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Abstract: Automatic point cloud classification (PCC) is a challenging task in large-scale urban point
clouds due to the heterogeneous density of points, the high number of points and the incomplete set
of objects. Although recent PCC studies rely on automatic feature extraction through deep learning
(DL), there is still a gap for traditional machine learning (ML) models with hand-crafted features,
particularly after emerging gradient boosting machine (GBM) methods. In this study, we are using
the traditional ML framework for the problem of PCC in large-scale datasets following the steps
of neighborhood definition, multi-scale feature extraction, and classification. Different from others,
our framework takes advantage of the fast feature calculation with multi-scale radius neighborhood
and a recent state-of-the-art GBM classifier, LightGBM. We tested our framework using three mobile
urban datasets, Paris–Rau–Madame, Paris–Rue–Cassette and Toronto3D. According to the results, our
framework outperforms traditional machine learning models and competes with DL-based methods.

Keywords: urban; point cloud; LiDAR; hand-crafted features; random forest; LightGBM; deep
learning; classification; semantic segmentation

1. Introduction

Urban point cloud analysis with mobile laser scanning (MLS) data has been gaining
popularity in recent years due to the increasing demand for three-dimensional (3D) infor-
mation in emerging fields (e.g., autonomous cars and robotics). Several applications of
MLS data include 3D mapping [1] and navigation [2], urban modeling [3,4], urban roadside
inventory [5–7] and sign detection [8], high-definition map generation [9], to name but
a few. 3D point cloud classification (PCC)—labeling each point in the point cloud into a
semantic category—is a challenging and the foremost step of those applications; the more
accurate 3D PCC, the less error in the further point cloud analysis results. For example,
in 3D change detection applications [10,11], the classification takes one of the main parts
and influences the detection ability of changes. However, considering a variety of sizes of
objects, irregular point density with a large amount of data and incomplete representation
of objects caused by occlusion, automatic 3D PCC is a challenging problem in urban scenes
with MLS data.

Machine learning (ML) methods have been commonly used in 3D PCC studies in the
recent literature, using the traditional approach based on feature engineering [12] or feature
learning with deep learning of neural networks, shortly deep learning (DL). Traditional ML
methods require extracting features based on a neighborhood definition and then applying
a classifier to those features in 3D PCC. At each step, user interaction is generally essential.
On the one hand, DL-based methods have dominated recent studies and provided more
accurate results [13] without the domain knowledge required for feature extraction; on the
other hand, they require large training samples with high computational power and require
longer training time than traditional ML methods. However, recent improvements in
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traditional ML methods, in particular the gradient-boosting machine of ensemble learning,
have had a significant impact on many types of ML applications, considering the various
types with a carefully selected feature set and properly defined ML neighborhood, 3D
PCC with hand-crafted features is approaching the DL state-of-the-art results [14], as
well as reducing the cost of DL models.Taking into account recent improvements in ML
methods, the proper selection of ML classifiers has the potential to increase the accuracy of
the classification.

Therefore, in this study, we investigate 3D PCC with a traditional ML framework using
a state-of-the-art ensemble learning classifier, LightGBM, in MLS data. We mainly focus on
LightGBM performance in 3D PCC and efficient feature extraction at the multiscale levels
in 3D point clouds. Our contribution is three-fold:

1. We are one of the first studies using LightGBM in 3D PCC as we are showing its
effectiveness compared with Random Forest (RF) in mobile LiDAR datasets, as we
compare it with DL methods.

2. Our feature set achieved competitive results even though they are lightweight features.
3. Our feature calculation implementation is comparatively faster than previous studies,

even though our multiscale sampling method produces an irregular point cloud,
which leads to less information loss.

The remainder of this paper is organized as follows. Section 2 gives a brief overview
of the related literature; then, we introduce our proposed framework in Section 3. To
evaluate our methodology, we used three mobile LiDAR datasets and represent the data
and experimental results, thereby discussing the results compared with previous studies in
Section 4. Finally, Section 5 summarizes the study with future comments.

2. Related Works

Relevant previous studies for 3D PCC can be categorized into two groups: (i) classifi-
cation with hand-crafted features, where features depend on the user’s domain knowledge
and a manual extraction framework is used and (ii) deep learning-based classification,
wherein features are automatically extracted by a deep neural network. Similar to other
remote sensing domains, although the recent literature for 3D PCC has been heavily influ-
enced by deep learning-based methods, there is still a gap in the traditional ML framework
for 3D PCC considering the costs of deep models.

2.1. Classification with Hand-Crafted Features

A typical ML framework for 3D PCC includes a few key steps: neighborhood defini-
tion, feature extraction and selection and classification [15], where each partition plays an
important role in overall results. Previous studies have focused on these steps from various
aspects of the literature.

The two types of neighborhood are commonly used in the literature; therefore, they
can be considered as the basic types: k-nearest neighborhood (KNN) [15], where k number
of the closest points is taken into account, and spherical neighborhood (SN) [16], where
points at a distance of r are used. Hybrid neighborhood [17], a combination of the above
two, where the randomly selected k points are taken at a distance of r, and cylindrical
neighborhood [18], where the neighborhood on a 2D plane is in the question instead of a
3D space, are the alternatives to KNN and SN. The neighborhood definition has a direct
impact on features since the search parameter is the primary factor in the aggregation of
local information, as well as the computational cost of processing. Having a small value for
the parameter in the neighborhood decreases the computational cost, but it is possible to
miss valuable information from a variety of sizes of objects in the point cloud, particularly
for large-sized objects; in contrast, information gain is obtained at the cost of computational
effort with a large search parameter, but it also causes misinformation from small-size
objects. Therefore, considering the computational cost and the variety of the size of objects, a
combination of multiple scales [16] and different neighborhoods [18–20] has been a common
practice in previous studies. Instead of using a single scale, multi-scale neighborhood, this
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clearly enhances the classification performance as well as the distinctiveness of the objects.
In addition to these, greater classification accuracy is also obtained by Weinmann et al. [21]
using individual neighborhood size rather than a global parameter per scale at the cost of
an additional preprocessing step. On the other hand, in large-scale datasets, neighborhood
definition becomes more important due to its high computational cost; therefore, [22]
proposes a KNN hierarchical neighborhood using voxel-based down-sampling, as [14] uses
the same idea as SN but with grid-based down-sampling.

In addition to neighborhood definition, the feature set has a great influence on the dis-
tinctiveness of the objects 3D PCC. Many 3D local point-cloud features have been proposed
in the literature. The eigenvalue features take the covariance of the local neighborhood
and extract such metrics using eigenvalues, as described by Demantké et al. [23], geometric
features use statistical properties of the local neighborhood such as the standard deviation
of height, etc. [18,24], height features are derived from a digital terrain model that requires
an extra computation, the moment features are based on eigenvectors of the local neighbor-
hood [14,22], LiDAR attributes—multi-echo and full waveform—are another option for
the features [25]. In addition to those 3D features, 2D features enrich the set, such as feature
sets in Weinmann et al. [26] and Niemeyer et al. [18]. A comprehensive review of the 3D
point cloud features is provided by the computer vision community by Han et al. [27] and
the photogrammetry community by Weinmann et al. [15]. Using feature sets from different
groups (e.g., geometric, distribution, height) is obviously an accuracy increasing factor and
is regularly preferred by a variety of applications. However, considering large-scale data,
having a diverse amount of features involves computational cost; therefore, lightweight
features, which are calculated in one step, are more suitable for large-scale data [14,22].

Various ML classifiers have been used for 3D PCC in the literature. A short review
of various machine learning methods used in 3D PCC is given in [12,15]. RF [28] has
become a de facto classifier according to previous studies [14,19,22] because it provides a
good balance between accuracy and computational effort and is easy to use without extra
effort [15]. Although gradient boosting machines of ensemble learning have been used in
previous studies [20], their enhanced versions [29,30] have not been investigated for 3D
PCC, considering that they have better results compared to the RF classifier [31].

2.2. Classification with Deep Features

The categorization of deep learning models for 3D point clouds is based on the form
of the point cloud; thus, there are a few families of 3D point clouds. (i) Projection and
Voxelization-Based Approaches: These types of deep learning applications change the
form of the point cloud into a regular form, which are multiview 2D images [32–34] or 3D
voxels [35–37]; then, the convolution neural network of deep learning models is applied to
those forms of data. The advantage of those models is that it is possible to use 3D point
clouds in regular deep learning models, but they suffer from losing important information
in form change; also in the 3D case, memory is computationally burdensome. (ii) Point-
Based Approaches: Instead of form conversion, this type of deep neural network uses
the 3D point cloud directly. First appearing in PointNet [38], the 3D point clouds were
used directly in a deep model through one-dimensional convolution layers. Although it
allows for handling the problem of point cloud permutation invariance using a symmetric
function for global aggregation, it suffers from the local aggregation of points; thus, with
its extended version of PointNet++ [39], where PointNet is used at the hierarchical levels,
the local structure of the point clouds is represented in feature learning. More studies
appeared in the literature following PointNet’s foundation, such as RandlaNet [40], which
focused on random sampling for hierarchical feature sets and PointWeb [41], improving
local information aggregation performance. On the other hand, instead of using shared
MLP layers per point, several researchers focused on kernel convolution models [42–45].
This approach takes advantage of learning kernels in the local neighborhood, which leads
to capturing local spatial relations better than PointNetlike architectures. (iii) Graph-Based
Approaches: This approach uses graph convolution neural networks on graphs constructed
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from point clouds and learns the local structures on those graphs. Popular studies in
this group include DGNN [46] where PointNetlike architecture with edge information
is proposed and GAT [17] where the graph attention mechanism is in 3D point cloud
classification. In addition to those groups, it is worth mentioning in this section that pure
transformer-like architectures have been seen in the literature, such as [47–49]. Although
they provide state-of-the-art results compared to previous models, their computational cost
is higher because of the complexity of the attention mechanism in large-scale datasets.

A comprehensive review of 3D point clouds in deep learning is given by Guo et al. [13]
and Zhang et al. [50], also Xie et al. [12] provide from a statistical perspective machine
learning methods for PCC, including both deep models and traditional ML.

Considering the drawbacks of deep learning models, a traditional machine learning
framework with a carefully selected feature set can have similar results in a short time,
saving energy consumption due to the required GPU power. Therefore, this study focuses
on 3D PCC with a traditional machine learning framework with a multiscale feature
extraction setting. Similar studies include [22] and [14]; however, our study differs from
those based on the aspects: (i) we are using a recent variant of gradient boosting machine,
LightGBM; in this study, instead of an RF classifier, (ii) our resampling method produces
irregular points clouds, instead of the regular voxel and grid-based structure. However,
our feature set is a combination of these studies, but we prefer a few distinctions explained
in the next section.

The next section gives our methodology with our feature set and neighborhood
definition, as well as the classifier.

3. Methodology

Our framework (Figure 1) follows a general framework for machine learning. The raw
point cloud is subsampled to multiple levels using Poisson Sampling, and then the features
are extracted for each level. LightGBM classifier is used in the classification of concatenated
features of multi-level point clouds. The output has labels for each point.

Feature Concat & 
Classification  Feature Extraction 

Output 

Point 

Cloud 
 Poisson Sampling 

... 

PCinput 
n x 3 

FMk 
n x m 

... 

FM1 
n x m 

PCoutput 
n x c 

Input 

Point 

Cloud 

SPCk 
nkx 3 

SPC1 
n1x 3 

Figure 1. The proposed framework. PC, SPC and FM refer to point cloud, subpoint cloud and feature
matrix, respectively. Each color in FM represents a column-wise feature while each color in the output
PC shows a semantic class.

We introduce each section of our framework in the following subsections. Section 3.1
defines our multiscale sampling strategy, then in Section 3.2 we show how we control the
neighborhood parameters combined with our sampling method. Section 3.3 includes our
feature set and Section 3.4 represents our LightGBM classifier.
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3.1. Multi-Scale Sampling

Considering the various sizes of objects in the point cloud, multi-scale sampling is
more inclusive than fixed sampling. In addition to that, it is not required to have all
neighborhood points for the computational efficiency of feature calculation; therefore, a
portion of neighborhood points is enough instead of all neighbor points.

Regular sampling, either in 2D [14] or 3D [22], is a commonly used sampling method
for point clouds. However, it may cause information loss and lead to misclassification.
Random sampling [40] and Furthest Point Sampling [38] are alternative methods; however,
while the former requires special attention due to the random selection of points, despite
its computational efficiency, the latter is computationally costly, even though its results
are promising.

In this study, we select to use Poisson Disk Sampling [51] because it is more resistant
to information loss according to its computational efficiency. Moreover, it only requires one
parameter, the radius —the minimum distance between two points. It mainly works as a
random selection of a root point and then expands the sample set considering the radius
parameter. In the end, the method results in a subsampled point cloud where the distance
between each point is at most the parameter of the radius.

3.2. Neighborhood Definition

Considering a multiscale framework, where at each level the neighborhood search is
performed, a fast neighborhood search has to be selected for a large-scale dataset. KNN
is computationally efficient, but accurately inadequate; however, RS gives more accurate
results, but in a slower processing time. Besides this, parameter selection is more important
in RS: a large number of neighbors may increase computation time, while a lower number
of neighbors may cause the loss of useful information. While [22] uses KNN with a voxel-
based structure, [14] prefers RS but with grid sampling; in other words, they convert the
irregular point cloud into a regular format.

Unlike the studies above, we prefer RS with irregular subsampling points but acceler-
ate RS with Graphical Processing Unit (GPU) support, which reduces the computational
cost of RS. For a proper parameter selection, we are adopting [14]’s radius search and grid
size relations as shown in Equations (1) and (2).

r(S)PS = γS × r(0)PS (1)

r(S)N = ρ× r(S)PS (2)

where r(S)PS refers to the radius for Poisson sampling at scale level S and r(S)N is the radius for
neighborhood search at scale level S, γ refers to the multiscale constant which controls the
radius size at different multiscale levels, ρ is a constant that determines the radius search
based on Poisson sampling distance r(S)PS at level S. Using those formulas, we control the

radii for the RS and Poisson sampling and we need to define r(0)PS , S and two constants of γ
and ρ.

3.3. Feature Extraction

While there exist various global- and local-scale features for point clouds in the literature
(see [15,27]), we focus on simple and easy-to-compute features. Geometric and eigen-based
features, which rely on the local neighborhood information of the points in the point cloud
and give valuable information about a point’s local geometric characteristics, are commonly
used feature sets in PCC studies. Let p = (x, y, z) ∈ R3 be a three-dimensional point,
P = {p0, . . . , pn} be a point cloud with n points and Nr(p) = {q0, . . . , qm}, ∀q ∈ P be a local
neighborhood of point p with m neighborhood points, where q are in a distance of at most r;
then, the covariance matrix equals C = (1/m)∑ (q− q)(q− q), ∀q ∈ Nr(p) where q is the
average of the neighbor set of points. The eigendecomposition of the covariance matrix
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leads to eigenvalues λ1 > λ2 > λ3 (in descending order) and eigenvectors v1, v2, v3. The
features of sum of eigenvalues, linearity, planarity, sphericity, omnivariance, eigenentropy,
surface variation and anisotropy are easily calculated, as shown in Table 1. Absolute and
vertical moments [14], as well as verticality [22], are added to the set of features to give a
more distinctive set of characteristics. Although covariance features are computed from
the ratios of eigenvalues and eigenvectors, height features include only z information from
neighborhood points without the extra cost of computation. Height information in the
feature set increase the performance of the classification [18]. Accordingly, five height
features are combined from statistical properties of the neighborhood. Lastly, since MLS
point clouds have heterogeneous density, we add neighborhood density information to the
feature set without any computational cost.

In the study, a total of 23 features per scale are defined, which consists of 17 features
based on eigenvalues and of 5 height features, and a density value—a number of neighbors
in the radius (Table 1). Additional features, such as intensity, echo ratio and color infor-
mation, have not been considered as the main features in our experiments. However, we
clearly identify additional feature sets in the experiment section of Section 4.

Table 1. Summary of feature set in the study.

Feature Description

Sum of eigenvalues λ1 + λ2 + λ3
Linearity (λ1 − λ2)/λ1
Planarity (λ2 − λ3)/λ1
Sphericity λ3/λ1

Omnivariance (λ1λ2λ3)
1/3

Eigenentropy −∑ λi ln λi
Surface variation λ3/(λ1 + λ2 + λ3)

Anisotropy (λ1 − λ3)/λ1
Absolute Moment (6) 1

|N|

∣∣∣∑ 〈
p− p0, ei

〉k
∣∣∣

Vertical moment (2) 1
|N|∑

〈
p− p0, e3

〉k

Verticality 1−
∣∣〈ê3, e3

〉∣∣
Height range zmax − zmin

Height above min z− zmin
Height below max zmax − z

Average height 1
|N| ∑ zi

Height variance ∑ (zi − z)2/(|N| − 1)

Density |N|

3.4. Classification

Decision tree ensemble learning has previously been performed for 3D PCC, based
on the technique of bagging [14,22] or boosting [20]. RF [28]—a bagging-based ensemble
of decision trees, which is based on a combination of tree scores from randomly created
multiple decision trees—especially comes forward among them [15] and has become a
popular choice of ML classifier in 3D PCC [14,21,22], and even considered as a baseline
method in many benchmark datasets, such as in Kölle et al. [52] and Kharroubi et al. [53].
Gradient-boosting machines [54], however, construct a strong learner from weak learners
iteratively, which is based on improving the scores according to the previous iteration.
Instead of constructing the decision trees in one step, as in RF, this iterative update process
makes the gradient boosting machines superior to RF in proper settings.

Let {xi, yi}n
i=1 show the sample data with n instances, where xi defines the feature

vector of dimensions m and yi refers to corresponding labels, gradient-boosting machine en-
semble trees find the approximation of a function F̂(x) using K additive tree functions [31].

F̂(x) =
K

∑
k=1

ρkhk(x) (3)
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where ρ is the weight of the decision tree function of h(x). A loss function L(y, F(x)) is min-
imized in each iteration until the maximum number of iterations or the solution converges.

Several variants of gradient boosting machines have appeared in recent years. Xg-
boost [29], while following the gradient boosting machine framework, adds regularization
terms to the loss function to prevent overfitting. Other improvements include the im-
plementation of random sampling and column subsampling, a faster best-split finding
method and the usage of second-order derivatives in the loss function. LightGBM [30], in
contrast, focuses on computational efficiency in gradient-boosting machines, particularly
with big data. Therefore, it improves the best split finding with Gradient-based one-side
sampling (GOSS) and Exclusive feature blending (EFB), where unimportant samples are
removed and common features are merged, respectively. Considering our large-scale data
and multi-scale features, we have selected LightGBM as our classifier in this study.

4. Experimental Results and Discussion

In this section, we represent our three benchmark datasets in Section 4.1; then, we
introduce our implementation tools in Section 4.2. Next, we define training and testing
strategies and parameters for our proposed framework on the datasets and present both
numerical and visual results with discussion in Section 4.4 following the evaluation frame-
work in Section 4.3. We perform a comparative study in Section 4.5 and, lastly, we conduct
an ablation study in Section 4.6.

4.1. Datasets

Publicly available datasets make it possible to compare the performance of the pro-
posed framework with previous studies on a common platform without any data-intensive
efforts. They also provide a shareable scientific environment for the community and in-
crease the impact of research by combining several solutions on the same dataset. In
particular, there exist several LiDAR point cloud benchmark datasets in the literature, from
a variety of platforms (Airborne, Terrestrial, etc.) and types (static and dynamic). However,
for static MLS datasets only a few options are available.

We selected the Paris–rue–Madame dataset since it was one of the first available urban
MLS benchmark datasets, while Paris–rue–Cassette provides a similar urban environment
with fewer points but more classes. These two datasets differ from their ancestors based on
their point size in a dense urban area with complex structures of urban objects. Another
dataset, on the other hand, Toronto-3D, involves roadside urban objects and it is one of the
latest available datasets for MLS data. Overall, having a diverse urban environment and
semantic categories allows us to test our proposed framework in different settings. In the
next subsections, we briefly describe our datasets and give a summary of the class statistics
in the tables.

4.1.1. Paris-rue-Madame Database

Paris–rue–Madame [55] was acquired from the streets of Paris, France, with the
LARA2-3D mobile mapping system. The dataset includes a 160 m street section with
≈20 M points. Following [15], we ignore the smaller classes and focus on six classes:
facade, ground, cars, motorcycles, traffic signs and pedestrians (see Table 2).

Table 2. Number of samples per class (thousand) in Paris–rue–Madame and Paris–rue–
Cassette experiments.

Datasets
Classes

Total
Facade Ground Cars Mtrcl T.Signs Pedest. Veg.

Paris–rue–Madame 9978.43 8024.30 1835.38 10.05 98.87 15.48 - 19,962.51
Paris–rue–Cassette 7027.02 4229.64 368.27 40.33 46.1 24.0 212.13 11,947.49
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4.1.2. Paris-rue-Cassette Database

Similarly, this mobile LiDAR dataset [56] was acquired from Paris, France, with a
StereopolisII mobile mapping system. It contains ≈12 M points from a 200 m street section.
Like the previous dataset, we are using only seven dominant classes: facade, ground, cars,
motorcycles, traffic signs, pedestrians and vegetation.

Note that both the Paris–rue–Madame and Paris–rue–Cassette datasets share similar
class characteristics, but the former includes one more class in a smaller point size. A
summary of both datasets is given in Table 2.

4.1.3. Toronto-3D Mobile LiDAR Dataset

Toronto-3D mobile LiDAR dataset [57] was acquired from the Teledyne Optech Mav-
erick mobile mapping system in Toronto, Canada. It contains a 1000 m section with a total
of 76M points. It also includes eight classes: Road marker, natural, building, utility line,
pole, car and fence. Data are publicly available as four tiles, and we are following the data
provider’s learning strategy [57], where we pick three of them as training and one of them
used as testing. A summary of the samples is given in Table 3.

Table 3. Number of samples per class (thousand) for training and testing tiles in Toronto-3D experiment.

Datasets
Classes

Total
Road Road Mrk. Natural Building U.Line Pole Car Fence

Training 35,391.89 1449.31 4650.92 18,252.78 589.86 743.58 4311.63 356.46 65,746.43
Testing 6305.46 296.14 1921.65 883.71 85.04 154.25 323.00 18.26 9987.52

4.2. Implementation

Our implementation consists of various tools: Multiscale sampling is performed using
the Point Data Abstraction Library (PDAL) [58,59]. Feature extraction implementation is on
a partially graphical processing unit (GPU) and multi-core central processing unit (CPU).
Radius search and finding neighborhood points are implemented on GPU with Point
Cloud Library [60], and feature calculation is performed on a multicore CPU in parallel, all
written in C++. Python programming language is used for classification experiments with
LightGBM. The experiment is all conducted in an NVIDIA RTX 4000M 8 GB graphics card
and 4-cores Xeon-W2225 4.1 GHz computing power unit with 64 GB RAM.

4.3. Evaluation

We evaluate the results both qualitatively and quantitatively. We report the quanti-
tative results in the precision (P) (Equation (4)), recall (R) (Equation (5)) and F1-measure
(F1) (Equation (6)) metrics for each class in each experiment, as we also take those metrics’
average for overall evaluation. For consistency with previous studies [14,57], we report the
performance of the classification results using Intersection over Union (IoU) (Equation (8))
as a class-level indicator and the average of IoU and overall precision (OA) (Equation (7))
as global indicators.

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

F1 =
2× TP

2× TP + FP + FN
(6)

OA =
TP + TN

TP + TN + FP + FN
(7)
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IoU =
TP

TP + FN + FP
(8)

where TP, TN, FP and FN refer to true positives and negatives, false positives and nega-
tives, respectively. The average score per metric is the ratio of the sum of the scores to the
number of classes.

We show qualitative results for each experiment, whereas we pay attention to demon-
strate erroneous labels, which help to understand the performance of the proposed frame-
work. In addition, we report the feature extraction and training times for comparison with
the previous studies.

4.4. Experiments and Discussion

We evaluated three urban LiDAR point clouds using the proposed methodology. We
followed the same training and testing strategy as [15] for Paris-rue-Madame and Paris-
rue-Cassette, while we used the provided training /testing tiles for the Toronto-3D dataset
following the same strategy as [57]. Since two of the datasets share similar properties,
Paris-rue-Madame and Paris-rue-Cassette, we report their experiments together in the
next subsection.

4.4.1. Paris–rue–Madame and Paris–rue–Cassette Databases

We used identical parameters for the two datasets. As aforementioned in Section 3.2,
we select S = 8, r(0)PS = 0.02, ρ = 5 and γ = 2, which means we have a total of 184 + 3
(xyz) features. We use the feature set in Table 1, and do not use intensity, color or echo
information for a fair comparison with previous studies. We randomly select 1000 points
per class and use those as training and the rest for testing, which means that we have 6000
and 7000 training samples for Paris–rue–Cassette and Paris–rue–Madame, respectively.
As shown in Table 2, selecting an equal number of training samples overcomes the class
imbalance problem, where we did not need oversampling techniques. We trained selected
data samples with 1000 iterations, 0.05 learning rate, 512 max bins, 0.35 feature fraction
rate, 8 max depth, 90 number of leaves and a 0.50 subsample rate for both datasets in
the LightGBM classifier. Multiscale parameters were estimated heuristically and a grid
search was used to estimate the classifier parameters. Overall, as in Thomas et al. [14], we
repeat the selection of random points for training several times and report the mean of
those attempts.

After applying our framework to the two datasets, we obtain the results shown in
Tables 4 and 5. Both experiments achieved a high OA score of 98.91% and 98.39% for
Paris–rue–Madame and Paris–rue–Cassette, respectively. Similarly, even though average
recall scores are above 98% for both experiments, we have lower precision scores, 85.96% for
Paris–rue–Madame and 76.32% for Paris–rue–Cassette, which means that our framework
tends to label samples correctly with a low false negative rate but at the same time suffers
from incorrect positive labels with a high false positive rate.

On the other hand, our framework had both 90% in precision and recall for large-sized
objects—facade and grounds—and also medium-sized objects–cars—in both experiments.
Since our framework takes advantage of the multiscale feature extractor, we reach metrics
for those classes. Small objects, on the contrary, have better scores in the Paris–rue–Madame
experiment than in the Paris–rue–Cassette experiment, where the sample size of the classes
may affect the classification.
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Table 4. Per class scores for Paris–rue–Madame database. The precision, recall and F1-measure is the
average of eleven experiments.

Class Name Precision Recall F1-Measure

Facade 99.10 99.36 99.23
Ground 99.38 97.99 98.68

Cars 97.61 99.41 98.50
Pedest. 80.27 99.91 88.94
Mtrcl. 69.22 99.13 81.49

T.Signs 70.19 99.39 82.19

Average 85.96 99.20 91.50

Table 5. Per class scores for Paris-Rue-Cassette database. The precision, recall and F1-measure are
the average of eleven experiments.

Class Name Precision Recall F1-Measure

Facade 99.91 97.94 98.61
Ground 99.51 99.05 99.28

Cars 92.64 98.88 95.65
Mtrcl. 68.51 99.47 81.07

T.Signs 43.83 97.92 60.49
Pedest. 42.49 99.06 59.36

Veg. 87.37 98.85 92.74

Average 76.32 98.74 83.93

To verify the quantitative results, we take the visuals from both experiments as shown
in Figure 2. According to the erroneous figure, our framework cannot distinguish the
points on the boundaries; for instance, the traffic lights were able to be extracted clearly,
but mistakenly ground points were also labeled as traffic lights, which is an indicator of
higher recall and lower precision scores. There is a similar misclassification for the ground
and facade classes, where two classes share similar geometric properties at the bound-
aries. The definition of the neighborhood may be the reason behind this misclassification;
at the boundaries, it is unavoidable to have information from the neighbors; therefore,
misclassification occurring at the boundaries is one of the drawbacks of the framework.

4.4.2. Toronto-3D

Following similar principles in two previous experiments, we select S = 6, r(0)PS = 0.05,
ρ = 10 and γ = 2 for the parts of the definition of neighborhood and the extraction
of features in this experiment. In addition to the feature set in Table 1, we used color
(converted to HSV space) and intensity with their averages and variances, which led to a
feature size of 210 + 3 (xyz). We follow the training/testing splits [57] and use the L002 area
as the testing site. In training, we are selecting 350 K points from each class, considering
the equal number of samples from each class and the lowest sampled class. Thus, we had a
2.8 M points training sample and used our LightGBM classifier based on these samples.
However, like our previous samples, we randomly selected training samples a few times
and reported their averages. We found the optimal parameters through a grid search for
our classifier: 0.03 learning rate, 607 max bins, 0.66 feature fraction rate, 10 max depth,
210 number of leaves, and 0.70 subsample rate for the datasets. We trained our ensemble in
250 iterations.
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Facade Cars Ground Pedest. Mtrcl T.Signs Veg. Cars 

Figure 2. Visual comparisons for the Paris–rue–Madame (top-row) and Paris–rue–Cassette
(bottom-row) datasets. Ground truth, predicted and erroneous labels are ordered in the left, middle
and right columns, respectively. Class labels are color encoded at the bottom of the figure, which is
best viewed in color.

Next, we applied our framework to the Toronto3D dataset and received the following
numerical metrics, shown in Table 6. We reach 95.12% OA, 78.98 average precision and
87.61 average recall scores. Similarly to the two previous experiments, our framework
obtains high-recall and low-precision scores. We reach 80% for almost all classes in precision
and recall scores, except for the road marking and fence classes. Although we reached
93.27% on the recall score on the road markings, only 50.09% were correctly labeled. The
fence class has the worst scores of all the evaluation metrics in the experiment.

To illustrate, we created a top-view image from a part of the dataset (Figure 3) as well
as detailed visuals (Figure 4) for this experiment. We can infer from the top-view image
that our framework mislabels the class boundaries. Moreover, when the size of object is
small, then a part of the object is misclassified.

Road marking and road classes are one of the best examples of the boundary effect in
our framework. As shown in Figure 4 in the top row, the class of road and road markings
has a large confusion; therefore, we obtain incorrect labels in the last column of the figure.
The reason behind this is to accumulate local information through the radius neighborhood.
When the object size is small, like an object of fence class in Figure 4 at the bottom row, our
framework partly mislabels the object.
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Table 6. Per class scores for Toronto-3D. The precision, recall and F1-measure are the average of
eleven experiments.

Class Name Precision Recall F1-Measure

Road 99.43 95.03 97.18
Road Mrk. 50.09 93.27 65.17

Natural 97.71 97.07 97.39
Buildings 95.03 93.93 94.48
Util. Line 83.70 90.48 86.95

Pole 82.27 87.53 84.82
Cars 91.54 97.79 94.57

Fence 32.10 45.75 37.72

Average 78.98 87.61 82.29

Road Cars Road Mrk. Building U.Line Pole Car Natural Fence 

Figure 3. A top view for visual comparison of Toronto-3D dataset’s results. Ground truth (left),
predicted (middle) and erroneous (right) labels are encoded according to the color scale at the bottom.
Best viewed in color.

Descriptive features also play a key role in misclassification, as distinguishing road
marking classes from roads requires RGB or intensity information; otherwise, these two
classes have common geometric structures. The same problem arises in a pole in the bottom
row of Figure 4, which was mistakenly labeled building. Similar misclassification errors
exist in pole and utility lines, as well as in ground and car classes.

In addition to numerical and visual results, we also report feature calculation and
training time because these operations are one of the keys to large-scale datasets. Our
feature extraction module outputs the Paris–rue–Cassette in 255 s, including reading
and writing the files. When we compare with previous studies, we can infer that our
implementation of feature extraction is on par with Thomas et al. [14], Hackel et al. [22],
which had 319 and 191 s in the same settings of the same experiment. We all took advantage
of parallel processing, but Thomas et al. [14] and Hackel et al. [22] used a hierarchical data
structure that made processing faster. Our implementation’s radius search was on the GPU
despite having irregular subsampled point clouds. It should be noted that the processing
time for feature calculation depends on the implementation details and the computer
hardware. The training in Paris–rue–Madame, however, took approximately 10 s in our
settings, where the RF training time was 3 s in the same experiment. One of the factors for
training time is the number of samples: having a large sample size increases the training
time. In Paris–rue–Cassette, the training time was 14 s on average, and the training took
13 min on average in the Toronto-3D experiment.
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Road Cars Road Mrk. Building U.Line Pole Car Natural Fence 

Figure 4. The detailed visuals for the Toronto-3D dataset’s results. Ground truth (left), predicted
(middle) and erroneous (right) labels encoded according to the color scale at the bottom. The white
rectangle shows the confusion between road and road marking classes at the top row, fence, building
and pole classes at the bottom row. Best viewed in color.

4.5. Comparison with the Previous Studies

We use our three dataset results in a two-fold comparison with previous studies:
(i) We compare our results with previous studies focusing on an RF classifier. For this
purpose, we only use the Paris–rue–Madame and Paris–rue–Cassette experiments. (ii) We
focus on DL methods in the Toronto-3D experiment. As mentioned above in Section 4.3,
we are evaluating our frameworks using IoU per class, and the mean IoU (mIoU) and OA
for overall scores.

In the first, we compare our results for the Paris–rue–Madame and Paris–rue–Cassette
datasets, as the scores were given in Table 7 with the results of previous studies. Considering
that previous studies [14,22] were used to classify RF and their set of characteristics was
similar to ours, we can infer that our LightGBM improves the results compared to RF.
Although the RF is giving worse accuracy results, it is faster than LightGBM in training.
More clearly, for a 7000 sample training set in the Paris–rue–Madame dataset, the RF took
3 s, while LightGBM trained the same samples in 9 s. In addition, LightGBM requires more
parameters to tune in training. Consequently, it is clear that there is a trade-off between
computational complexity and accuracy performance in the ensemble learning of decision
trees. According to the results, we have the highest scores for almost all classes, only
the pedestrian class score is second place. Furthermore, our mean IoU scores improve
the best study to 2.48% and 10.01% for the Paris–rue–Madame and Paris–rue–Cassette
datasets, respectively. An important improvement in the rue Madame dataset is the
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motorcycles class, while in the rue Cassette almost all classes, except ground and facade,
are importantly improved.

Table 7. Comparison with the previous studies for both Paris–rue–Madame (the first on each row)
and Paris–rue–Cassette (the second on each row) dataset. The class scores are IoU metrics, which
were obtained from Thomas et al. [14], whereas the global OA score was obtained from the studies
of Hackel et al. [22] and Weinmann et al. [15]. Bold font indicates the best on the column.

Study Facade Ground Cars Mtrcl. T.Signs Pedest. Veg. mIoU OA

[14] 98.22 96.62 95.37 61.55 67.43 77.86 - 82.84 -
97.27 97.77 84.94 58.99 12.71 35.31 71.48 65.50 -

[22] 97.06 96.29 89.09 47.44 33.96 24.13 - 58.89 97.55
93.89 96.99 80.88 51.33 18.58 24.69 51.40 54.08 95.43

[15] 91.81 84.88 55.48 9.44 4.90 1.63 - 31.68 88.62
86.65 95.75 47.31 17.12 14.29 9.06 24.63 35.30 89.60

Ours 98.47 97.39 97.04 68.80 69.89 80.22 - 85.30 98.91
97.86 98.57 91.68 68.26 43.42 42.32 86.49 75.51 98.39

In the second, we compare the Toronto-3D results with DL-based models, as shown
in Table 8. It is clear that, even though our framework did not supersede the DL-based
methods, it is on par with most of the methods. It is worth noting that the results in Table 8
show the xyz processing results, where * and ** refer to the use of additional features, RGB
and intensity, respectively. This is the reason why these models have the worst scores in the
road marking class, which requires additional features such as color or intensity. For a fair
comparison, we consider only Hu et al. [40], Yan et al. [61], Rim et al. [62] and Han et al. [63].
Among the various methods mentioned, our framework has the best overall accuracy score.
However, [57] has the best scores despite using only xyz values. Our mIoU scores, in
contrast, are on the same page with others, while [40,61] passed the 80% threshold. For
class level results, the classes of road, natural, building, car and utility line have the IoU
scores on the page with others. It is evident that [40,61] dominates the results in all classes.

The main reason behind having the results on the same page with deep learning
models is that our feature set does not only include geometric features but also other
discriminative features, which are RGBs, intensity and height features. It should be noted
that our height feature set consists of basic statistical values and does not depend on
additional data sources, such as height from a digital surface model.

Table 8. Results of Toronto-3D experiment. The best values are taken from the benchmark website.
The bold indicates the first places in the column.

Method Road Road Mrk. Natural Bldg Util. Line Pole Car Fence mIoU OA

PointNet++ SSG [39] 89.27 0.00 69.0 54.1 43.7 23.3 52.0 3.0 41.81 84.88
PointNet++ MSG [39] 92.90 0.00 86.13 82.15 60.96 62.81 76.41 14.43 59.47 92.56
DGCNN [46] 93.88 0.00 91.25 80.39 62.40 62.32 88.26 15.81 61.79 94.24
KPConv [44] 94.62 0.06 96.07 91.51 87.68 81.56 85.66 15.72 69.11 95.39
MS-PCNN [64] 93.84 3.83 93.46 82.59 67.80 71.95 91.12 22.50 65.89 90.03
TG-Net [65] 93.54 0.00 90.83 81.57 65.26 62.98 88.73 7.85 61.34 94.08
MS-TG-Net [57] 94.41 17.19 95.72 88.83 76.01 73.97 94.24 23.64 70.50 95.71
RandlaNet * [40] 96.69 64.21 96.92 94.24 88.06 77.84 93.37 42.86 81.77 94.37
MapConvSeg * [61] 97.15 67.87 97.55 93.75 86.88 82.12 93.72 44.11 82.89 94.72
[62] * 92.84 27.43 89.90 95.27 85.59 74.50 44.41 58.30 71.03 83.60
[63] ** 92.20 53.80 92.80 86.00 72.20 72.50 75.70 21.20 70.80 93.60

Ours 94.52 48.34 94.91 89.54 75.92 73.64 89.69 23.24 73.85 95.12

Additional * RGB and ** Intensity with normal features were used.
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4.6. Ablation Study

We perform our ablation study on the Toronto-3D dataset. We observe the impact of
training point selection, sampling methods, and the number of multiscale levels.

4.6.1. Impact of Training Point Selection

In training, we select a constant number of points to avoid class imbalance of the data.
Some classes have dominant classes, while others have minimum samples. Therefore, the
selection of training points is the first effect of the training procedure. We select training
samples a few times, reproduce the results of those samples, and plot their distribution as
the boxplot shown in Figure 5. We only consider OA and mIoU scores. For both scores, we
did not observe any outliers, and the range between minimum and maximum was ≈0.35%
and ≈0.40%, for OA and mIoU, respectively.
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Figure 5. Box plot of Toronto-3D experiment. Sampled from eleven experiments. The orange lines
and the green triangles show median and mean, respectively.

4.6.2. Sampling Methods

We compare our framework sampling method with random and voxel-based sampling
methods. We reduce the number of points by half at each level in random sampling and
use voxel sizes identical to Poisson sampling in voxel-based sampling. Keeping the radius
of the neighborhood search the same at each level and taking the highest score samples, we
achieved the following results shown in Table 9.

Table 9. Different sampling methodologies affect the results.

Metric Poisson Random Voxel

mIoU 74.01 70.91 73.39
OA 95.12 95.10 94.84

According to the results from different samplings, we are reaching the highest score
from Poisson sampling, while random sampling gives the worst results. Poisson sampling
increases the mean IoU by 3.10% and 0.62% compared to random sampling and voxel-
based sampling, respectively. It is interesting that for both Poisson sampling and random
sampling, OA scores are almost identical.
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4.6.3. Multi-Scale Levels

We use a few multiscale levels in the classification. As shown in Figure 6, after scale 6,
our scores start to decrease; therefore, we use six scales in the classification. It shows that
our model cannot increase the model accuracy after having additional multiscale features
of scale 7. Adding more samples should improve the model’s accuracy.

4 5 6 7 8

94.5

94.8

95.0

95.2 OA

4 5 6 7 8
71.0

72.0

73.0

74.0 mIoU

Number of scales

%
 S

co
re

Figure 6. Multi-scale effect in the classification. OA (above) and mIOU (below) scores are shown.

5. Conclusions

In this study, we proposed a general ML framework for 3D PCC using the LightGBM
classifier. Our framework took advantage of multiscale feature extraction and classifier
performance; thus, it had better results compared to traditional RF classifiers, while giving
promising results against state-of-the-art deep learning models. However, it is worth noting
that our training procedure requires fewer samples than DL models; therefore, our model
is more energy-efficient. Also, we use simple geometric features and height features. It is
known that, with more distinctive results, the accuracy of the results increases. With an
improved feature set, such as height from digital terrain models or additional neighborhood
types, the results have the potential to improve, but computation cost should be considered
for training in LightGBM. Moreover, we used only LightGBM; instead, evaluation of other
GBMs and ML methods in PCC is required for further research. Lastly, we are planning to
test our framework with other available benchmark datasets.
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