-making system is to maximize the long-term expected reward and find the optimal
policy π∗. The optimal policy π∗ is denoted as

π∗ = argmax
π

E[Rt|π ] (1)
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where Rt =
∞
∑

k=0
γkrt+k represents discounted long-term returns. γ ∈ (0, 1] is the discount

factor. E[Rt|π ] represents the long-term expected returns.

3. Methods
3.1. Anti-Jamming Improvement Factor and Decision-Making Objectives
3.1.1. Anti-Jamming Improvement Factor

We designed an anti-jamming improvement factor (AJIF) to evaluate the jamming
suppression effect of ECCMs and used it as feedback to express the reward function in
the anti-jamming decision-making algorithm. AJIF describes the improved anti-jamming
capability of the radar with ECCMs compared to without ECCMs. We chose different
evaluation indicators, respectively, for four different categories of jamming modes [41], as
shown in Table 4. When the radar is subjected to noise jamming, lots of noise signals enter
the receiver, which reduces the signal-to-noise ratio output by the receiver and reduces the
detection probability. If the SINR is larger after anti-jamming measures are taken, it means
the effect of the anti-jamming measures is better. Therefore, the anti-jamming evaluation
indicator of noise jamming is selected as the SINR. False target deception jamming affects
the normal detection performance of the radar by producing a certain number of false
targets, causing the radar to lose real targets. When the number of false targets reaches a
certain amount, it will suppress the radar. If the radar finds more real targets after taking
anti-jamming measures, it means that the effect is better. Therefore, the anti-jamming
evaluation indicator of false target deception jamming is selected as the number of real
targets found.

Table 4. The evaluation indicators for four different categories of jamming modes.

Jamming Category Evaluation Indicator

Noise jamming SINR
False target deception jamming The number of real targets found

Pull-off deception jamming Tracking accuracy error

Compound jamming The mathematical accumulation of evaluation
indicators of each single jamming

Pull-off deception jamming is mainly used to interfere with the automatic tracker of
the radar and to lead the tracker of the radar to a wrong position far away from the real
target to achieve the effect of exchanging the fake for the real. Therefore, its impact on
radar is mainly reflected in the error of tracking accuracy. If the radar tracking accuracy
error is smaller after anti-jamming measures are taken, it means that the effect of the anti-
jamming measures is better. Therefore, the anti-jamming evaluation indicator of pull-off
deception jamming is selected as the tracking accuracy error. Compound jamming can
produce the effect of “1 + 1 > 2”, increasing the difficulty of anti-jamming. The combination
of multiple jamming signals can increase the ambiguity of the received deceptive jamming
signal while reducing the detection probability of the real target echo by the radar. It
makes it difficult to distinguish the real target echo from the spoofed jamming echo,
which further interferes with the normal operation of the target radar. Therefore, the anti-
jamming evaluation indicator of compound jamming is the mathematical accumulation of
the evaluation indicators of each single jamming.

Suppose the value of the evaluation indicator when the radar is not jammed is P0,
and the value of the evaluation indicator when the radar is jammed is PJ. The value of the
evaluation indicator after taking ECCM is PAJ, and the AJIF of the wth ECCM against the
mth jamming is defined as:

ewm =
(PAJ)wm

(P0)wm − (PJ)wm
(2)

where w = 1, 2, · · · , W, m = 1, 2, · · · , M. There are w ECCMs and m jamming modes.
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Because different evaluation indicators have different value ranges, we need to nor-
malize AJIF as follows:

ewm =
ewm − Xwmmin

Xwmmax − Xwmmin
(3)

where Xwmmin and Xwmmax are the minimum and maximum of ewm, respectively.
The AJIF vector of the wth ECCM that suppresses mth jamming is defined as:

Ew =
(
ew1, ew2, · · · , ewj

)T (4)

We define a correlation matrix CM of jamming and ECCM, which is a quantitative
evaluation result based on AJIF. It is used to describe the relationship between jamming and
ECCM and to provide prior knowledge for the decision-making algorithm. The correlation
matrix is represented by a two-dimensional matrix CM.

CMW×M = (ewm)W×M
= (E1, E2, · · · , EW)M

(5)

Because there are N sub-domains, there are N CMW×M, which are defined as a matrix:
[(CMW×M)1, · · · , (CMW×M)n, · · · , (CMW×M)N ]

T .

3.1.2. Decision-Making Objectives and Constraints

The AJIF ewm can be used as an immediate reward rt to provide feedback to the
decision-making algorithm. However, within one decision cycle, the optimization of
ECCMs needs to be based on the decision-making objectives of the radar. Therefore,
according to the actual task requirements in the radar combat process, we designed four
decision-making objectives ranging from simple to complex.

For situations in which only the jamming suppression effect of ECCMs is considered,
we designed decision-making objective 1. In order to make the best anti-jamming effect,
the accumulated sum of AJIF ewm of all selected ECCMs should be maximized. Decision-
making objective 1 Reward1 is as follows:

Reward1 = max
N

∑
n=1

ewm (6)

In order to make the difference in the jamming suppression effect values between the
selected ECCMs small, we chose the average value of the jamming suppression effect as
the decision-making objective 2 and maximized the average value of the accumulated sum
of AJIF ewm of all selected ECCMs. Decision-making objective 2 Reward2 is as follows:

Reward2 =
1
N

N

∑
n=1

ewm (7)

In the decision-making process, the more ECCMs are selected, the more anti-jamming
resources are occupied. In decision-making objectives 1 and 2, although the jamming
suppression performance is improved, it is not conducive to saving resources. Therefore,
we employed a weighted approach that maximizes the cumulative sum of the AJIF ewm
while minimizing the number of selected ECCMs. When the two sub-goals are equally
important, decision-making objective 3 is defined as:

Reward3 =
0.5× α1

max
N
∑

n=1
ewm

×
N

∑
n=1

ewm −
0.5× α2

N
× n (8)

where γ1 and γ2 are the importance weight, γ1 = 0.5, γ2 = 0.5, γ1 + γ2 = 1. α1 and α2 are
the empirical coefficients, determined according to expert experience.
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When the suppression effect is more important, the weights of the two objectives
are designed to be γ1 = 0.87 and γ2 = 0.13, respectively. Decision-making objective 4 is
defined as:

Reward4 =
0.8× α1

max
N
∑

n=1
ewm

×
N

∑
n=1

ewm −
0.2× α2

N
× n (9)

In the anti-jamming process, the ECCMs in some sub-domains cannot be used at
the same time. For example, the inter-pulse frequency-agile waveform in the frequency
sub-domain cannot be used at the same time as the LFM signal ECCM in the wave-
form sub-domain. Therefore, we set constraints and a prior knowledge base KB. The
transform sub-domains {TD1, · · · , TDn, · · · , TDN} are encoded from 1 to N, and the
transform sub-domains are permutated and combined to generate V combinations VCv,
v ∈ {1, 2, · · · , V}, V = C1

N + C2
N + · · ·Cn

N + · · ·+ CN
N . We pre-select the combinations of

transform sub-domains where ECCMs cannot be cascaded through expert knowledge.
They are put into the prior knowledge base KB and named constrans_VCv. The constraint
condition of the decision-making algorithm is to judge whether the action exists in the
knowledge base KB.

3.2. Anti-Jamming Decision-Making Algorithm Based on DDPG-MADDPG
3.2.1. Preliminaries

The DDPG algorithm is an online DRL algorithm under the actor–critic framework [42].
It includes an actor network and a critical network, each of which follows its own update
law to maximize the cumulative expected return. In order to solve the optimal policy π∗

from Section 2.2, we make µ = π(at|st ). If the target policy is µ : S ← A , the critic network
uses the Bellman equation to express the optimal action value function [43] as follows:

Qµ(st, at) = Ert ,st+1∼E[r(st, at) + γQµ(st+1, µ(st+1))] (10)

Qµ(st, at) depends on the environment, and it is possible to learn the Qµ off-policy by
using transitions generated via the different stochastic behavior policy β. By minimizing
the loss between the Q-function and the target value [44], the critic network θQ is optimized:

L
(

θQ
)
= Est∼ρβ ,at∼β,rt∼E

[(
Q
(

st, at | θQ
)
− yt

)2
]

(11)

where θQ denotes the parameters of policy β. The target value yt is obtained by:

yt = r(st, at) + γQ
(

st+1, µ(st+1) | θQ
)

(12)

DDPG keeps a parameterized actor function µ(s|θµ ) that defines the current policy by
deterministically mapping states to precise actions. The critic function Q(s, a) is learned
using the Bellman equation. By applying the chain rule on the expected return from the
start distribution J with the actor parameters, the actor network is updated:

∇θµ J ≈ Est∼ρβ

[
∇θµ Q

(
s, a
∣∣θQ )∣∣∣s=st ,a=µ(st |θµ)

]
≈ Est∼ρβ

[
∇aQ

(
s, a
∣∣θQ )∣∣∣s=st ,a=µ(st)∇θµ µ

(
s
∣∣θQ )|s=st

] (13)

DDPG uses a replay buffer to address the issue that the samples are independent and
identically distributed. The replay buffer is a finite-sized cache D. Transitions are sampled
from the environment according to the exploration policy and the tuple (st, at, rt, st+1) is
stored in the replay buffer. It constructs an exploration policy µ′ by adding noise sampled
from a noise process N to our actor policy:

µ′(st) = µ
(

st

∣∣∣θµ
t

)
+N (14)
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MADDPG can enable multiple sub-agents to complete intricate tasks through commu-
nication interaction and collaborative decision making in a high-dimensional and dynamic
environment [45]. Consider a game with N sub-agents and continuous policies µθn

(ab-
breviated as µθn

) that is parameterized by θ = {θ1, . . . , θN} for more detail. The gradient
J(µn) = E[Rn] of the anticipated return for the sub-agent n can be expressed as:

∇θn J(µn) = Ex,a∼D
[
∇θn µn(an | on)∇an Qµ

n(x, a1, . . . , aN)
∣∣∣an=µn(on)

]
(15)

where the Qµ
n(x, a1, . . . , aN) is a centralized action-value function that outputs the Q-value

for the sub-agent n after receiving the collective actions of all sub-agents, a1, . . . , aN , and
some state data x, as inputs. In its most basic form, x might be made up of all sub-
agents’ observations, X = (O1, . . . , ON). The sub-agent n obtains a personal observation
On connected with the state. The tuples (x, x′, a1, . . . , aN , r1, . . . , rN), which record the
experiences of all sub-agents, are contained in the experience replay buffer D.

The action-value function Qµ
n is updated as:

L(θn) = Ex,a,r,x’

[(
Qµ

n(x, a1, . . . , aN)− y
)2
]
, y = rn + γQµ′

n
(
x′, a′1, . . . , a′N

)∣∣∣a′j=µ′j(oj)
(16)

where µ′ =
{

µθ′1
, . . . , µθ′N

}
is one of the target policies in the collection with the delayed

parameters θ′n.
Each sub-agent n can furthermore retain an approximation µ̂

φ
j
n

(where φ are the

parameters of the approximation; hereafter µ̂
j
n) to the genuine policy of sub-agent j, µj,

eliminating the premise of knowing other sub-agents’ policies, as required by (16). By
maximizing the log-likelihood of sub-agent j′s actions and using an entropy regularizer,
this approximation of a policy is learned by:

L
(

φ
j
n

)
= −Eoj ,aj

[
log µ̂

j
n
(
aj | oj

)
+ λH

(
µ̂

j
n

)]
(17)

where H is the policy distribution’s entropy. With the approximation policies, the value y
in (16) can be roughly computed as follows:

ŷ = rn + γQµ′
n

(
x’, µ̂′1n (o1), . . . , µ′n(on), . . . , µ̂′Nn (oN)

)
(18)

where the approximate policy µ̂
j
n’s target network is denoted by the letter µ̂′n

j . It should
be noted that (17) can be optimized entirely online: we extract the most recent samples of
each sub-agent j from the replay buffer to update Qµ

n , the centralized Q function, in a single
gradient step before updating φ

j
n.

To produce multi-agent policies that are more resistant to changes in competing sub-
agents’ policies, it trains a collection of K different sub-policies. Each episode, it chooses
one sub-policy at random for each sub-agent to carry out. Assume that policy µn is an
ensemble of K various sub-policies, with sub-policy k denoted by µ

θ
(k)
n

(denoted as µ
(k)
n ). The

ensemble objective is maximized for sub-agent n: Je(µn) = E
k∼uni f (1,K),s∼pµ ,a∼µ

(k)
n
[Rn(s, a)].

Because various sub-policies will be executed in separate episodes, we keep a replay buffer
D(k)

n for each sub-policy µ
(k)
n of sub-agent n. As a result, the gradient of the ensemble goal

with respect to θ
(k)
n may be calculated as follows:

∇
θ
(k)
n

Je(µn) =
1
K
E

x,a∼D(k)
n

[
∇

θ
(k)
n

µ
(k)
n (an | on)∇an Qµn

n (x, a1, . . . , aN)

∣∣∣∣an=µ
(k)
n (on)

]
(19)
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3.2.2. DDPG-MADDPG Algorithm

In order to cope with varied jamming modes, it is necessary to solve the problem of ef-
ficiently optimizing ECCMs in a high-dimensional and layered knowledge base. Therefore,
we propose a dual RL model based on the DDPG-MADDPG algorithm. It comprises an
outer DDPG and an inner MADDPG, as shown in Figure 3. To reduce the dimensionality
of the action space, we divide the radar action space into two sub-spaces containing the
transform domain and the ECCM. The anti-jamming process is divided into two layers. The
first decision-making layer is the outer DDPG, which uses the DDPG algorithm to select the
transform sub-domains. The second decision-making layer is the inner MADDPG, which
uses the MADDPG algorithm to select ECCMs according to the transform sub-domains.
We found the global optimal solution by interacting the outer DDPG with the inner MAD-
DPG. The interaction between the two layers can be described as follows: the outer DDPG
determines the transform sub-domains and guides the actions of the inner MADDPG. The
ECCMs determined by the inner MADDPG directly determine the anti-jamming effect of
the radar and affect the choice of the next decision-making action.
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The outer DDPG contains the agent 1. The observation state is defined by the jamming
modes. The state s1

t at time t is an M-dimensional vector encoded by 1 and 0, with each
dimension corresponding to one jamming mode. The dimension of vector s1

t with jamming
is set to 1 and the dimension of vector s1

t without jamming is set to 0. For example, if
M = 8, m = 3, there is s1

t = [0, 0, 1, 0, 0, 0, 0, 0]. The output action is defined by transform
domains. We encode all combinations VCv sequentially from 1 to V. The action a1

t at time
t is an eight-bit binary code of combinations VCv. For example, if N = 4, V = 15, v = 3,
there is a1

t = [0, 0, 0, 0, 0, 0, 1, 1]. We set decision-making constraints. When the action of
agent1 selected exists in the KB, then reward1 = −∞. Otherwise, go to the next step. The
feedback reward is defined by decision-making objectives. Because there are four decision-
making objectives, we define four rewards, reward1

1 = Reward1, reward1
2 = Reward2,

reward1
3 = Reward3, reward1

4 = Reward4, to optimize the DDPG-MADDPG model, respec-

tively. The Q1
(

s1, a1 | θQ1
)

and Q1′
(

s1, a1 | θQ1′
)

of the critic network are optimized by

Equation (10). The θQ1
and θQ1′

of the critic network are optimized by Equation (11). The
µ1
(

s1 | θµ1
)

and µ1′
(

s1 | θµ1′
)

of the actor network are optimized by Equation (14). The

θµ1
and θµ1′

of the actor network are optimized by Equation (13).
For the inner MADDPG, we regard N transform domains as N sub-agents, and w

ECCMs as the sub-agent’s w-dimensional action space. Each sub-agent contains a w-
dimensional action space. We define the state, action, and reward of the nth sub-agent as
follows. The observation state is defined by the transform sub-domains and the jamming
modes. The state o2

n at time t is an M+ 8-dimensional vector by combining the vector a1
t and

the vector s1
t , where o2

n =
[
a1

t , s1
t
]
. For example, if M = 8, m = 3, N = 4, V = 15, v = 3,

there is o2
n = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0]. The output action is defined by ECCMs

{AJM1, · · · , AJMw, · · · , AJMW}. The action Aa2
t

n at time t is a W-dimensional vector en-
coded by 1 and 0, with each dimension corresponding to one ECCM. The dimension of

the vector Aa2
t

n with the selected ECCM is 1, and the dimension of the vector Aa2
t

n without

the selected ECCM is 0. For example, if W = 4, w = 2, there is Aa2
t

n = [0, 1, 0, 0]. The
coordinated decisions of multiple transform sub-domains fully cooperate. The goal of each
sub-agent in complete cooperation is to maximize the common reward. Therefore, the
reward function of all sub-agents is the same. Therefore, the feedback reward is defined by
AJIF ewm, where reward2

n = ewm. The decision goal of each sub-agent is to find the action
with the highest AJIF ewm value in the sub-action space within a decision-making period.
The rewards reward2 of all sub-agents are fed back to DDPG for its optimization strategy.
The network optimization method of each sub-agent is the same as that of DDPG.

In order to improve the operating efficiency of the algorithm, we adopted a centralized
training distributed execution framework in MADDPG. It solves the problem of network
parameter explosion caused by independent training execution of the actor–critic network
for each sub-agent. During the training and testing process of the DDPG-MADDPG
algorithm, we adopted the method of simultaneous optimization of the outer DDPG
and inner MADDPG. Compared with sequential optimization, it not only reduces the
dimensionality of the action space, but also finds the global optimal solution in a shorter
convergence time. We used the Gumbel Softmax trick to solve the problem that the
algorithm cannot handle discrete action spaces [46]. The sampling of the output distribution
of the policy network in the algorithm is converted into calculating a fixed learnable
probability plus a noise independent of the policy network. In particular, we reconstructed
the discrete action space sampling process of DDPG and MADDPG as continuous. This
enables the policy network to be efficiently optimized via gradient descent, and, finally, to
output discrete actions.

The algorithm of the radar anti-jamming decision-making training algorithm based
on DDPG-MADDPG is shown in Algorithm 1, where the input is the jamming strategy and
the output is the anti-jamming strategy.
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Algorithm 1: DDPG-MADDPG algorithm.

Initialize parameters.
Initialize replay buffer D1 and D2.
For episode = 1 to sample length do:

Initialize a random process N 1 and N 2 with Gumbel Softmax distribution.
Receive initial state s1

1, Ss2
1 .

For t = 1 (DDPG) to the decision-making cycle dp do:
Sample action a1

t from Gumbel Softmax distribution according to the current policy µ1
(

st | θµ1
)

and exploration noise N 1
t .

Determine whether a1
t is in KB; if so, set reward1 = −∞, and return to the previous step.

Otherwise, go to the next step.
Execute actions a1

t =
(
a1

1, . . . , a1
N
)

and observe reward r1
t and observe new state s1

t+1.
Store transition

(
s1

t , a1
t , r1

t , s1
t+1
)

in replay buffer D1.

Sample a random minibatch of X transitions
(

s1
i , a1

i , r1
i , s1

i+1

)
from D1.

Set y1
i = r1

i + γQ1′
(

s1
i+1, µ1′

(
s1

i+1

∣∣∣θµ1′
)∣∣∣θQ1′

)
.

Update critic by minimizing the loss: L1 = 1
X ∑ i

(
y1

i −Q1
(

s1
i , a1

i

∣∣∣θQ1
))2

.

Update the actor policy using the sampled policy gradient:

∇
θµ1 J ≈ 1

X ∑
i
∇a1 Q

(
s1, a1

∣∣∣θQ1
)∣∣∣s1=s1

i ,a1=µ1(s1
i )
∇

θµ1 µ1
(

s1
∣∣∣θµ1

) ∣∣s1
i .

Update target network parameters:
θQ1′ ← τθQ1

+ (1− τ)θQ1′
, θµ1′ ← τθµ1

+ (1− τ)θµ1′
.

End for
for t = 1 (MADDPG) to sample length do:

for each sub-agent n, sample action Aa2
t

n from Gumbel Softmax distribution according to

the current policy µ2
n

(
s2

t | θ
µ2

n
n

)
and exploration noise N 2

t .

Execute actions Aa2
t =

(
Aa2

t
1 , Aa2

t
2 , . . . , Aa2

t
N

)
and observe reward Rr2

t and new state Ss2
t+1 .

Store transition
(

Ss2
t , Aa2

t , Rr2
t , Ss2

t+1

)
in replay buffer D2.

Ss2
t ← Ss2

t+1

for sub-agent n = 1 to N do

Sample a minibatch of X samples
((

Ss2
t

)j
,
(

Aa2
t

)j
,
(

Rr2
t

)j
,
(

Ss2
t+1

)j
)

from D2.

Set Y j =
(

Rr2
t

n

)j
+ γQµ2′

n

((
Ss2

t+1

)j
, A

a2
t+1

1 , A
a2

t+1
2 , . . . , A

a2
t+1

N

)∣∣∣∣∣Aa2
t+1

k =µ2′
k ((o

2)
j
k)

.

Update critic by minimizing the loss:

L
(

θ
µ2

n

)
= 1

X ∑ j

(
Y j −Qµ2

n

((
Ss2

t

)j
,
(

Aa2
t

1

)j
,
(

Aa2
t

2

)j
, . . . ,

(
Aa2

t
N

)j
))2

.

Update actor using the sampled policy gradient:

∇
θ

µ2
n

J ≈ 1
X ∑

j
∇

θ
µ2
n

µ2
n

(
o2j

n

)
∇a2

i
Qµ2

i

((
Ss2

t

)j
,
(

Aa2
t

1

)j
, . . . ,

(
Aa2

t
n

)j
, . . . ,

(
Aa2

t
N

)j
)∣∣∣∣∣(A

a2
t

n )
j

=µ2
n((o2

n)
j)

.

End for

Update target network parameters for each sub-agent b: θ
µ2′
n ← τθ

µ2

n + (1− τ)θ
µ2′
n .

end for
end for

4. Results

To verify the training effect of the radar anti-jamming decision-making method based
on the DDPG-MADDPG algorithm, it is compared with the anti-jamming decision-making
method based on the DQN-MADQN algorithm [47] and random decision-making al-
gorithm [40]. The structure of the DQN-MADQN algorithm is the same as that of the
DDPG-MADDPG algorithm. DQN optimizes and controls the selection of transform sub-
domains, and MADQN optimizes and controls the selection of ECCMs. The random
decision algorithm is also divided into two layers. It uses uniform random distribution
to select transform sub-domains and ECCMs. Simulation experiments include robust per-
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formance verification based on loss function, convergence performance verification based
on reward function, decision accuracy verification based on SMAPE, and generalization
performance verification based on large action space. The simulation parameters are shown
in Table 5.

Table 5. Simulation parameters.

Parameter Value

Jamming modes M 8
Transform sub-domains N 4

ECCMs W 4
The number of combinations V 15

The number of constrans_VCv in KB 4
Decision-making cycle dp 200

Discount factor γ 0.9
Learning rate of the critic network 0.002
Learning rate of the actor network 0.001

Replay buffer D1 and D2 2048
X samples in one minibatch 64

Sample length 1024
Training time (the number of minibatches) 200

Based on expert knowledge and simulation experiments, we obtained the correlation
matrix. The schematic elements of the correlation matrix are shown in Table 6. The
jamming modes Jam1, Jam2, Jam3, Jam4, Jam5, Jam6, Jam7, Jam8, · · · are denoted as sweep
jamming, blocking jamming, aiming jamming, intensive false target jamming, sample-and-
modulation deception, range deception jamming, sweep + range deception compound
jamming, smart + intensive false target compound jamming, etc. The transform sub-
domain is denoted as TD1, TD2, TD3, TD4, · · · , which is denoted as frequency, waveform,
spatial and signal processing, etc. The frequency sub-domain TD1 includes the inter-pulse
frequency-agile waveform AJM1, the intra-pulse sub-frequency-agile waveform AJM2,
etc. The waveform sub-domain TD2 includes the LFM signal ECCM based on frequency
modulation disturbance AJM1, the ECCM based on phase encoding signal AJM3, the
ECCM based on frequency-agile signals AJM4, etc.

Table 6. The schematic elements of the correlation matrix.

Transform Domain ECCM Jamming Mode

Jam1 Jam2 Jam3 Jam4 Jam5 Jam6 Jam7 Jam8 . . .

TD1

AJM1 0.99 0.6 0.99 0.3 0.2 0.3 0.92 0.5 . . .

AJM2 0.9 0.5 0.97 0.2 0.1 0.2 0.9 0.4 . . .

AJM3 0.1 0.11 0.1 0.65 0.85 0.9 0.3 0.6 . . .

AJM4 0.1 0.07 0.12 0.6 0.75 0.8 0.2 0.55 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TD2

AJM1 0 0.01 0.1 0.7 0.6 0.88 0.89 0.7 . . .

AJM2 0 0 0.05 0.73 0.65 0.8 0.81 0.73 . . .

AJM3 0.1 0.03 0.15 0.9 0.7 0.95 0.96 0.91 . . .

AJM4 0 0.01 0.17 0.95 0.73 0.87 0.88 0.96 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 6. Cont.

Transform Domain ECCM Jamming Mode

TD3

AJM1 0.5 0.6 0.8 0.6 0.97 0 0.5 0.65 . . .

AJM2 0.6 0.7 0.95 0.55 0.1 0 0.6 0.6 . . .

AJM3 0.6 0.99 0.8 0 0 0 0.3 0.1 . . .

AJM4 0.55 0.99 0.77 0 0 0 0.32 0.05 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TD4

AJM1 0 0.1 0.1 0.4 0.2 0.5 0.75 0.82 . . .

AJM2 0 0.05 0.2 0.15 0.2 0.6 0.8 0.8 . . .

AJM3 0.1 0.13 0.2 0.3 0.45 0.6 0.7 0.4 . . .

AJM4 0.15 0.18 0.2 0.35 0.5 0.7 0.8 0.35 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1. Robust Performance Based on the Loss Function

In the training process of DRL, the loss function is used to update the learning pa-
rameters of the deep neural network (DNN). If the loss function value gradually tends
toward 0, it means that the robustness of the algorithm model is better. Therefore, for
four decision-making objectives, we analyze the loss function of the neural network. The
curve of loss changing with the training times is shown in Figure 4. The loss values of
the actor network of outer DDPG and the actor network of inner MADDPG are negative
and gradually tend toward 0. This is due to the updating of the actor network using the
sampled policy gradient. The update of other neural networks uses cross-entropy loss, so
the loss value is positive and tends to become smaller and smaller.

To further explore the convergence speed of the model, we observed the change of loss
when the training times were 1–30, as shown in Figure 5. In the case of decision-making
objective 1, the neural networks loss value of the DDPG-MADDPG algorithm will all
converge to 0 after 19 training times. In the case of decision-making objectives 2, 3, and
4, the neural networks loss values of the DDPG-MADDPG algorithm all converge to 0
after 22 training times. However, in the case of decision-making objectives 1, 2 and 4, the
neural networks loss values of the DQN-MADQN algorithm will converge, but none of
them can converge to 0. In the case of decision target 3, the neural networks loss values
of the outer DQN can converge to 0 at the beginning. The neural networks loss values of
the inner MADQN will gradually converge, but they cannot converge to 0. Therefore, the
model of the DQN-MADQN algorithm is unstable for different decision-making objectives.
In conclusion, through comparison with the DQN-MADQN model, the loss value of the
DDPG-MADDPG model can be restrained to 0 in the first 22 training times.

4.2. Convergence Performance Based on Reward Function

To verify the convergence performance of the algorithms, we analyzed the aver-
age reward in 1024 decision-making periods, and the curves are shown in Figure 6. In
0–150 episodes, the reward started from 0 and gradually increased. There are two main
reasons. One is that in the initial stage, the algorithm is constantly adapting to the environ-
ment, which leads to trial and error in the algorithm to find a better anti-jamming strategy.
Second, because the algorithm is in the exploratory stage, the weight parameters of the
neural network have not reached the optimum, resulting in large fluctuations in the reward
value. After 150 episodes, the reward of the DDPG-MADDPG algorithm converged quickly.
The reward value basically tended to be stable, and it stabilized at the optimal solution.
However, the DQN-MADQN algorithm needs to gradually converge after 800 episodes.
The convergence speed was slow, and it was stuck in a locally optimal solution. Because
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the random decision-making method adopted a uniform random strategy, its results were
relatively stable, and it is impossible to make decisions according to the optimal strat-
egy. Therefore, compared with the DQN-MADQN algorithm, the convergence time of the
DDPG-MADDPG algorithm was improved by more than 80%.
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Commented [M2]: 换图了 Figure 4. The curve of loss changing with training times. (a), (b), (c) and (d) are the training results
when the decision-making objectives are 1, 2, 3, and 4, respectively. DDPG-MADDPG consists of
four networks: the actor network of the outer DDPG, the critic network of the outer DDPG, the
actor network of the inner MADDPG, and the critic network of the inner MADDPG. DQN-MADQN
consists of two networks: the outer DQN network and the inner MADQN network.

4.3. Decision Accuracy Performance Based on SMAPE

To verify the accuracy of the anti-jamming decision-making method, we calculated the
decision-making error between the current anti-jamming policy π(at|st ) and the optimal
anti-jamming policy π∗. The symmetric mean absolute percentage error (SMAPE) was
used as the criterion to characterize the decision-making error. It was defined as:

SMAPE =
100%

B

B

∑
b=1

|x̂b − xb|
(|x̂b|+ |xb|)/2

(20)

where b is the number of predicted data sets. xb is the true value of the bth sample, which is
the optimal solution for the decision making. x̂b is the predicted value for the bth sample.
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Figure 5. The curve of loss changing with 1–30 training times. (a), (b), (c) and (d) are the training
results with 1–30 training times when the decision-making objectives are 1, 2, 3, and 4, respectively.
DDPG-MADDPG consists of four networks: the actor network of the outer DDPG, the critic net-
work of the outer DDPG, the actor network of the inner MADDPG, and the critic network of the
inner MADDPG. DQN-MADQN consists of two networks: the outer DQN network and the inner
MADQN network.

Figure 7 shows the anti-jamming strategy and the SMAPE value for decision-making
objectives 1 and 2. For decision-making objective 1, the optimal decision-making result for
each jamming is the cascade use of three ECCMs, as shown in Figure 7a. This is because
decision-making objective 1 only considers the optimal anti-jamming effect and abandons
the complexity brought by the increase in the number of ECCMs. The decision error in
Figure 7b shows that the SMAPE of the DDPG-MADDPG algorithm suppressing jamming
Jam5 is 0.05, and the other SMAPEs are all 0. However, the SMAPE of the DQN-MADQN
algorithm is less than 0.5 when suppressing jamming Jam4 and Jam5, and the rest of the
SMAPEs are greater than 0.5. The SMAPEs of the random decision making are all greater
than 0.5. For decision-making objective 2, the optimal decision-making result for each
jamming is the cascade use of three ECCMs, as shown in Figure 7c. For each jamming, the
algorithm decides on one ECCM. This is because decision-making objective 2 only considers
the average value of the anti-jamming effect. Compared with the strategy of cascading
multiple ECCMs, the anti-jamming effect of one ECCM is smaller than the average value.
The decision error in Figure 7d shows that the SMAPE of the DDPG-MADDPG algorithm
suppressing jamming Jam5 is 0.28, and the other SMAPEs are all 0. However, the SMAPE
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of the DQN-MADQN algorithm is greater than 0.5 when jamming Jam1, Jam2 and Jam8
are suppressed, and the rest of the SMAPEs are less than 0.5. The SMAPEs of the random
decision making are all greater than 0.5.
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Figure 8 shows the anti-jamming strategy and SMAPE value for decision-making
objectives 3 and 4. For decision-making objective 3, the optimal decision-making result is
shown in Figure 8a. The optimal strategy to suppress jamming Jam4 is the ECCM AJM4 of
transform sub-domain TD2. The optimal strategy to suppress jamming Jam1, Jam2, Jam3,
and Jam5 is the cascade use of two ECCMs. The optimal strategy to suppress jamming Jam7
and Jam8 is the cascade use of three ECCMs. This is because decision-making objective 3
not only considers the anti-jamming effect but also the complexity brought by the number
of ECCMs. The decision error in Figure 8b shows that the SMAPE of the DDPG-MADDPG
algorithm suppressing jamming is 0 for Jam3, Jam4, and Jam8. Although other SMAPEs are
not 0, they are less than 0.25. However, the SMAPEs of the DQN-MADQN algorithm are
0 when Jam1, Jam2, Jam6, and Jam7 are suppressed, the SMAPEs are 0.67 when jamming
Jam8 is suppressed, and the other SMAPEs are less than 0.25. The SMAPEs of the random
algorithm are all greater than one. For decision-making objective 4, the optimal decision-
making result is shown in Figure 8c. The optimal strategy for suppressing jamming Jam1
is the cascade use of two ECCMs. When suppressing the others, three ECCMs are chosen
to be used in the cascade. Compared with decision-making objective 3, decision-making
objective 4 focuses more on the importance of the anti-jamming effect. The decision error
in Figure 8d shows that the SMAPEs of the DDPG-MADDPG algorithm suppress Jam5 and
Jam6, which are less than 0.15. The SMAPEs when suppressing other jamming modes are 0.
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Although the SMAPEs when the DQN-MADQN algorithm suppresses Jam7 and Jam8 are
0, the SMAPEs when suppressing other jamming modes are greater than 0.1. The SMAPEs
of the random algorithm are all greater than one.
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decision-making errors based on SMAPE for decision-making objectives 1 and 2.

For comparative analysis, we calculated the average SMAPEs, as shown in Figure 9.
In Figure 9a, the average SMAPE of the DDPG-MADDPG algorithm is approximately 0,
indicating that the decision-making results are approximately equal to the optimal anti-
jamming strategy. The average SMAPE of the DQN-MADQN algorithm is greater than
0.1, indicating that it hardly found the optimal anti-jamming strategy. In Figure 9b, the
average SMAPE of the DDPG-MADDPG algorithm is also approximately 0. When the
decision-making objectives are 1, 2, and 3, the average SMAPE of the DQN-MADQN
algorithm is greater than 0.1, indicating that it hardly found the optimal solution. Therefore,
compared with DQN-MADQN, the decision error of DDPG-MADDPG is reduced by more
than 85%.
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4.4. Generalization Performance Based on Large Action Space

To verify the generalization performance of the algorithm in large data dimensions, we
expanded the action space of the algorithms based on decision-making objective 4. We set
the anti-jamming action space to 4 × 4 (where M = 4, W = 4), 4 × 8 (where M = 4, W = 8),
4 × 12 (where M = 4, W = 12), and 4 × 16 (where M = 4, W = 16), respectively.

Under different anti-jamming action space dimensions, we observed the convergence
episode of the reward function, as shown in Figure 10. The convergence episode of
the DDPG-MADDPG algorithm was smaller than the convergence episode of the DQN-
MADQN algorithm. As the dimension of the anti-jamming action space increased, the gap
between the two became larger. The convergence episode of the DQN-MADQN was very
unstable. When the action space dimension was 4 × 8, the convergence episode suddenly
became larger and then became smaller, but the overall trend was upward. Because the
random algorithm is a random decision method, there is no concept of convergence time.
The decisions it makes are evenly distributed, so the curve is a straight line with one conver-
gence episode. Therefore, the convergence time of the DDPG-MADDPG algorithm within
4×16 dimensions can be controlled within 200 convergence episodes. In conclusion, the
DDPG-MADDPG algorithm has better scalability and stronger adaptability when dealing
with the optimal selection problem of a high-dimensional knowledge base of ECCMs.
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MADQN algorithm. As the dimension of the anti-jamming action space increased, the gap 
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The decisions it makes are evenly distributed, so the curve is a straight line with one con-
vergence episode. Therefore, the convergence time of the DDPG-MADDPG algorithm 
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5. Conclusions

In this investigation, we proposed an intelligent radar anti-jamming decision-making
method based on the DDPG-MADDPG algorithm. By establishing the working scenario
of radar and jamming, we designed an intelligent radar anti-jamming decision-making
model, and the decision-making process was formulated. Anti-jamming improvement
factors play an important role in the problem of evaluating the performance of ECCMs, and
the correlation matrix of jamming and anti-jamming is derived from it. With the correlation
matrix of jamming and anti-jamming as prior knowledge, the DDPG-MADDPG algorithm
was designed to generate an anti-jamming strategy. To verify the performance of the radar
anti-jamming decision-making method based on the DDPG-MADDPG algorithm, it was
compared with the anti-jamming decision-making method based on the DQN-MADQN
algorithm and a random decision-making algorithm.

Four comparative experiments were performed: (1) We analyzed the loss function of
the neural network to verify the robustness of the algorithms. The loss value of the DDPG-
MADDPG model was restrained to 0 in the first 22 training times. However, the loss value
of the DQN-MADQN model could hardly converge to 0. It was verified that the proposed
method has superior robustness performance for different decision-making objectives.
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(2) The reward function was analyzed to verify the robust convergence performance of
the algorithms. Among the four decision-making objectives, the reward values of the
DDPG-MADDPG algorithm achieved convergence within 150 episodes. However, the
DQN-MADQN algorithm needed to gradually converge after 800 episodes. This proves
that the DDPG-MADDPG algorithm has a short convergence time, which can be improved
by about 80%. (3) The anti-jamming decisions were performed for eight jamming modes,
and the criterion based on SMAPE was used to evaluate the anti-jamming decision making
accuracy. The average SMAPE of the DDPG-MADDPG algorithm was approximately
0, indicating that the decision-making results were approximately equal to the optimal
anti-jamming strategy. Compared with the DQN-MADQN algorithm, the decision error
of the DDPG-MADDPG algorithm was reduced by more than 85%. (4) We tested the
convergence time of the algorithms at different action space dimensions. The convergence
time of the DDPG-MADDPG algorithm within 4×16 dimensions can be controlled within
200 convergence episodes. However, the convergence time of the DQN-MADQN model
reached 890 convergence episodes in the 4×8 dimensions. It can be seen that the DDPG-
MADDPG algorithm still has excellent generalization performance at high dimensions.

In future research, we will design targeted intelligent radar anti-jamming decision-
making methods based on the dynamic and varied scene of one jamming mode. The
research results are and will be continuously put into the knowledge base. We will also
obtain more data and expert knowledge through experiments to continuously enrich the
database. In the end, we will study more generalized intelligent radar anti-jamming
decision-making algorithms.
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