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Abstract: Synthetic aperture radar (SAR) images have special physical scattering characteristics
owing to their unique imaging mechanism. Traditional deep learning algorithms usually extract
features from real-valued SAR images in a purely data-driven manner, which may ignore some
important physical scattering characteristics and sacrifice some useful target information in SAR
images. This undoubtedly limits the improvement in performance for SAR target recognition.
To take full advantage of the physical information contained in SAR images, a complex-valued
network guided with sub-aperture decomposition (CGS-Net) for SAR target recognition is proposed.
According to the fact that different targets have different physical scattering characteristics at different
angles, the sub-aperture decomposition is used to improve accuracy with a multi-task learning
strategy. Specifically, the proposed method includes main and auxiliary tasks, which can improve
the performance of the main task by learning and sharing useful information from the auxiliary task.
Here, the main task is the target recognition task, and the auxiliary task is the target reconstruction
task. In addition, a complex-valued network is used to extract the features from the original complex-
valued SAR images, which effectively utilizes the amplitude and phase information in SAR images.
The experimental results obtained using the MSTAR dataset illustrate that the proposed CGS-Net
achieved an accuracy of 99.59% (without transfer learning or data augmentation) for the ten-classes
targets, which is superior to the other popular deep learning methods. Moreover, the proposed
method has a lightweight network structure, which is suitable for SAR target recognition tasks
because SAR images usually lack a large number of labeled data. Here, the experimental results
obtained using the small dataset further demonstrate the excellent performance of the proposed
CGS-Net.

Keywords: target recognition; synthetic aperture radar (SAR); sub-aperture decomposition;
complex-valued convolutional neural networks (CV-CNNs)

1. Introduction

As an active microwave imaging sensor, synthetic aperture radar (SAR) has the tech-
nological advantage of long combat distances, operating in any condition of time and
weather [1–5]. It has a vital part to play in the remote sensing fields. Thus, as an important
application, SAR target recognition has become an important issue in recent research.

There are many algorithms for SAR target recognition in the current research, which
mainly include two paradigms: non-deep learning and deep learning methods. Specifically,
non-deep learning SAR target recognition methods generally include template matching [6]
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and model-based methods [7]. In the following, several of these methods and the method
proposed in this study are introduced in brief.

The template matching method is a basic method for pattern recognition, which
generates numerous templates from the targets in different images and recognizes the
targets by matching the templates with the region of interest (ROI) area [8]. However, it not
only needs many training samples to generate templates but also requires an overwhelming
amount of calculations. Consequently, it is difficult to apply the method in an actual SAR
recognition task.

The model-based method extracts features in a dataset from a physical or conceptual
model of a target and predicts the attributes of the target under different attitudes and
configurations [9,10]. It is more effective than template matching. The key to its success
lies in developing accurate models and identifying relevant features. However, physical
models are complicated and the simulation of a model is difficult, which seriously restricts
the development of the model-based method in SAR recognition tasks.

In recent years, with the rapid development of deep learning algorithms, some deep
learning methods have prevailed in the SAR image and signal processing field [11–15].
These deep learning methods can extract target characteristics automatically rather than
manually, as completed with traditional algorithms [16–22]. Compared with traditional
methods, current deep learning methods are more robust, accurate, and efficient [23–28].
For example, Chen et al. [29] proposed an all-convolutional neural network (CNN) for SAR
target recognition, which obtained better accuracy than traditional methods. Then, the
excellent advantages of deep learning in the SAR field were further demonstrated [30–32].
However, deep learning methods typically require a large amount of labeled data for
training. This undoubtedly restricts the application of deep learning methods in SAR
recognition tasks. Then, to further increase the accuracy of deep learning methods in
the case of small datasets, Peng et al. [33] applied a discriminator with classification for
SAR target recognition, which improved the performance by adjusting the conditions
of image generation and modifying the true and false discriminator. In reference [34],
a Wasserstein deep convolutional generative adversarial network (W-GAN) was used
for recognition, which obtained remarkable performance by improving the quality of
generated images. Reference [35] introduced a task-driven domain adaptation method
with transfer learning, which improved the performance of models in the case of small
datasets. Subsequently, many relevant deep learning methods including DA, GAN, deep
neural networks (DNNs) [36], and so on [37–41], have been proposed.

Although current deep learning methods have achieved some satisfactory results in
SAR target recognition tasks, they always ignore physical scattering characteristics [42,43].
In contrast to natural images, the physical essence of SAR images is the coherent superposi-
tion of electromagnetic vectors after the electromagnetic waves interact with the scene or
target. In the observation stage, the actual ‘small antenna’ of the SAR system is synthesized
into an equivalent ‘large antenna’ to improve the imaging resolution. In fact, an SAR image
is composed of multiple low-resolution echo signals with different imaging angles, which
can be decomposed into multiple sub-aperture images using the sub-aperture decompo-
sition algorithm [44,45]. Specifically, Figure 1 shows a full-aperture image and several
corresponding sub-aperture images. Although the resolution of sub-aperture images is
lower than that of full-aperture images, they contain abundant target features and electro-
magnetic information, which reflects the physical scattering characteristics of the target
from different angles [46]. The scattering information for one target may be different at
different angles. The target separability characteristics may exist in other angles when the
type of target cannot be recognized from a specific angle. Hence, compared with the origi-
nal composed SAR images, sub-aperture images contain multi-angle target information,
which may increase the possibility of distinguishing different types of targets. However, the
current deep learning methods generally regard SAR images simply as grayscale images
and ignore some important physical scattering characteristics. Thus, it is crucial to establish
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a recognition method that can fully utilize the physical characteristic information in SAR
images.
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Physical scattering characteristics are important parts of SAR images, which contain
a lot of useful information for target recognition. To make full use of the multi-angle
physical scattering characteristics of SAR images, Wang et al. [47] proposed a transfer
learning method with sub-aperture decomposition (SD). The SD algorithm is used to
obtain sub-aperture images, which can enrich target information and improve recognition
accuracy. However, original SAR images and sub-aperture images are complex-valued,
and directly applying the real-valued neural network to the SAR target recognition task
may potentially sacrifice some useful information for target recognition [48]. To make full
use of the target information in a complex-valued SAR image, Zeng et al. [49] proposed a
multi-stream complex-valued network for target recognition. Although the multi-stream
strategy can extract separability characteristics effectively, it also greatly increases the
calculations and parameters in the networks. This will negatively affect performance in
the case of small datasets. Subsequently, Liu et al. [50] applied the multilevel attributed
scattering center (M-ASC) framework for SAR target recognition, which helps enhance the
generalization ability of networks. However, the process of obtaining M-ASCs is complex
and parameter optimization is difficult, which seriously restricts the application in actual
SAR recognition tasks.

In order to extract the target separability characteristics effectively, in this paper, a
complex-valued network guided with sub-aperture images (CGS-Net) for target recognition
in SAR images is proposed. A multi-task learning strategy is used in the proposed method,
which combines the physical scattering characteristics of complex SAR images for target
recognition. It contains main and auxiliary tasks. Specifically, the main task is the target
recognition task, which is used to obtain the result of recognition. The auxiliary task
is the reconstruction task. One target has different scattering information in different
angles, thus, in the auxiliary task, sub-aperture decomposition is used to guide the network
to extract the separability features of targets, which fully utilizes the multi-angle target
information to improve the performance of the proposed method. Here, since original SAR
images and sub-aperture images are complex-valued, the proposed CGS-Net has a complex-
valued structure, which makes full use of amplitude and phase information available in
the complex SAR data for target recognition. Significantly, the proposed method has a
lightweight network structure, which may be suitable for SAR target recognition tasks due
to the scarcity of large amounts of labeled data in SAR images.

The main contributions of the proposed SAR target recognition method are summa-
rized as follows.

(1) A novel SAR target recognition method based on complex-valued networks with
a multi-task learning strategy is proposed in this paper. The proposed method is
not only a complex-valued network but also a multi-task learning-based SAR target
recognition method. Multi-task learning can be used to improve the performance
of the main task by learning and sharing useful information from the auxiliary task.
Here, the main and auxiliary tasks are contained in the proposed method. Specifically,
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the main task is the target recognition task, which is used to obtain the recognition
results. As an auxiliary task, the reconstruction task is used to guide the model to
learn the separability characteristics of targets by reconstructing the sub-aperture
image. Here, a complex-valued structure is used to obtain the features from SAR
images because the original SAR images are complex-valued.

(2) Multi-angle target information is mined for the SAR target recognition task using
sub-aperture decomposition. Since different targets have different physical scattering
characteristics at different angles, the sub-aperture images contain multi-angle target
information, which increases the possibility of distinguishing different types of targets.
Therefore, in this paper, sub-aperture decomposition is used to improve accuracy by
guiding the model to learn the target separability characteristics.

The rest of this paper is summarized as follows. The proposed CGS-Net for SAR
target recognition is briefly introduced in Section 2. Then, the experiments and analyses
are discussed in Section 3. Section 4 summarizes the whole paper in general.

2. Proposed Method
2.1. Overall CGS-Net Framework

A specific flowchart showing the CGS-Net framework is illustrated in Figure 2. It
can be seen that the proposed CGS-Net mainly includes three parts: the base module, the
recognition task, and the reconstruction task. In the base module, several complex-valued
convolutional layers are used to extract features from SAR images. The features are used
in the recognition task and the reconstruction task. Then, the recognition task is used to
obtain the recognition results. Finally, the reconstruction task is used to guide the model to
extract the separability features of targets by reconstructing the sub-aperture image, which
takes full advantage of the information in the sub-aperture images to improve recognition
performance. Notably, the reconstruction task only participates in the training stage as
an assistant task. In the test stage, the final recognition results are obtained with the
recognition task directly. These sub-structures are detailed in the following.
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2.2. Base Module

(1) Complex-Valued Convolutional Layer

The real-valued convolution (RV-Conv) operation purely extracts features from am-
plitude. Different from RV-Conv, in complex-valued convolution (CV-Conv), both the
amplitude and phase information in complex data are used to extract features for target
recognition. Hence, in SAR target recognition tasks, complex-value convolution is superior
to traditional real-valued-based convolution [48,51].
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Similar to traditional RV-Conv, the essence of CV-Conv is that the complex-valued
operation is combined with the convolutional operation. Here, when the operation of con-
volution extends to the complex field, we perform the corresponding element multiplication
and sum operation according to the complex-valued operation. In order to comprehend
CV-Conv easily, the complex-valued features are separated into real and imaginary parts.
Specifically, CV-Conv can be equivalent as follows [48]:

F ∗Q = (FR + iFI) ∗ (QR + iQI)
= (FR ∗QR − FI ∗QI) + i(FR ∗QI + FI ∗QR)

(1)

where F = FR + iFI represents the complex-valued feature layer, which contains real and
imaginary parts. Similarly, Q = QR + iQI represents the CV-Conv kernel. Both the output
feature layer and input are complex-valued.

In order to describe the process clearly, Figure 3 is used to illustrate the specific
difference between complex-valued and real-valued convolution. In Figure 3, red and black
represent the real and imaginary parts of the complex-valued operation, where ∗ is the
convolution operator, and the kernel size is K × K. In RV-Conv, C1 is the input channel
and C2 is the output channel. In CV-Conv, the first C1/2 and C2/2 feature maps (black) are
the real components, and the remaining feature maps (red) are the imaginary components.
Here, it can be demonstrated that CV-Conv under the same conditions (input and output
channels, and kernel size) has fewer parameters than RV-Conv. Specifically, the parameters
of CV-Conv are expressed by the following formula:

P = (C1
2 ×

C2
2 × K× K) + (C1

2 ×
C2
2 × K× K)

= 1
2 (C1 × C2 × K× K)

(2)

where the P is the parameter of CV-Conv. The parameters of RV-Conv under the same
conditions are C1 × C2 × K × K. It is obvious that CV-Conv has fewer parameters than
real-valued convolution, which is more suitable for a small dataset.
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Figure 3. Comparison of complex-valued and real-valued convolution. Here, * is the convolution
operation, the red one is the convolution operation on the imaginary convolution kernel, and the
black one is on the real convolution kernel.
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(2) Specific Structure of Base Module

The base module is used to extract features from SAR images. Inspired by ResNet [52],
in this paper, the complex-valued residual structure is used in the base module. As shown
in Figure 2, the base module mainly includes a complex-valued convolutional layer and
four complex-valued residual modules. Each complex-valued residual module has two
complex-valued convolutional layers and a shortcut layer. Compared with general deep
learning target recognition networks, the proposed method has fewer parameters. This
is mainly due to the following reasons. The base module of the proposed method has a
lightweight structure. It only contains a total of nine complex-valued convolutional layers,
which is far fewer than typical deep learning networks, such as ResNet, VGG [53], etc. In
addition, CV-Conv has fewer parameters than traditional RV-Conv. Thus, the proposed
method may be suitable for SAR target recognition tasks because SAR images usually lack
a large number of labeled data.

2.3. Reconstruction Task

(1) Sub-Aperture Decomposition Algorithm

In the SAR system, SAR images are composed of low-resolution echo signals with
different azimuths. In different sub-looks, the scattered echo information is different,
which are also called sub-aperture images. The information can be obtained using the
sub-aperture decomposition (SD) algorithm. Here, the sub-aperture images are related
but different from each other [45,47]. Abundant electromagnetic scattering information
on ground targets is contained in the sub-aperture images, such as geometry, material,
structure, etc.

Figure 4 shows the specific process of the sub-aperture decomposition method. In
order to clearly explain the process, here, the number of decomposed sub-aperture images
is set to three. Theoretically, a SAR image can be decomposed into any number of sub-
aperture images, and the Doppler spectrum may overlap or not.
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The specific procedure for generating sub-aperture images using the SD algorithm is
summarized as follows.

Step 1: The Doppler spectrum on the direction dimension is obtained using the fast
Fourier transform (FFT).

Step 2: A remove-window process is performed in the Doppler spectrum, and the
Doppler spectrum is divided into three equal parts.

Step 3: The inverse FFT (IFFT) operation is performed in three parts of the Doppler
spectrum to obtain the final sub-aperture image.

S1–S3 in Figure 4 are three sub-aperture images generated with the SD algorithm.
Notably, in the SD procedure, the original SAR image is complex-valued, and the sub-
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aperture image is also complex-valued. Here, for visualization, only the real-valued image
is shown in the figure.

(2) Guided Module

The guided module is used to lead network training, which fully extracts separable
features of the target and effectively identifies different targets accurately. Owing to special
imaging characteristics, in the SAR system, the sub-aperture image contains multi-angle
target information. Different targets have different physical scattering characteristics at
different angles, which increases the possibility of distinguishing different types of targets.
Therefore, in the guided module, the sub-aperture image is used to guide the network to
learn the separability characteristics of targets. Specifically, the guided module upsamples
the features extracted using the base module to reconstruct a complex image. Then, the
parameters in the base module are updated according to the recognition loss and guided loss
after calculating the loss between the upsampling results and sub-aperture images. With
the guided module, the base module pays more attention to the separability characteristics
of targets, which aids the network to recognize different targets efficiently.

Since the base module is a complex-valued network and the sub-aperture image itself is
also complex-valued, the structure of the guided module must be complex-valued. Several
complex-valued transposed convolutional layers are contained in the guided module,
which can be used to reconstruct sub-images with upsampling features. Finally, the sub-
aperture image is used to guide the network to learn which regions and features in the SAR
image mainly determine the category of the target.

(3) Reconstruction Loss Function

Owing to the complex-valued structure of the reconstruction task, a complex-valued
loss function is used to calculate the difference between the reconstruction results and
sub-aperture images. Specifically, the reconstruction loss function is summarized as follows:

Lr =
n

∑
k=1
|xk − yk| =

n

∑
k=1
|(xkR − ykR) + i(xkI − ykI)| (3)

where xk = xkR + ixkI and yk = ykR + iykI are the kth complex-valued pixel of the recon-
structed and sub-aperture image, respectively. Compared with the real-valued loss, the
loss function highlights the significance of complex-valued information, and both the real
and imaginary parts are processed using backpropagation simultaneously.

2.4. Recognition Task

(1) Complex-Valued FC-Layer

In the recognition task, a complex-valued fully connected layer is used to integrate
the complex features to obtain the recognition output since the input features are complex-
valued. The formula for the specific complex-valued fully connected layer is given as
follows:

ak =
n
∑

j=1
Wkj · xj =

n
∑

j=1
(WkjR + iWkjI) · (xjR + ixjI)

=
n
∑

j=1
(WkjR · xjR −WkjI · xjI) + i(WKjR · xjI + WkjI · xjR)

(4)

where ak (k = 1, 2 . . . . . . m) is the output kth neuron, W = WR + iWI is the complex weight,
and x = xR + ixI is the input neuron.

(2) Recognition Loss Function

In order to highlight the importance of the imaginary part, a complex-valued loss
function is used to integrate complex information, which processes both the real and
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imaginary parts using backpropagation simultaneously. The specific formula for the loss
function is expressed as follows:

Lc = − 1
N

N
∑

j=1
[yjlog( f j(xr + ixi))

+(1− yj)log((1− f j(xr + ixi))]

(5)

f (xr + ixi) =
√

x2
r + x2

i (6)

where xr and xi are the real and imaginary parts of the complex output, respectively, and yj
is the label of SAR images.

2.5. Specific Loss Function in the Proposed Method

Owing to the proposed main and auxiliary tasks, recognition loss and reconstruction
loss are both contained in the loss function in the proposed method. Here, the specific loss
function in the proposed method can be expressed as follows:

L = Lc + Lr (7)

where L is the loss function in the proposed method and Lr and Lc are the recognition loss
and reconstruction loss functions, respectively. Here, the specific expression of Lr and Lc
are displayed in Equations (3) and (5).

3. Experimental Results
3.1. Experimental Data

The experiment data used in this paper are from the moving and stationary target
acquisition and recognition dataset, which is the benchmark dataset for SAR target recogni-
tion tasks. It contains ground vehicle targets for different target types, depression angles,
serial numbers, and aspect angles. Specifically, the dataset includes different ten-class tar-
gets with omnidirectional coverage in the 0–360◦ range [29]. The samples for the ten-class
targets and corresponding optical images are displayed in Figure 5. It should be noted
that the experimental data used in the complex-valued networks are the original MSTAR
data with complex-valued components. The data used in the real-valued networks are also
processed from the original complex-valued MSTAR data. The specific information in the
MSTAR dataset is shown in Table 1.
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Figure 5. The samples for ten-class targets and corresponding optical images, which include BMP2,
BRDM2, BTR70, BTR60, D7, T62, T72, ZIL131, ZIL131, 2S1, and ZSU234. The optical images are at the
top, and the corresponding SAR images are at the bottom.

Table 1. The Number of Samples for the Ten-Class Vehicle Targets.

Class Test Set
(Depression 15◦)

Training Set
(Depression 17◦)

Serial
Number

BMP2 195 233 9563
BRDM2 274 298 E-71
BTR70 196 233 c71
BTR60 195 256 k10yt7532
D7 274 299 9v13015
T62 273 299 A51
T72 196 232 132
ZIL131 274 299 E12
2S1 274 299 b01
2SU234 274 299 d08
Total 2425 2747 /

3.2. Experimental Details

All experiments are conducted with the same configuration during training. The
specific configuration is as follows: the number of iterations is 20,000, the optimizer is
Adam, the initial learning rate is 1 × 10−3, and the MultiStepLR strategy is used to adjust
the learning rate. The experimental platform is a personal computer with NVIDIA RTX
2080Ti GPU and Inter (R) Xeon (R) Silver 4210 CPU on the Ubuntu 18.04 Linux system. The
deep learning framework is Pytorch 1. 2.

3.3. Evaluation Criteria

To evaluate the experimental results scientifically, the following evaluation criteria are
used in the experiment, which include precision, recall, F1-score, and accuracy. Specifically,
the formulas for the evaluation criteria are as follows:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 =
2× Precision× Recall

Precision + Recall
(10)
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Accuracy = ∑
C

TP
TP + FP

(11)

where C is the number of classes, TP is the number of correctly recognized targets, and FP
is the number of false alarms.

3.4. Results under Ten-Class Targets

A. Comparison with Classical Recognition Methods

In order to demonstrate the effectiveness of the proposed CGS-Net, several existing,
widely used, real-valued deep learning recognition methods are selected and compared
with CGS-Net. Specifically, they mainly include methods such as ResNet18, VGG16, Net4,
ResNet10, etc. The specific experimental results are displayed in Table 2. Here, Net4 is
a lightweight network, which only contains two convolutional and two fully connected
layers. ResNet10 includes nine convolutional layers and a fully connected layer.

Table 2. Comparison Among Different Classical Deep Learning Recognition Methods.

Method Accuracy Parameters Flops Running Time
(2425 Images)

ResNet18 97.69 11.2 M 595.44 M 3.20 s
ResNet10 97.28 4.93 M 292.47 M 2.67 s
VGG16 94.31 134.3 M 5130.76 M 4.47 s
Net-4 95.71 2.2 M 10.94 M 2.47 s

CGS-Net 99.59 3.65 M 277.37 M 3.80 s

As shown in Table 2, it is obvious that CGS-Net is superior to the real-valued networks,
which achieves an accuracy of more than 99.5%. This is mainly because of the following
reasons. Compared with the typical real-valued convolutional networks, the proposed
method utilizes physical scattering characteristics and complex information effectively. On
the one hand, the complex-valued network mines the target information in complex SAR
data effectively, which improves the performance of recognition. On the other hand, the
guided module efficiently enhances the capacity of the model to extract the separability
characteristics of different targets. In addition, SAR images usually lack sufficient labeled
data. Here, the proposed method has fewer parameters than typical deep learning methods,
which may be more suitable for SAR target recognition tasks.

In order to evaluate the experimental results scientifically and clearly, several evalu-
ation criteria are used to further demonstrate the performance of the proposed method.
Table 3 shows the precision, recall, and F1-score for the different ten-class targets, and
the confusion matrix is displayed in Figure 6. The results demonstrate that the proposed
method has excellent performance for recognizing any class targets.

Table 3. Different Evaluation Criteria for the Ten-Classes Targets.

BMP2 BTR70 T72 2S1 BRDM2 BTR60 D7 T62 ZIL131 ZSU234

Precision 1.0 0.990 1.0 0.990 0.996 1.0 1.0 0.996 1.0 1.0
Recall 0.985 1.0 0.980 0.989 1.0 0.990 0.993 1.0 1.0 1.0

F1-score 0.992 0.995 0.990 0.989 0.998 0.995 0.996 0.998 1.0 1.0
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B. Comparison with Other Complex-Valued Networks

To independently demonstrate the performance of the guided module, several complex-
valued methods including Complex net [48] and DH-RCCNNs [54] are selected to compare
with CGS-Net. The specific recognition accuracies are compared in Table 4. Obviously,
compared with other complex-valued networks, the proposed method still achieves the
highest accuracy. This suggests that the proposed method can fully exploit the physical
scattering characteristics. The reconstruction task can guide the network to learn how to
identify the target accurately. In addition, the results further demonstrate the superior
performance of CGS-Net.

Table 4. Comparison Among the Proposed Method and Other Complex-Valued Networks.

Method Accuracy

DH-RCCNNs 97.24
Complex net 98.56
CGS-Net 99.59

C. Comparison with State-of-the-Art Methods

To further demonstrate the performance of CGS-Net, several related works proposed
in the last two years are used in the experiments, which include FEC [55], CAE [43], and
A-ConvNet [56]. Table 5 shows the specific experimental results. It can be seen that the
proposed method is superior to other related methods.

Table 5. Comparison Among the Proposed Method and State-of-the-Art Methods.

Method Accuracy

FEC 99.27
CAE 97.86
A-ConvNe 99.13
CGS-Net 99.59
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D. Experimental Results with limited data

To demonstrate the universality and robustness of the proposed CGS-Net in the case
of limited data, 40%, 50%, 60%, and 70% of the original training data are used as several
new training datasets. Due to the small size of the training data, only the methods with
a small number of parameters are selected to compare with the proposed method. The
specific recognition accuracies are compared in Table 6.

Table 6. Comparison Among Different Recognition Methods When Using a Small Number of
Samples.

Dataset Size Accuracy
(ResNet10)

Accuracy
(Net4)

Accuracy
(CGS-Net)

40% 94.88 88.80 97.44
50% 95.04 90.19 97.90
60% 96.04 92.25 98.72
70% 96.88 94.40 99.09

100% 97.28 95.71 99.59

As shown in Table 6, it can be seen that the proposed method still has a higher accuracy
than ResNet10 and the lightweight network (Net4) in the case of limited training data.
Specifically, ResNet10 has the same number of layers (nine convolutional layers in the
base module and one fully connected layer) as the proposed method; however, there is
no guided module or complex-valued structure. It is obvious that the proposed method
has more excellent performance than the other methods, and the guided module and
complex-valued structure can improve the accuracy of SAR target recognition. In addition,
the experimental results for the different-sized training datasets further demonstrate the
universality and robustness of the proposed method.

E. Ablation Experiments

In order to demonstrate the performance of each part of the proposed method, in
this paper, ablation experiments are conducted. The specific experimental results are
shown in Table 7. As shown in Table 7, compared with ResNet10, Complex-ReNet10 has a
preferable performance. The results demonstrate that the complex-valued base module is
helpful for recognition. In addition, the proposed method has the highest accuracy, this is
mainly because the proposed method uses physical scattering characteristics and complex
information effectively. This further proves the effectiveness of the recognition task.

Table 7. Ablation Experiments.

Method Complex-Valued
Based Module

Reconstruction
Task Accuracy

ResNet10 × × 98.89
Complex-ResNet10

√
× 99.01

Proposed Method
√ √

99.59

F. Comparison with Different Numbers of Sub-Apertures

In order to demonstrate the influence of different sub-aperture numbers for the pro-
posed method, a comparison experiment with different sub-aperture numbers is conducted
in this paper. The experimental results are shown in Table 8. It is obvious that the proposed
method obtains the highest accuracy when the number of sub-apertures is 3. This suggests
that the optimal number of sub-apertures is 3, which may be mainly because of the follow-
ing reason. Too few sub-apertures cannot provide sufficient scattering features, while too
many sub-apertures may lead to low-resolution sub-aperture images.



Remote Sens. 2023, 15, 4031 13 of 16

Table 8. Comparison Among Different Numbers of Sub-Apertures.

Number of Sub-Apertures Accuracy

0 98.89
2 99.26
3 99.59
4 99.38

4. Discussion

From the experiments in Section 3, it is obvious that the proposed CGS-Net is superior
to the state-of-the-art methods. This is mainly based on the following reasons. Firstly,
compared with typical real-valued convolutional networks, the proposed method utilizes
physical scattering characteristics and complex information effectively. Secondly, the
guided module efficiently enhances the capacity of the model to extract the separability
characteristics of different targets. Finally, the proposed method has fewer parameters than
typical real-valued deep learning methods. Hence, the proposed method may be more
suitable for SAR target recognition tasks because SAR images usually lack sufficient labeled
data. The experimental results obtained when using the small dataset further prove that
the proposed CGS-Net has an excellent performance.

In addition, in the training stage, some hyper-parameters, e.g., sub-aperture number
and running time, are crucial for the performance of the model. From the experiments in
Section 3, it is obvious that the optimal number of sub-apertures is 3. This may be mainly
because of the following reasons. Too few sub-apertures cannot provide sufficient scattering
features, while too many sub-apertures may lead to low-resolution of sub-aperture images.

Regarding the running time, indeed, the proposed method requires a longer operating
time than classical methods due to an immature mode of complex computation in the
deep learning frame. However, the proposed method has fewer parameters and flops
than typical deep learning methods. This demonstrates that the proposed method has a
lightweight structure. In addition, because the scene in SAR images in target recognition
tasks is usually very small compared to the large scene in detection tasks, the algorithm
used for recognition always processes at high efficiency and speed.

Although the proposed method obtained good performance in the SAR target recogni-
tion task, it also has the following limitations.

(1) The proposed method is only applicable to SAR images. The proposed method
includes sub-aperture decomposition. This is the unique imaging mechanism in the
SAR system. Therefore, it is impossible to extend the proposed method to other fields,
such as optical remote sensing and natural images. Its application is limited.

(2) The proposed method has not been verified using a large-scale dataset. In contrast
to some state-of-the-art methods, such as LW-CMDANet [57] and so on, the dataset
used in this paper is complex-valued SAR data. Although the SAR image itself is
complex-valued data, there is currently no public large-scale complex-valued SAR
dataset, such as ImageNet [58] in the natural image field. The complex-valued SAR
data currently available are generally the MSATR and MiniSAR datasets. Therefore,
we have not verified the proposed method with a large-scale dataset.

(3) Whether the proposed method can be extended to other tasks in the SAR field has
not been verified. We have not applied the proposed method to other tasks, such as
target detection. Therefore, the extensibility of the proposed method has not been
thoroughly explored.

Based on the above analysis, the proposed method may have the limitation that it is
only suitable for the SAR field. To address the above limitations, we will further improve
the proposed method in future work.
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5. Conclusions

Traditional deep learning algorithms generally treat SAR images simply as grayscale
images and usually extract features from the real-valued SAR images in a purely data-
driven manner. This may ignore the physical scattering characteristics of SAR images
and sacrifice some useful target information. This is undoubtedly a huge barrier for
SAR target recognition tasks and seriously restricts the development of deep learning
methods. In order to fully exploit the physical information in SAR images, a complex-
valued network guided with sub-aperture decomposition for target recognition in SAR
images is proposed in this paper. A multi-task learning strategy is used in the proposed
method, which combines the physical scattering characteristics of complex SAR images for
target recognition. Specifically, sub-aperture decomposition is used to guide the network to
learn the separability characteristics of targets as an auxiliary task, which mines the multi-
angle target information in the SAR images for target recognition. Here, since both the
original SAR images and sub-aperture images are complex-valued, the proposed CGS-Net
has a complex-valued structure, which makes full use of amplitude and phase information
efficiently. The experimental results demonstrate the outstanding performance of the
proposed method on the MSTAR dataset.

In future work, the following two directions will be mainly researched. One is to
further improve the performance of the recognition method by combining the proposed
method with transformer and semi-supervised learning, especially for complex scenes and
limited data. The other is the sub-aperture decomposition-guided strategy for the SAR
target detection task.
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