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Abstract: The sparse direct position determination (DPD) method requires reconstructing the emitter
position with prior knowledge. However, in non-cooperative localization scenarios, it is difficult to
reconstruct the transmitted signal with the unknown signal form and propagation model. In this
paper, a sparse DPD method based on time-difference-of-arrival (TDOA) information in correlation-
domain is proposed. Different from the traditional sparse DPD method, the received signal is
converted into correlation-domain, and the proposed dictionary matrix is generated by the quantized
delay difference, which solves the pseudo-positioning problem. Compared to the conventional
multi-signal classification (MUSIC) method, multi-frequency fusion (MFF) method, and two-step
positioning algorithm, the proposed algorithm achieves higher positioning accuracy. The feasibility
of the algorithm has been verified by both simulation and real-world measured tests.

Keywords: direct position determination; sparse signal recovery; distributed sensing

1. Introduction

As the positioning-based mobile service attracts more attention, several positioning
methods are advancing. In order to overcome the error accumulation effect caused by
parameter estimation in traditional time-difference-of-arrival (TDOA) positioning [1], direct
position determination (DPD) methods [2,3] have been proposed, which directly establish
the likelihood function related to the position according to the signals received by each
node, obtaining the positioning result by finding the maximum value of the likelihood
function [4].

Studies by Mohammad and other scholars have shown that the DPD method has better
positioning performance than the two-step method multipath and low SNR scenarios [5,6].
Direct positioning technology discretizes the space where the radiation source may exist.
By dividing the space into a finite number of grids, and establishing a cost function for
each grid point according to the maximum likelihood criterion, we can find the grid point
with the largest cost function, which is the estimated position of the radiation source.
The representative algorithm is Schmidt’s multiple signal classification (MUSIC) based
on eigenspace decomposition [7], which uses the orthogonality of the noise and signal
subspaces to estimate the spatial spectrum on a grid-by-grid basis. Additionally, as a
popular decomposition method, the parallel factor (PARAFAC) [8] analysis is recognized
in the DPD field due to its excellent performance at solving the multi-parameter estimation
problem in array signal processing. Considering the spectrum estimation, the minimum
variance distortionless response (MVDR) method proposed by Weiss [9] is compared with
the beamforming method. In view of array signal processing, the spatial scanning beam is
generated, and the thermal map will be rendered on the two-dimensional plane to visually
display the position distribution probability of the radiation source. Because the traditional
DPD method needs to traverse all the grids or generate a full space scanning beam to
obtain the likelihood estimation of the emitter position, the positioning result is not optimal
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under limited measurement data samples and multipath propagation channels. According
to the sparsity of the spatial distribution of the radiation source as well as compressed
sensing [10], the sparse signal reconstruction algorithm [11] is used to realize the direct
localization under small samples and complex multipath conditions.

The sparse signal reconstruction algorithm is based on the compressed sensing algo-
rithm, which breaks through the Nyquist sampling limit, and realizes the sparse recon-
struction of signals with fewer observations. A greedy matching pursuit method proposed
by Zhang [12] is suitable for emitter localization using the orthogonal matching pursuit
(OMP) algorithm [13,14], where the residual satisfies the orthogonal relationship with the
selected column atoms in the over-complete dictionary [15]. On the basis of the block
sparsity in the dictionary matrices, a block-OMP method, which improves the step of
calculating the residual and column atoms in the OMP algorithm, was proposed by El-
dar [16]. However, the OMP method performs worse in low signal-to-noise ratio (SNR)
cases. Different from the sparse reconstruction method based on the greedy algorithm, the
edge likelihood probability function of the original signal pair through the relevance vector
machine (RVM) model is based on the sparse Bayesian learning (SBL) algorithm and the
expectation–maximization (EM) algorithm, as obtained by Wipf [17]. In lower SNR cases,
the SBL-EM method performs better than the matching pursuit method. On this basis,
Zhang [18] extends the application of the algorithm under the SBL framework [19–21],
which inspires the DPD method of sparse emitter sources.

In summary, the traditional two-step positioning method suffers from the issue of error
accumulation in the parameter estimation during the initial step. This error propagates
into the subsequent steps of the positioning calculation, leading to an overall increase
in the positioning error [22,23]. Existing DPD methods have their own limitations, such
as pseudo-positioning estimation and inadequate robustness [24,25]. Consequently, it
becomes challenging to achieve the precise estimation of the radiation source position in a
real-world measurement scenario. This paper presents a novel approach, denoted as the
correlation-domain-based sparse DPD method, which effectively addresses the problems
of error accumulation and pseudo-positioning errors. Moreover, the proposed method
demonstrates remarkable robustness in practical scenarios. In Figure 1, we present the
flowchart illustrating the research of this paper.

Figure 1. The flowchart depicting the organization of this paper.

The main contributions of this paper can be summarized as follows:

(1) The correlation-domain-based sparse DPD model is proposed by transforming the fre-
quency domain received signals into correlation-domain to construct the observation
signal for the sparse reconstruction process.

(2) A modified overcomplete dictionary matrix is constructed based on the quantization-
based delay difference. In contrast with the traditional dictionary-generating scheme
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based on the grid points, the proposed scheme achieves higher accuracy due to classi-
fying the grid points by the time delay difference and solving the pseudo-positioning
problem.

(3) Compared to the multi-signal classification (MUSIC) method, the multi-frequency
function fusion (MFF) method [26], and two-step TDOA-Chan positioning method,
the proposed algorithm presents more accurate positioning results. Meanwhile, the
effectiveness is proved by positioning the results of the real-world measured signals.

2. Sparse DPD Model

Considering a typical TDOA positioning scenario shown in Figure 2, the position
coordinates of the radiation source are P(xp, yp, zp) and the transmitted signal is s(t). There
are L base stations receiving signals, which are located at Bl(xbl , ybl , zbl), (l = 1, 2, . . . , L).
The received signal of the l-th base station can be given as follows:

xl(t) = βls(t− τl) + wl(t), (1)

where βl is the channel attenuation of the signal transmitted by the emitter to the l-th base
station, τl =‖ P− Bl ‖ /c is the signal transmission delay from the emitter to the l-th base
station, wl(t) is the stationary zero mean white noise, and c is the speed of light.

Base Station L

...

Emitter 

Source

Base Station 1

Base Station 2

Base Station 3

Figure 2. Traditional TDOA positioning scenario.

According to the time domain form of the received signal in Equation (1), the frequency
domain-based discrete form is obtained by performing a uniform sampling on the received
signal with a sampling frequency of fs and the N-point DFT transformation,

Xl(k) = Γl(k)S(k) + Wl(k), 0 ≤ k ≤ N − 1, (2)

where S(k) is the DFT transformation of s(t), Wl(k) is the DFT transformation of wl(t),
and Γl(k) is the complex attenuation of the transmission channel in the frequency domain,
which can be expressed as follows:

Γl(k) = αl(k)θl(k), (3)

where αl(k) is the amplitude attenuation of each frequency point in the real part,
θl(k) = e−j2πτl fsk/N is the phase attenuation caused by the transmission delay in the
imaginary part. Xl can be given as follows:

Xl = ΓlS + Wl = αlθlS + Wl , (4)

where
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Xl = [Xl(0), Xl(1), . . . , Xl(N − 1)]T , (5)

S = [S(0), S(1), . . . , S(N − 1)]T , (6)

Wl = [Wl(0), Wl(1), . . . , Wl(N − 1)]T , (7)

Γl = diag[Γl(0), Γl(1), . . . , Γl(N − 1)]T , (8)

αl = diag[αl(0), αl(1), . . . , αl(N − 1)]T , (9)

θl = diag[1, e−j2πnl/N , . . . , e−j2π(N−1)nl /N ]T , (10)

As the link between the frequency domain and the spatial domain, θl represents the
coefficient matrix with the steering vector as the main diagonal element in the frequency
domain, and it corresponds to the propagation delay from any position to the l-th base
station in the spatial domain. Through the corresponding relationship between the spatial
position and the coefficient matrix θl , the space is divided into NG = Nx × NZ grids, where
the coordinates of the i-th grid point are Gi(xgi, ygi, zgi), then θl(Gi) is obtained.

In the sparse signal reconstruction model, the signal is emitted from all grid points,
except one grid contributes the most to the emitted signal, and the other grids contribute
little (or even nothing) to the emitted signal. At this time, a contribution function with
respect to all grids as independent variables is established; this contribution function is
regarded as a sparse signal with only a limited number of non-zero values. The sparse
signal is reconstructed, and the position of the non-zero value in the signal is the position
of the grid point in the corresponding space.

The first step is to establish the contribution function σG(i), (1 ≤ i ≤ NG) correspond-
ing to all grid points. As the number of signal sources is much less than the number of grid
points (K � NG), we can express σG(i) as σG(i) = Ŝi, expressed as follows:

Ŝ = [ŜT
1 , ŜT

2 , . . . , ŜT
NG

] ∈ CN·NG , (11)

where Ŝi ∈ CN represents the frequency domain form of the transmitted signal of the grid
point. Since the transmitted signals of only a few positions in the space are not zero, Ŝ is in
the sparsity space. Based on the idea of compressed sensing, the received signal X can be
denoted as follows:

X = ΦŜ + W, (12)

where X ∈ CN·L represents the observation signal obtained by concatenating the re-
ceived signals of all base stations, Φ ∈ CN·L×N·NG is a super complete dictionary ma-
trix, Ŝ represents a solution vector, W ∈ CN·L represents a noise vector, and they can be
expressed as follows:

X = [XT
1 , XT

2 , . . . , XT
l ]

T , (13)

Φ =


Φ1,1 Φ2,1 · · · ΦGN ,1
Φ1,2 Φ2,2 · · · ΦGN ,2

...
...

. . .
...

Φ1,L Φ2,L · · · ΦGN ,L

, (14)

Φi,l = diag[1, Wni,l
N , . . . , W(N−1)ni,l

N ]T , (15)

where WN = e−j2π/N , ni,l =
‖Gi−Bl‖ fs

c represents the number of delay points of the received
signal and fs represents the sampling frequency of the receiver.

Then, the direct positioning problem is converted into the sparse signal reconstruction
problem, which can be expressed as an abstract function:

σG(i) = SR(X, Φ), (16)
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where SR represents the sparse reconstruction (SR) algorithm. The input of the algorithm
is the received signal X and the super complete dictionary matrix Φ. The output of the
algorithm is the contribution function σG(i) of all grid points. The grid point with the largest
corresponding function value is the emitter position estimation, expressed as follows:

Pe = arg max
i

[σG(i)]. (17)

The sparse reconstruction algorithm can be implemented by a variety of sparse recon-
struction algorithms, among which, OMP [27] and SBL [28] algorithms are typical ones,
which will not be elaborated on in this paper.

3. Sparse DPD Method in Correlation-Domain

In the sparse direct positioning method introduced in the previous section, the signal
propagation model is based on the time of arrival (TOA). It is assumed that there is only a
propagation delay between the signal received by each base station and the signal sent by
the signal source. Moreover, the transmitted signal is reconstructed under the condition of
an unknown signal form. These assumptions are difficult to meet in actual scenarios. In
this section, a TDOA-DPD method is proposed to transform the frequency domain signal
into correlation-domain.

3.1. Construction of the Observation Signal

The TDOA-DPD correlation-domain transformation model is established on the basis
of Equation (2). The r-th base station is considered the reference base station, and the
reference frequency domain signal Xr(k) can be obtained by:

Xr(k) = αr(k)θr(k)S(k) + Wr(k), (18)

where αr(k) is the reference amplitude attenuation. Except for the frequency domain signal
received by the reference base station, Xl(k) can be represented by the reference frequency
domain signal Xr(k):

Xl(k) = Xr(k)
Xl(k)
Xr(k)

= Xr(k)
αl(k)

[
θl(k) +

Wl(k)
αl(k)S(k)

]
αr(k)

[
θr(k) +

Wr(k)
αr(k)S(k)

] , (19)

let ξl(k)ejΦl = Wl(k)
αl(k)S(k)

, where ξl(k) =
∣∣∣ Wl(k)

αl(k)S(k)

∣∣∣, Φl = arg( Wl(k)
αl(k)S(k)

), l ∈ {1, . . . , L},
we have

Xl(k) = Xr(k)
αl(k)

[
θl(k) + ξl(k)ejΦl

]
αr(k)

[
θr(k) + ξr(k)ejΦr

] . (20)

When the signal power α2
l (k)S

2(k), α2
r (k)S2(k) at the k-th frequency point in the

received signal is much greater than the noise power W2
l (k), W2

r (k),∣∣∣∣ Wl(k)
αl(k)S(k)

∣∣∣∣� 1,
∣∣∣∣ Wr(k)
αr(k)S(k)

∣∣∣∣� 1, (21)

from Equation (21), it can be inferred that ξl(k) � |θl(k)|, ξr(k) � |θr(k)|, then Xl(k)
simplifies to:

Xl(k) = Xr(k)
αl(k)θl(k)
αr(k)θr(k)

= Xr(k)
αl(k)
αr(k)

e−j2π(nl−nr)k/N , (22)

let αl,r(k) =
αl(k)
αr(k)

, θl,r(k) = e−j2π(nl−nr)k/N , where l ∈ {1, . . . , L}⋂{l 6= r}, Xl(k) is simpli-
fied as follows:

Xl(k) = Xr(k)αl,r(k)θl,r(k). (23)
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Define:

Yl,r(k) =
Xl(k)X∗r (k)

‖Xr(k)‖2 =
Xl(k)X∗r (k)
Xr(k)X∗r (k)

=
Xl(k)
Xr(k)

= αl,r(k)θl,r(k), (24)

where Xl(k)X∗r (k) represents the correlation-domain relation of xl(t) and xr(t). αl,r(k) and
θl,r(k), respectively, represent the magnitude and phase of the correlation-domain signals.
The matrix form of Yl,r(k) can be given as follows:

Yl,r = [Yl,r(0) Yl,r(1) · · · Yl,r(N − 1)]T. (25)

Hence, the processing of the received signal from the frequency domain to the
correlation-domain is accomplished. The obtained Yl,r is considered the observation signal
in the sparse reconstruction model.

3.2. Construction of the Dictionary Matrix

Since the space is divided into NG grids, Gi(xgi, ygi, zgi) denote the coordinates of the
i-th grid point, and ∆l,r(i) represents the original time delay difference between the arrival
of the i-th grid point at the base station l and the reference base station r:

∆l,r(i) =
[‖Gi − Bl‖ − ‖Gi − Br‖] fs

c
, 1 ≤ i ≤ NG, (26)

where Br denotes the coordinates of the reference base station and fs denotes the sample
rates. The first step is to find out min

{
∆l,r(i)

}
and max

{
∆l,r(i)

}
, which are abbreviated

as follows: ∆min,l , ∆max,l . Secondly, we equally divide the interval [∆min,l , ∆max,l ] into Λl
uniform quantization intervals. Each quantization interval is expressed as [∆̄l,r(λl), ∆̄l,r(λl +
1)], λl = 1, 2, . . . , Λl , and we take the lower bound of each quantization interval as the
quantization value. The original delay difference corresponding to all the base stations is
quantized to obtain the quantization delay differences of all grid points. Therefore, the
quantization delay difference corresponding to the i-th grid point is expressed as follows:

∆̄r(i) = [λ1(i), λ2(i), . . . , λL(i)]. (27)

Therefore, the three-dimensional spatial coordinates of the i-th grid point are mapped
to a new space composed of the quantization delay difference between the reference base
station and other base stations:

Gi =
(
xgi, ygi, zgi

)
→ ∆̄r(i) = [λ1(i), λ2(i), . . . , λL(i)], (28)

where λl(i) denotes the index of quantization interval, i.e.,

λl(i) = arg min
λ

{∣∣∆̄l,r(λ)-∆l,r(i)
∣∣}. (29)

It is noted that the dimension of ∆̄r(λ1, λ2, . . . , λL) is L− 1, since no delay difference
exists with the reference base station r. In other words, the dimension of ∆̄r can be consid-
ered as l, but the value of the r-th dimension remains constant at zero. Thus, the dictionary
matrix generated by the quantization delay difference is expressed as follows:

Āl,r =



1 W∆̄l,r(1)
N W2∆̄l,r(1)

N · · · W(N−1)∆̄l,r(1)
N

1 W∆̄l,r(2)
N W2∆̄l,r(2)

N · · · W(N−1)∆̄l,r(2)
N

1 W∆̄l,r(3)
N W2∆̄l,r(3)

N · · · W(N−1)∆̄l,r(3)
N

...
...

...
. . .

...

1 W∆̄l,r(Λ)
N W2∆̄l,r(Λ)

N · · · W(N−1)∆̄l,r(Λ)
N


, (30)
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where WN = e−j2π/N , N denotes the length of the observation signal. Therefore, the sparse
reconstruction model is expressed as follows:

Yl,r = Āl,rỸl,r. (31)

Ỹl,r represents the reconstruction vector i.e.,

Ỹl,r = [Ỹl,r(1) Ỹl,r(2) · · · Ỹl,r(Λ)]
T

. (32)

3.3. Reconstruction of the Source Location

Since Ỹl,r is sparse, the position of its non-zero value corresponds to the quantization
interval index λ̃l . After the (L− 1) times sparse reconstruction of the (L− 1) correlation-
domain signals, one has

λ̃ =
[
λ̃1 λ̃2 · · · λ̃L

]
, (33)

Reviewing the mapping relation in Equation (28), it is expected that the three-dimensional
coordinates of the grid points can be inversely mapped according to the vector λ̃. Thus, the
following mapping relationship is considered:

∆̄r = [λ̃1, λ̃2, · · · , λ̃L]→ Gi =
(
xgi, ygi, zgi

)
. (34)

The method adopted here is to map each λ̃l separately and perform (L− 1) times
mapping operations in total. The reason is that the mapping in Equation (28) is likely not
surjective. It is likely that the corresponding Gi cannot be found according to the obtained λ̃.
However, it is assumed that Gi → λl is a surjective, i.e., the time delay difference of all grid
points after quantization for a certain base station can always be completely traversed, and
the corresponding Gi can be found according to λ̃l (usually not unique). This assumption
holds only if the delay difference quantization interval is large enough to ensure that each
mapping is surjective. The specific steps are as follows:

(1) When l = 1, we find that all ∆̄r(i) meet the following condition: λ1(i) = λ̃1, then we
record the index of the grid point as i1, and assign Ỹ1,r(λ̃1) to σG(i1), which indicates
the likelihood function of the grid point.

(2) When l = 2, we find that all ∆̄r(i) meet the following condition: λ2(i) = λ̃2, then
we record the index of the grid point as i2, assign Ỹ2,r(λ̃2) to σG(i2), and accumulate
with σG(i1).

(3) When l = 3, 4, . . . , L, by analogy, the σG function obtained each time is accumulated
with the previous one, and the final σG function is the likelihood function of all
grid points.

Since the grid point coordinates Gi mapped by λ̃ exist in each value record i1, i2, . . . , iL
after (L− 1) times accumulation, the grid point with the largest likelihood function value
represents the grid point coordinates mapped by λ̃. Thus, the source position estimation Pe
can be expressed as follows:

Pe =

{
Gq

∣∣∣∣q = arg max
i

[σG(i)]
}

(35)

Through improvements, the original single sparse reconstruction is changed to multi-
dictionary joint sparse reconstruction for each correlation-domain signal, and (L − 1)
quantized delay difference matrices are used as dictionary matrices to obtain (L − 1)
reconstructed vectors. By searching the index of each grid point’s delay difference in the
corresponding quantized delay difference dictionary, the reconstructed vector component
value of the grid point, i.e., the likelihood function, is determined, and the likelihood
functions of all grid points are reconstructed.

The proposed algorithm can be summarized as in Algorithm 1.
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Algorithm 1: Sparse TDOA-DPD Algorithm

Input: Correlation-domain signal yk ∈ CM

Number of Sample points M
Set of grid points {G | Gi = (x, y, z)}, i = 1, 2, . . . , g
Set of base stations {B | Bj = (x, y, z)}, j = 1, 2, . . . , b
Number of TDOA intervals Λl
Speed of light c
Output: The contribution function σG(i) of each grid point

1 {∆min,l , ∆max,l} ← {min
i,j
‖Gi − Bj‖/c, max

i,j
‖Gi − Bj‖/c };

2 ∆m ← |∆min,l − ∆max,l |/Λl
3 [∆l,r(λl), ∆l,r(λl + 1)] = [∆min,l + (λl − 1)∆m, ∆min,l + λl∆m] , λl = 1, 2, 3, . . . , Λl ;
4 λl(i)← arg min

λl
|‖Gi − Bj‖/c− ∆l,r(λl)|

Mapping : [λ1(i), λ2(i), . . . , λL(i)]← ‖Gi − Bj‖ ;
5 α(i)← [ f (∆1,r(λ1(i))), f (∆2,r(λ2(i))), . . . , f (∆L,r(λL(i)))], where f (·)← e−j2π(·);
6 αl(i)← f (∆l,r(λl(i)))[e−j2π0/M, e−j2π1/M, . . . , e−j2πM/M]T;
7 Al ← [αl(1), αl(2), . . . , αl(Λl)];
8 σG(i)← 0;
9 l ← 1;

10 while l ≤ L do
11 Sparse Reconstruction(yk = AlŜl), Ŝl ∈ CΛl ;

12 Inverse mapping : σ
(l)
G (i)← Ŝl(λl)| [∗,λl(i),...,∗]←‖Gi−Bj‖ ;

13 σ
(l)
G (i)← σ

(l−1)
G (i) + σ

(l)
G (i);

14 l ← l + 1;
15 end

4. Simulation

Simulation 1: The horizontal–vertical coordinate range of the task area was [0 m, 200 m]
divided into a 4 m × 4 m grid. There were four base stations distributed in the four
corners of the task area. The location of the radiation source was fixed (40 m, 60 m). The
positioning was performed 100 times. The signals transmitted by each base station were
different complex Gaussian signals, with a signal length of 32 and an SNR of 10 dB. The
SBL sparse reconstruction algorithm was adopted based on the TDOA-DPD model; the
positioning results are shown in Figure 3. In this figure, it is evident that the peak value of
the likelihood function precisely corresponds to the actual position of the radiation source.

Figure 3. Positioning results of simulation 1.

Simulation 2: The comparison of positioning results before and after the time delay
quantization is shown in Figure 4. Figure 4a shows several pseudo-positioning results due
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to the absence of the time delay quantization step. Figure 4b shows the correct positioning
result with time delay quantization. Looking at the comparison via the two subfigures, it
can be concluded that the quantized delay difference dictionary effectively eliminates the
pseudo-positioning problem.

(a) (b)
Figure 4. Comparison of the positioning before and after the time delay difference quantization.
(a) Before the delay difference quantization; (b) after the delay difference quantization.

Simulation 3: The source position was randomly generated in the task area, and
the positioning was performed 100 times. The other parameters are the same as those
in simulation 1. The RMSE vs. SNR curves are investigated and compared with other
positioning methods, as shown in Figure 5.

-10 -5 0 5 10 15 20

SNR (dB)

0

20

40

60

80

100

120

140

160

R
M

S
E

 (
m

)

TDOA-Chan

DPD-DET

DPD-MFF

Proposed Method

Figure 5. The RMSE curve comparing the random source positioning error between the proposed
method and other positioning methods.

The mean absolute error (MAE) and the root mean square error (RMSE) are given
as follows:

MAE =
1

Nm

Nm

∑
i=1
‖p̂i − p‖ (36)
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RMSE =

√√√√ 1
Nm

Nm

∑
i=1
‖p̂i − p‖2 (37)

where Nm is the simulation time under the same SNR, p̂i is the i-th estimation to the emitter
source, and p is the real position of the source.

According to Figure 5, the proposed method achieves higher accuracy compared to
other positioning methods. In situations with high SNR, all four methods exhibit similar
performance. However, at low SNR levels, both the TDOA-Chan and DPD-DET methods
demonstrate inferior performance compared to the other two methods. Based on the color
bars in Figure 6, it is evident that the proposed method outperforms the other methods in a
variety of metrics, including the 25th percentile error, median error, 75th percentile error,
and mean absolute error.

25 percentile error Median error 75 percentile error Mean absolute error
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DPD-MFF

Proposed Method

Figure 6. Comparison of different error metrics between the proposed method and other position-
ing methods.

5. Real-World Measured Tests

In the real-world measured scenario, the specific parameters of the measured data are
shown in Table 1. The real emitter and the node equipment are, respectively, illustrated in
Figure 7. On the left side, the actual picture of the receiver node and the emitter source are
presented, while on the right, the real scenario is displayed.

Figure 7. The actual picture of the real emitter and the node equipment.
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Table 1. Parameters of real-world measured data.

Parameter Name Value Parameter Name Value

Modulation Mode QPSK Sample Rate 125 MHz
Symbol Rate 25 MSPS Signal Length 4096
Center Frequency 726 MHz Number of Sources 1
Radiation Power 15 dBm Number of Base Stations 4

The real-world measured signals collected within 30 seconds were located using a
traditional two-step TDOA-Chan positioning method; the results based on traditional
two-step TDOA-Chan positioning are shown in Figure 8a. Next, the proposed sparse
DPD positioning method was used to locate the same original data, Figure 8b exhibits the
thermal map of the positioning results. Figure 9 shows the positioning error CDF curve of
the measured signal.

(a) (b)
Figure 8. Comparison of the results of the traditional positioning method and proposed method;
(a) positioning results of the traditional two-step TDOA-Chan method. (b) Positioning results of the
proposed method.
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Figure 9. Real-world measured signal positioning CDF curve.
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In Figure 8a, the scatter points of the positioning results are located near the emitter
position, and the yellow stars are symbols of the nodes. In Figure 8b, the color map visually
represents the likelihood function, which corresponds to the probability distribution of the
emitter source’s location. In Figure 9, it is demonstrated that the proposed method exhibits
the minimum error compared to other positioning methods, and the DPD-DET method
has the worst performance in real-world measured tests. By sorting the positioning error
values in ascending order, we were able to identify the error corresponding to the 90th
percentile; thus, we achieved the desired error measurement at the 90% confidence level. At
the 90% confidence level, the proposed method obtains the highest accuracy, which is less
than the 10-meter error. In Table 2, five metrics of the measured positioning error are listed,
including the 25th percentile error, median error, 75th percentile error, and mean absolute
error. The proposed method gains the highest accuracy compared to the other methods.
Relative to its performance in simulation 3, the proposed method shows its robustness for
outperforming other methods both in simulation and the real-world measured test.

Table 2. Positioning errors of real-world measured data.

TDOA-Chan DPD-DET DPD-MFF Proposed
Method

25 percentile error 4.9802 m 5.9870 m 4.7013 m 3.3741 m

Median error 6.5835 m 13.3595 m 7.5158 m 4.9038 m

75th percentile error 8.8934 m 18.5046 m 9.6559 m 8.4570 m

Mean absolute error 7.2088 m 16.5353 m 7.0809 m 5.1925 m

RMSE 7.8456 m 22.3492 m 7.9656 m 5.9784 m

6. Conclusions

In this paper, a sparse DPD method is proposed that is based on TDOA information in
correlation-domain. The main process involves converting the signal from the frequency
domain to the correlation-domain and the construction of the quantized delay difference
dictionary matrix. This study has demonstrated the effectiveness of the proposed method
in mitigating the issues of error accumulation and pseudo-positioning errors encountered
in traditional methods. Through extensive experimentation based on the real-world mea-
sured tests and analysis, we have shown that the correlation-domain-based sparse DPD
method significantly improves the accuracy and robustness of radiation source localization.
Moreover, the proposed method exhibits remarkable performance in practical scenarios,
highlighting its potential for real-world applications.

Future work will aim to expand the algorithm’s scope to more universal position-
ing scenarios, including the localization and tracking of signals employing complicated
modulation techniques within complex electromagnetic environments.

7. Discussion

While the research in this paper primarily concentrates on static radiation source
localization, it is worth noting that the field of positioning and tracking dynamic radiation
targets is gaining more attention. Therefore, it is crucial to conduct further research to assess
the applicability of the proposed algorithm in mobile multi-target localization scenarios.

Overall, our study contributes to the advancement of radiation source positioning
methods. The proposed algorithm holds great promise for improving the accuracy and
reliability of radiation source localization systems, ultimately enhancing the effective-
ness in various domains, including illegal aerial vehicle monitoring, interference source
localization, and emergency responses.
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Abbreviations
The following abbreviations are used in this manuscript:

DPD direct position determination
TDOA time-difference-of-arrival
MUSIC multi-signal classification
MFF multi-frequency fusion
SNR signal-to-noise ratio
MVDR minimum variance distortionless response
OMP orthogonal matching pursuit
RVM relevance vector machine
SBL sparse Bayesian learning
EM expectation–maximization
DFT discrete Fourier transform
SR sparse reconstruction
TOA time of arrival
RMSE root mean square error
QPSK quadrature phase-shift keying
CDF cumulative distribution function
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